
Aachen
Department of Computer Science

Technical Report

Tree-Like Grammars and Separation
Logic

Christoph Matheja, Christina Jansen and Thomas Noll

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2015-12

RWTH Aachen · Department of Computer Science · September 2015

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Tree-Like Grammars and Separation Logic

Christoph Matheja, Christina Jansen, and Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University, Germany
http://moves.rwth-aachen.de/

Abstract. Separation Logic with inductive predicate definitions (SL) and hy-
peredge replacement grammars (HRG) are established formalisms to describe the
abstract shape of data structures maintained by heap-manipulating programs.
Fragments of both formalisms are known to coincide, and neither the entailment
problem for SL nor its counterpart for HRGs, the inclusion problem, are decidable
in general.
We introduce tree-like grammars (TLG), a fragment of HRGs with a decidable in-
clusion problem. By the correspondence between HRGs and SL, we simultaneously
obtain an equivalent SL fragment (SLtl) featuring some remarkable properties in-
cluding a decidable entailment problem.

1 Introduction

Symbolic execution of heap-manipulating programs builds upon abstractions to
obtain finite descriptions of dynamic data structures, like linked lists and trees.
Proposed abstraction approaches employ, amongst others, Separation Logic with
inductive predicate definitions (SL) [18, 2, 14] and hyperedge replacement gram-
mars (HRG) [10, 13].

While these formalisms are intuitive and expressive, important problems are
undecidable. In particular, the entailment problem for SL [1], i.e. the question of
whether all models of a formula ϕ are also models of another formula ψ (written
ϕ |= ψ), as well as its graph-theoretical counterpart, the inclusion problem for
HRGs [10], are undecidable in general. Unfortunately, as stated by Brotherston,
Distefano and Peterson [4], “effective procedures for establishing entailments are
at the foundation of automatic verification based on Separation Logic”. Con-
sequently, SL-based verification tools, such as SLayer [3] and Predator [11],
often restrict themselves to the analysis of list-like data structures, where the
entailment problem is known to be decidable [2]. VeriFast [15] and Cyclist
[4] allow general user-specified predicates, but are incomplete and/or require
additional user interaction. The largest known fragment of SL featuring both
inductive predicate definitions and a decidable entailment problem is Separation
Logic with bounded tree width (SLbtw) [14].

Approaches based on graph grammars suffer from the undecidability of the
related inclusion problem: Lee et al. [17] propose the use of graph grammars for
shape analysis, but their approach is restricted to trees. The tool Juggrnaut
[13] allows the user to specify the shape of dynamic data structures by an HRG,
but relies on an approximation to check whether newly computed abstractions are
subsumed by previously encountered ones. Hence, finding more general fragments
of SL and HRGs with good decidability properties is highly desirable.

This paper investigates fragments of HRGs with a decidable inclusion prob-
lem. In a nutshell, HRGs are a natural extension of context-free word grammars

specifying the replacement of nonterminal-labelled edges by graphs (cf. [12]).
Common notions and results for context-free word languages, e.g. decidability of
the emptiness problem and existence of derivation trees, can be lifted to HRGs
(cf. [19]) which justifies the alternative name “context-free graph grammars”.

Most of our results stand on two pillars. The first pillar is an extension of the
well-known fact that context-free word languages are closed under intersection
with regular word languages, which are, by Büchi’s famous theorem [5], exactly
the word languages definable in monadic second-order logic (MSO).

Lemma 1 (Courcelle [6]) For each HRG G and MSO2 sentence ϕ, one can
construct an HRG G′ such that L(G′) = L(G) ∩ L(ϕ) = {H ∈ L(G) | H |= ϕ}.

Here, MSO2 means MSO over graphs with quantification over nodes and edges
and H denotes the relational structure associated with the hypergraph H. L(G)
and L(ϕ) denote the language generated by the grammar G and the set of models
of the formula ϕ, respectively.

The second pillar is the close connection between a fragment of HRGs – called
data structure grammars (DSG) – and a fragment of SL studied by Dodds [9]
and Jansen et al. [16].

Lemma 2 (Jansen et al. [16]) Every SL formula can be translated into a lan-
guage-equivalent data structure grammar and vice versa.

The overall goal of this paper is to develop fragments of HRGs which can
be translated into MSO2. Then it directly follows from Lemma 1 that the re-
sulting classes of languages have a decidable inclusion problem and are closed
under union, intersection and difference as well as under intersection with gen-
eral context-free graph languages. By Lemma 2, we obtain analogous results for
equivalent SL fragments.

The largest fragment we propose are tree-like grammars (TLG). Intuitively,
every graph H generated by a TLG allows to reconstruct one of its derivation
trees by identifying certain nodes, the anchor nodes, with positions in a deriva-
tion tree. Furthermore, each edge of H is uniquely associated with one of these
anchor nodes. These properties allow for each graph H generated by a given
TLG G to first encode a derivation tree t in MSO2 and then to verify that H is
in fact the graph derived by G according to t. Our main result is that the two
informally stated properties from above guarantee MSO2-definability.

Theorem 1. For each TLG G, there exists an MSO2 sentence ϕG such that for
each hypergraph H, H ∈ L(G) if and only if H |= ϕG.

TLGs are introduced in detail in Section 4.
Furthermore, we study the fragment of tree-like Separation Logic (SLtl, cf.

Section 7) which is equivalent to TLGs generating heaps rather than arbitrary
graphs.

By Lemma 2, our results on TLGs also hold for SLtl. Thus, SLtl has the
following remarkable properties:

1. The satisfiability as well as the extended entailment problem, i.e. the question
of whether an arbitrary SL formula ϕ entails an SLtl formula ψ, are decidable.

2. Although negation and conjunction are restricted to pure formulae, SLtl is
closed under intersection and difference.

Regarding expressiveness, common data structures like (cyclic) lists, trees,
in-trees, n × k-grids for fixed k and combinations thereof are SLtl-definable.
In particular, we show that SLtl is strictly more expressive than SLbtw. The
same holds for an entirely syntactic fragment of TLGs, called ∆-DSGs, and a
corresponding fragment of SLtl.

The remainder of this paper is structured as follows. Section 2 very briefly
recapitulates standard definitions on SL and MSO, while Section 3 covers essen-
tial concepts of hypergraphs and HRGs. The fragment of TLGs and its MSO-
definability result is introduced in Section 4. Section 5 studies an entirely syn-
tactic fragment of TLGs and compares its expressive power to Courcelle’s regu-
lar graph grammars. We quickly recapitulate how SL formulae is translated into
DSGs in Section 6. Our results on TLGs are transferred to SL and discussed in
Section 7. Finally, Section 8 concludes.

Some technical details and proofs are omitted in the paper and are provided
in the appendix instead.

2 Preliminaries

This section introduces our notation and briefly recapitulates trees, graphs, MSO2,
and SL. On first reading, the well-informed reader might want to skip this part.

Notation Given a set S, S? denotes all finite sequences over S. For s, s′ ∈ S?,
s.s′ denotes their concatenation, the i-th element of s is denoted by s(i) and
the set of all of its elements is denoted by bsc. A ranked alphabet is a finite
set S with ranking function rkS : S → N and maximal rank <(S). We write
{x1 7→ y1, . . . , xm 7→ ym} to denote a finite (partial) function f with domain
dom(f) = {x1, . . . , xm} and co-domain {y1, . . . , ym} such that f(xi) = yi for

each i ∈ [m] = [1,m] = {1, 2, . . . ,m}. The operators] and +t denote the disjoint
union of two sets and two functions, respectively.

Trees Given a ranked alphabet S, a tree over S is a finite function t : dom(t)→ S
such that ∅ 6= dom(t) ⊆ N?, dom(t) is prefix closed and for all x ∈ dom(t), {i ∈
N | x.i ∈ dom(t)} = [rkS(t(x))]. x ∈ dom(t) is a (proper) prefix of y ∈ dom(t),
written x ≺ y, if y = x.i.z for some i ∈ N and z ∈ N?. The subtree of t with root
x ∈ dom(t) is given by t|x : {y | x.y ∈ dom(t)} → S : y 7→ t(x.y). With each
tree t, we associate the relational structure t := (dom(t), (succi)i∈[<(S)], (tlbs)s∈S)
where succi := {(x, x.i) ∈ dom(t)×dom(t)} and tlbs := {x ∈ dom(t) | t(x) = s}.

Graphs An edge-labelled graph over an alphabet S is a tuple H = (V,E) with a
finite set of nodes V and edge relation E ⊆ V × S × V . With each graph H we
associate the relational structure H = (V]E, src, tgt, (Es)s∈S) where src and tgt
are the binary source and target relations given by src := {(u, e) | e = (u, s, v) ∈
E}, tgt := {(e, v) | e = (u, s, v) ∈ E}. For each s ∈ S, there is a unary relation
Es := {(u, s, v) ∈ E | u, v ∈ V } collecting all edges labelled with s.

Monadic Second-Order Logic over Graphs Given a finite alphabet S, the syntax
of MSO2 is given by:

ϕ ::= Es(x) | src(x, y) | tgt(x, y) | X(x) | ϕ1 ∨ ϕ2 | ¬ϕ | ∃x : ϕ | ∃X : ϕ | x = y

where x, y are first-order variables, X is a second-order variable and s ∈ S. For a
graph H = (V,E), we write H,  |= ϕ iff H satisfies ϕ where  is an interpretation
mapping every free first-order variable to an element of V]E and every second-
order variable to a subset of either V or E, respectively. The semantics of |=
is standard (cf. [8]). Note that the semantics of src, tgt and Es has been given
explicitly in the definition of H. We allow other operators like conjunction ∧,
implication→ and universal quantification ∀ that can be obtained from the given
ones. To keep formulae readable in the remainder of this paper, we make use of
the following shortcuts which are rather straightforward to define in MSO2. If
W is a finite set of variables, ∃W : ϕ denotes the existential quantification of
all variables in W. ∃!x : ϕ(x) := ∃x : ϕ(x) ∧ ∀y : ϕ(y) → x = y denotes the
unique existential quantification of x and Π(X,Y1, . . . , Ym) denotes that the sets
Y1, . . . , Ym form a partition of X. The formulae V (x) and E(x) state that x is a
node or an edge, respectively, and inc(x, y) is satisfied if and only if x is an edge
incident to a node y. If X1, . . . , Xm are second order variables and I ⊆ [m], XI(x)
denotes the disjunction

∨
i∈I Xi(x). Finally, tree(X,x) means that the nodes in

X form the domain of a relational tree structure t with root x (cf. [14] for a
formal definition).

Heaps Similarly to the typical RAM model, a heap is understood as a set of
locations Loc := N, whose values are interpreted as pointers to other locations.
Formally, we define a heap as a partial mapping h : Loc → Loc]{null}. The set
of all heaps is denoted by Hp. Let Σ be a finite set of selectors equipped with an
injective ordering function cn : Σ → [0, |Σ| − 1]. We assume a heap to consist
of a single kind of objects with a fixed set of fields Σ which are modelled by
reserving exactly |Σ| successive locations.

Separation Logic with Recursive Definitions We consider a fragment of Separa-
tion Logic, similar to Separation Logic with recursive definitions in [14, 16], in
which negation ¬, true, and conjunction ∧ in spatial formulae are disallowed. Let
Pred be a set of predicate names. The syntax of SL is given by:

E ::= x | null

P ::= x = y | x 6= y | P ∧ P pure formulae

F ::= emp | x.s 7→ E | F ∗ F | ∃x : F | σ(x1, ..., xn) spatial formulae

S ::= F | S ∨ S | S ∧ P SL formulae

where x, y, x1, ..., xn ∈ Var , s ∈ Σ and σ ∈ Pred . We call x.s 7→ E a points-to
assertion, σ(x1, ..., xn) a predicate call.

Note that we do not require all selectors of a given variable to be defined by a
single points-to assertion. Furthermore, it is straightforward to add program vari-
ables to SL, which we omitted for the sake of simplicity. To improve readability,
we write x.(s1, . . . , sk) 7→ (y1, . . . , yk) as a shortcut for x.s1 7→ y1∗ . . .∗x.sk 7→ yk.

Predicate calls are specified by means of predicate definitions. A predicate
definition for σ ∈ Pred is of the form σ(x1, ..., xn) := σ1∨...∨σm where m,n ∈ N,

σj is a formula of the form F ∧P , and x1, ..., xn ∈ Var are pairwise distinct and
exactly the free variables of σj for each j ∈ [m]. The disjunction σ1 ∨ ... ∨ σm is
called the body of the predicate. An environment is a set of predicate definitions.
Env denotes the set of all environments.

The semantics of a predicate call σ(x1, ..., xn), σ ∈ Pred , w.r.t. an environ-
ment Γ ∈ Env is given by the predicate interpretation ηΓ . It is defined as the least
set of location sequences instantiating the arguments x1, . . . , xn and heaps that
fulfil the unrolling of the predicate body. We refer to [16] for a formal definition.

The semantics of the remaining SL constructs is determined by the standard
semantics of first-order logic and the following, where  is an interpretation of
variables as introduced for MSO2:

h, , ηΓ |= x.s 7→ null ⇔ dom(h) = {(x) + cn(s)}, h((x) + cn(s)) = null

h, , ηΓ |= x.s 7→ y ⇔ dom(h) = {(x) + cn(s)}, h((x) + cn(s)) = (y)

h, , ηΓ |= σ(x1, ..., xn) ⇔ (((x1), ..., (xn)), h) ∈ ηΓ (σ)

h, , ηΓ |= ϕ1 ∗ ϕ2 ⇔ ∃h1, h2 : h = h1 +th2, h1, , ηΓ |= ϕ1, h2, , ηΓ |= ϕ2

A variable x ∈ Var is said to be allocated in a formula if it (or a variable y
with y = x) occurs on the left-hand side of a points-to assertion.

From now on, we assume that all existentially quantified variables are even-
tually allocated. This requirement is similar to the “establishment” condition in
[14]. With this assumption, the inequality operator for logical variables x 6= y
is redundant with respect to the expressive power of the formalism, because
x.s 7→ z ∗ y.s 7→ z′ already implies that (x) 6= (y) in all heaps satisfying the
formula. Thus, we assume that two existentially quantified variables refer to
different locations if not stated otherwise by a pure formula.

3 Context-Free Graph Grammars

This section introduces HRGs together with some of their properties relevant for
the remainder of this paper. For a comprehensive introduction, we refer to [12,
19].

Let ΣN := Σ]N be a ranked alphabet consisting of terminal symbols Σ and
nonterminal symbols N .

Definition 1 (Hypergraph). A labelled hypergraph (HG) over ΣN is a tuple
H = (V,E, att, lab, ext) where V and E are disjoint sets of nodes and hyperedges,
att : E → V ? maps each hyperedge to a sequence of attached nodes such that
|att(e)| = rkΣN (lab(e)), lab : E → ΣN is a labelling function, and ext ∈ V ? a
sequence of external nodes. The set of all HGs over ΣN is denoted by HGΣN .

Note that we allow attachments of hyperedges as well as the sequence of ex-
ternal nodes to contain repetitions. Hyperedges with a label from Σ are called
terminal edges, nonterminal otherwise. The set of terminal (nonterminal) hyper-
edges of an HG H is denoted by EΣH (ENH , respectively). In this paper, we assume
rkΣN (s) = 2 for each s ∈ Σ. Moreover, a hyperedge e with lab(e) = s ∈ Σ and
att(e) = u.v is interpreted as a directed edge from u to v. The relational struc-
ture corresponding to H ∈ HGΣ is H := [H], where the (conventional) graph [H]
is defined as [H] = (VH , E), E := {(attH(e)(1), labH(e), attH(e)(2)) | e ∈ EH}.

Example 1. As an example, consider the HG illustrated in Figure 1(a) (right).
For referencing purpose, we provide a unique index i ∈ [|V |] inside of each node
ui represented by a circle. External nodes are shaded. For simplicity, we assume
them to be ordered according to the provided index. Terminal edges are drawn
as directed, labelled edges and nonterminal edges as square boxes with their
label inside. The ordinals pictured next to the connections of a nonterminal
hyperedge denote the position of the attached nodes in the attachment sequence.
For example, if e is the leftmost nonterminal hyperedge in Figure 1(a), att(e) =
u5.u1.u3.u7.

Two HGs H, H ′ are isomorphic, written H ∼= H ′, if they are identical up
to renaming of nodes and edges. In this paper, we will not distinguish between
isomorphic HGs. The disjoint union of H,H ′ ∈ HGΣN is denoted by H]H ′.

The main concept to specify (infinite) sets of HGs in terms of context-free
graph grammars is the replacement of a nonterminal hyperedge by a finite HG.
Let K and H be HGs with disjoint sets of nodes and edges. Intuitively, a non-
terminal hyperedge e of K is replaced by H by first removing e, adding H to
K and identifying the nodes of K originally attached to e with the sequence of
external nodes of H. This is formally expressed by a quotient.

Definition 2 (Hypergraph Quotient). Let H ∈ HGΣN , R ⊆ VH × VH be an
equivalence relation and [u]/R = {v ∈ VH | (u, v) ∈ R} the equivalence class
of u ∈ VH , which is canonically extended to sequences of nodes. The R-quotient
graph of H is [H]/R = (V,E, att, lab, ext), where V = {[u]/R | u ∈ VH}, E = EH ,
att = {e 7→ [attH(e)]/R | e ∈ EH}, lab = labH , ext = [extH]/R.

Definition 3 (Hyperedge Replacement). Let H,K ∈ HGΣN with disjoint
nodes and hyperedges, e ∈ ENH with rkΣN (e) = k = |extK |. Let V = VH]VK , and

H,e≈K ⊆ V×V be the least equivalence relation containing {(attH(e)(i), extK(i)) |
i ∈ [k]}. Then the HG obtained from replacing e by K is H[e/K] := [(H \ {e}]
K)]/ H,e≈K where H \ {e} is the HG H in which e has been removed. Moreover,
two nodes u, v ∈ V are merged by H[e/K] if u 6= v and u H,e≈K v.

S

production rule p1

(a)

2

1

5 6

S S

73 4

p

l r

1 1

3 4

2

3 4

2

production rule p2

(b)

2

1

3 5

4

p

l r
n

n

p p

derivation tree t

(c)

p1

ε

p2 p2

1 2

yield(t)

(d)

Fig. 1. HRG TLL with two production rules p1 and p2

We now formally introduce context-free graph grammars based on hyperedge
replacement.

Definition 4 (Hyperedge Replacement Grammar). An HRG is a 3-tuple
G = (ΣN , P, S) where ΣN is a ranked alphabet, S ∈ N is the initial symbol and
P ⊆ N×HGΣN is a finite set of production rules such that rkΣN (X) = |extH | > 0
for each (X,H) ∈ P . The class of all HRGs is denoted by HRG and the maximal
number of nonterminal hyperedges in any production rule p ∈ P by k.

Given p = (X,H) ∈ P , we write lhs(p) and rhs(p) to denote X and H, re-
spectively. To improve readability, we write p instead of lhs(p) or rhs(p) whenever
the context is clear.

Example 2. The HRG TLL depicted in Figure 1(a) and 1(b) will serve as a
running example. It consists of one nonterminal symbol S, four terminal symbols
l, r, p, n and two production rules p1, p2. The rule graph of p2 depicts a fully-
branched binary tree of height 1 with additional parent-pointers and two n-
connected leaves. Later we will see that the HRG describes arbitrary trees of the
aforementioned structure.

A key feature of HRGs is that the order in which nonterminal hyperedges
are replaced is irrelevant, i.e. HRGs are confluent (cf. [12, 19]). Thus, derivations
of HRGs can be described by derivation trees. Towards a formal definition, we
assume that the nonterminal hyperedges ENp = {e1, ..., en} of each production
rule p = (X,H) are in some (arbitrary, but fixed) linear order, say e1, ..., en. For
HRG G, G[X] denotes the HRG (ΣN , PG, X).

Definition 5 (Derivation Tree). Let G = (ΣN , P, S) ∈ HRG. The set of all
derivation trees of G is the least set D(G) of trees t over the alphabet P with
ranking function rkP : P → N such that t(ε) = p for some p ∈ P with lhs(p) = S.
Moreover, if ENp = {e1, . . . , em}, then rkP (p) = m and t|i ∈ D(G[labp(ei)]) for
each i ∈ [m]. The yield of a derivation tree is given by the HG

yield(t) = t(ε)[e1/yield(t|1), . . . , em/yield(t|m)].

We implicitly assume that the nodes and hyperedges of t(x) and t(y) are
disjoint if x 6= y. The yield of a derivation tree is also called the derived HG
according to t.

Example 3. Figure 1(c) illustrates a derivation tree t of the HRG TLL in which
production rule p1 has been applied once, and production rule p2 twice. The
labels next to the circles provide the position in dom(t) while the labels inside
indicate the applied production rule. The graph on the right (d) illustrates the
shape of yield(t). For simplicity, node indices as well as edge labels are omitted.

The language generated by an HRG consists of all HGs without nonterminal
edges that can be derived from the initial nonterminal symbol.

Definition 6 (HR Language). The language generated by G ∈ HRG is the set
L(G) = {yield(t) | t ∈ D(G)}.

Example 4. The HRG TLL, provided in Figure 1, generates the language of all
fully-branched binary trees in which the leaves are connected from left to right
and each node has an additional edge to its parent.

Two results for derivation trees are needed in the following. The first result
is directly lifted from analogous results for context-free word grammars (cf. [19]
below Theorem 3.10).

Lemma 3 For each G ∈ HRG, D(G) is a regular tree language. In particular, the
emptiness problem for HRGs is decidable in linear time.

Furthermore, we generalize the notion of merged nodes to multiple successive
applications of hyperedge replacement.

Definition 7 (Merged Nodes). Let G ∈ HRG, t ∈ D(G), x, y ∈ dom(t) such
that x ≺ y, i.e. y = x.i.z for some i ∈ N, z ∈ N?, and let u ∈ Vt(x), v ∈ Vt(y). We
say that u and v are merged in t, written u ∼t v, if

– z = ε and u t(x),ei≈t(x.i) v, or
– z 6= ε and there exists w ∈ Vt(x.i) such that u t(x),ei≈t(x.i) w and w ∼t v.

Example 5. Consider the derivation tree t shown in Figure 1(c) again. In its yield,
the node u7 in t(ε) is merged with u4 in t(1) and with u3 in t(2). In yield(t), this
node represents the leftmost leaf of the right subtree.

The relation ∼t merges exactly the nodes that are identified with each other
by yield(t).

Lemma 4 (Merge Lemma) Given G ∈ HRG and t ∈ D(G), let 't denote the
least equivalence relation containing ∼t. Then

yield(t) ∼=

 ⊎
x∈dom(t)

rhs(t(x))


/'t

Proof. By complete induction over the height of derivation trees. ut

4 Tree-Like Grammars

This section introduces tree-like grammars (TLG), a fragment of HRGs which
can be translated into MSO2. The main idea of TLGs is that every graph H
generated by a TLG G has two properties:

1. A derivation tree t of H is MSO2-definable in H, i.e. TLGs generate recognis-
able graph languages in the sense of Courcelle [6].

2. Every edge e ∈ EH can be uniquely associated in MSO2 with some x ∈ dom(t)
corresponding to the production rule t(x) which added e to H. We call EΣt(x)
the characteristic edges of x.

Hence, given some MSO2 formulae encoding t in H and defining EΣt(x) for each

x ∈ dom(t), one can easily obtain a formula ϕ ensuring that all edges in every
model of ϕ are edges introduced by the proper application of a production rule.
In particular, K =

⊎
x∈dom(t) rhs(t(x)) is a model of ϕ for each t ∈ D(G). By

Lemma 4, it is sufficient to extend ϕ to an MSO2 sentence ϕ′ such that only
graphs H with H ∼= [K]/'t

∼= yield(t), i.e. graphs that resulted from hyperedge

replacement steps where exactly the [K]/'t-equivalent nodes were merged, are
models of ϕ′.

Some further notation is needed. Let H ∈ HGΣN with ENH = {e1, . . . , em}. We
call extH(1) the anchor node of H and denote it by |̂ H . Moreover, the sequence
of context nodes of H is defined as ctxtH := attH(e1)(1) . . . attH(em)(1) and
the free nodes of H are all nodes attached to nonterminal hyperedges only, i.e.
free(H) := {u ∈ VH | ∀e ∈ EΣH : u /∈ battH(e)c}.

We will see that TLGs are constructed such that every anchor node u rep-
resents an application of a production rule and thus a position in a derivation
tree t. The context nodes represent its children as they are merged with an-
chor nodes after their corresponding nonterminal hyperedges have been replaced.
Consequently, by the characteristic edges of an anchor node u we refer to the
characteristic edges EΣt(x) of a position x ∈ dom(t) represented by u.

We consider a series of simple graph languages to narrow down the class of
TLGs step by step. The first example stems from the fact that every context-
free word language can be generated by an HRG [12] (if words are canonically
encoded by edge-labelled graphs).

S1 → 1 S1 S2 2
a 1 2 1 2

(b)

S1 → 1 S2 2
a 1 2

S2 → 1 2
b

S 1 S 2
a 1 2 b

(a)

S 1 2
a b

Fig. 2. Two HRGs generating the language {an.bn | n ≥ 1} of string-like graphs.

Example 6. The HRG G shown in Figure 2(a) generates string-like graphs of the
form an.bn for each n ≥ 1. It is well known that the language L(G) is not MSO2-
definable. We observe that for arbitrary hypergraphs H ∈ L(G) it is not possible
to determine a node that is uniquely associated with all terminal edges in the
recursive, upper production rule of Figure 2(a) (which is in accordance with the
idea behind TLGs formulated at the beginning of this section). This is caused by
the intermediate nonterminal hyperedge, which can be replaced by an arbitrarily
large HG. Thus, to ensure that TLGs generate MSO2-definable hypergraphs only,
we require that every non-free node (and thus every terminal edge) is reachable
from the anchor node using terminal edges only.

However, this requirement is insufficient. For instance, Figure 2(b) depicts
an HRG G′ with L(G′) = L(G) which satisfies the condition from above. G′

is obtained by transforming G into the well-known Greibach normal form. In
a derivation tree t, a position x ∈ dom(t) corresponding to an application of
the upper production rule has two children which represent the nonterminal
hyperedges labelled with S1 and S2, respectively. Since all nodes except for the
two leftmost ones are free in this production rule, the parent-child relationship
between anchor nodes and context nodes (or any other triple of nodes) cannot be
reconstructed in MSO2. Thus, we additionally require context nodes to be non-free.

In the following we consider basic tree-like HGs, which form the building
blocks of which a tree-like HG is composed.

Definition 8 (Basic Tree-Like Hypergraphs). H ∈ HGΣN is a basic tree-like
HG if |̂ H∈ battH(e)c for each e ∈ EΣH and bctxtHc ∩ free(H) = ∅.

As a first condition on TLGs, we require right-hand sides of production rules
to be (basic) tree-like. In case of string-like graphs, this condition is sufficient to
capture exactly the regular word languages (if the direction of edges is ignored),
because every such grammar corresponds to a right-linear grammar. If arbitrary
graphs are considered, however, there are more subtle cases.

Example 7. Figure 3 (left) depicts an HRG G with three production rules p, q, r.
L(G) is the set of “doubly-linked even stars”, i.e. a single node u connected by
an incoming and an outgoing edge to each of 2n nodes for some n ≥ 0. An HG
H ∈ L(G) is illustrated in Figure 3 (right). Again, L(G) is not MSO2-definable.
In particular, no derivation tree can be reconstructed from H by identifying
nodes (or edges) in H with positions in a derivation tree, because |VH | = 5 and
|EH | = 8, but |dom(t)| = 9. The problem emerges from the fact that all anchor
nodes are merged with the central node u. Hence, we additionally require that
anchor nodes are never merged with each other.

S1 →

1

2 3

S2 S2

1 1

2 2

p

1

q

S2 →

1

2

S1

1

r

p

r r

q p

rr

qq

t

u

H ∼= yield(t)

Fig. 3. An HRG G where production rules p, q, r map to tree-like HGs (left) and a generated
graph H ∈ L(G) (right)

Formally, for any X ∈ N , H ∈ L(G[X]) contains merged anchor nodes if for
some t ∈ D(G[X]) with H ∼= yield(t), there exist x, y ∈ dom(t), x 6= y such that
|̂
t(x)'t |̂ t(y). The set of all HGs in

⋃
X∈N L(G[X]) containing merged anchor

nodes is denoted by M(G).

Definition 9 (Tree-Like Grammar). G = (ΣN , P, S) ∈ HRG is a TLG if
M(G) = ∅ and for each p ∈ P , rhs(p) is a basic tree-like HG. The set of all
TLGs is denoted by TLG.

Remark 1. We call an HG H tree-like if it can be composed from basic tree-like
HGs, i.e. there exists a TLG G with L(G) = {H} (where nonterminals of H are
considered to be terminal). Although only basic tree-like HGs are considered in all
proofs, our results also hold for tree-like HGs. In particular, if all non-free nodes of
an HG H are reachable from the anchor node without visiting an external node,
a context node or a nonterminal hyperedge, H is tree-like. Intuitively, the anchor
nodes of corresponding TLG production rules are determined by a spanning tree
with the anchor of H as root. Since this construction is straightforward, but
rather tedious, we skip it for space reasons. Analogously, the initial nonterminal

S may be mapped to an arbitrary HG provided that it never occurs on the
right-hand side of a production rule.

Example 8. According to the previous remark, the recurring example HRG TLL
illustrated in Figure 1 is a TLG.

The conditionM(G) = ∅ is, admittedly, not syntactic. However, it is possible
to automatically derive the largest subset of graphs generated by an HRG that
satisfies it.

Theorem 2. For each HRG G, one can construct a TLG G′ such that L(G′) =
L(G) \M(G).

Our main result on TLGs is the following.

Theorem 1. For each TLG G, there exists an MSO2 sentence ϕG such that for
each hypergraph H, H ∈ L(G) if and only if H |= ϕG.

In order to prove this theorem, we have to encode derivation trees in graphs
generated by TLGs. We associate each terminal edge with a unique, characteristic
edge of some anchor node and use the constructed derivation tree t to verify that
two nodes are identical if and only if they have been merged due to hyperedge
replacement, i.e. are equivalent with respect to 't (see Lemma 4).

Before we present the main steps of the proof, we state two important con-
sequences of Theorem 1 and Lemma 1.

Theorem 3. The class of languages generated by TLGs is closed under union,
intersection and difference.

Proof. It is straightforward that TLGs are closed under union. By Lemma 1, for
each G = (ΣN , P, S) ∈ HRG and MSO2 sentence ϕ, there exists G′ = (ΣN

′, P ′, S′) ∈
HRG such that L(G′) = {H ∈ L(G) | H |= ϕ}. In particular, each q ∈ P (G′) is
isomorphic to some p ∈ P ′ except for the names of nonterminals. Thus, if G is a
TLG, so is G′. Then the claim follows from Theorem 1 and the fact that MSO2 is
closed under conjunction and negation. ut

Theorem 4. Given G ∈ TLG and G′ ∈ HRG, it is decidable whether L(G′) ⊆
L(G). In particular, the inclusion problem for TLGs is decidable.

Proof. By Theorem 1, there exists an MSO2 sentence ϕ such that L(G) = {H ∈
HGΣ | H |= ϕ}. Applying Lemma 1, we can construct an HRG G′′ with L(G′′) =
{H ∈ L(G′) | H |= ¬ϕ}. Then, L(G′) ⊆ L(G) if and only if L(G′′) = ∅ which is
decidable due to Lemma 3. ut

In the following constructions, we use two sets of second-order variables A
and S. Each set variable Ap ∈ A = {Ap | p ∈ P} collects all anchor nodes
corresponding to a position in a derivation tree labelled by p ∈ P . Each set
Se ∈ S collects all edges corresponding to the characteristic edge e ∈ EΣp of
positions labelled by p in a derivation tree. Formally, we introduce an extended
set of edge labels S := {Se | e ∈ EΣp , p ∈ P} together with functions ` : S → Σ :
Se 7→ labp(e) and ρ : S → P : Se 7→ p. Let W = A] S.

To improve readability in the following constructions, we introduce an auxil-
iary formula which takes three variables x, y, z and is satisfied iff x corresponds
to a characteristic edge e ∈ EΣp of anchor node y and is additionally attached

to z. Formally, let e ∈ EΣp and chare(x, y, z) := E`(Se)(x) ∧ Se(x) ∧ Aρ(e)(y) ∧
src(y, x) ∧ tgt(x, z) if |̂ p= attp(e)(1) (|̂ p= attp(e)(2) with y and z swapped in
src and tgt). The first auxiliary lemma to prove Theorem 1 states that derivation
trees can be encoded in every graph generated by a TLG.

Lemma 5 For each TLG G = (ΣN , P, S), a set of derivation trees of G is
MSO2-definable with parametersW in every H ∈ HGΣ, i.e. there exists a definition
scheme (ψ, (succi)i∈[k], (tlbp)p∈P) such that for each H ∈ HGΣ with H,  |= ψ(W),
t := (dom, ((succi))i∈[k], ((tlbp))p∈P) is a relational tree structure representing
a tree t ∈ D(G), where dom is given by the union of all nodes satisfying exactly
one of the formulae tlbp, p ∈ P .

Proof. Let kp := |ENp | for each p ∈ P and edgee(x, y) := ∃z : chare(z, x, y) . We
provide a definition scheme (ψ, (succi)i∈[k], (tlbp)p∈P) to embed tree structures
(see Section 2) in graphs and ensure that each tree is in D(G). These formulae
are defined as follows:

– tlbp(x,W) := Ap(x) if p ∈ I,
– tlbp(x,W) := Ap(x) ∧ ∃y

∨
i∈[k] succi(y, x) if p /∈ I,

– succi(x, y,W) :=
∨
p∈P Ap(x) ∧

∧
e∈Ep,i edgee(x, y) ∧AJ(p,i)(y),

– ψ(W) := ∃X, r : shape(W, X, r) ∧ succ(W, X),
– shape(W, X, r) := AI(r) ∧Π(X,A) ∧ tree(X, r),
– succ(W, X) :=

∧
p∈P ∀x : Ap(x)→ exactSuccp(x,W),

– exactSuccp(x,W) :=
∧
j∈[kp] ∃y : succj(x, y,W)∧

∧
kp≤j≤k ¬∃y : succj(x, y,W)

where I = {p ∈ P | lhs(p) = S}, J(p, i) = {q ∈ P | lhs(q) = tlbp(ei), ei ∈ EΣp }.
Let  be an interpretation of W, X and r and H ∈ HGΣ . The graph encoded by
the definition scheme from above is K = (V,E) where

V :={u ∈ VH | there exists a unique p ∈ P s.t. tlbp(u, (W)) holds},
E :={(u, i, v) ∈ V × [k]× V | succi(u, v, (W)) holds}.

With each graph K as above, we associate the function t : τ(VK)→ P, t(x) = p
if and only if there exists u ∈ VK with tlbp(u, (W)) and τ(u) = x, where
τ : V → N?, τ((r)) = ε and τ(v) = τ(u).i if (u, i, v) ∈ E, otherwise. Since, A
partitions X and the nodes in X form a tree with root r and successor relations
succi, t is a tree. Then, t ∈ D(G) for each graph K with K,  |= ψ(W) follows by
complete induction over |V |. ut

In particular, for each H ∈ L(G),W can be chosen such that a derivation tree
t ∈ D(G) with yield(t) ∼= H is defined in H. This is formalised in the following.

Definition 10. Let G = (ΣN , P , S) be a TLG, p ∈ P and Ep,i := {Se ∈ S | e ∈
EΣp , ctxtp(i) ∈ battp(e)c} be the set of all extended labels of edges incident to the
i-th context node of p.

A derivation tree t ∈ D(G) is contained in H ∈ L(G) if there exists a set
T ⊆ VH and a bijection f : T → dom(t) such that for each u ∈ T either f(u) = ε
or f(u) = x.i, x ∈ dom(t), i ∈ N and Et(x),i = {Se ∈ S | f−1(x)

e−→ u}.

Lemma 6 For each TLG G = (ΣN , P, S), H ∈ L(G) and t ∈ D(G) with
yield(t) ∼= H, t is contained in H.

Proof. It suffices to choose T as the set of all nodes in VH that correspond to
anchor nodes in yield(t) ∼= H and set f(u) = f(v).i if v corresponds to the
i-th context node of u. More precisely, we construct a TLG G′ generating the
graph consisting only of anchor nodes and edges between anchor nodes defined
inside a single production rule. For each production rule p ∈ P , we obtain a
corresponding production rule q as follows.

1. Make every nonterminal hyperedge ei an edge of rank 1 attached to ctxt(i).
2. Take the subgraph of rhs(p) induced by the nodes |̂ and ctxt.
3. For each i ∈ [|ctxt|], replace all edges between |̂ and ctxt(i) by a single

terminal edge from |̂ to ctxt(i) labelled Ep,i.

By construction, for each t ∈ D(G), there exists t′ ∈ D(G′) with dom(t) = dom(t′)
and t′(x) = t(x)′. Clearly, yield(t′) encodes a subgraph of yield(t). Then, the
desired set T and function f are given by T = Vyield(t′) and f(u) = x.i if there

exists a node v ∈ T and p ∈ P with u
Ep,i−−→ v and f(u) = ε, otherwise. ut

We need one more ingredient before proving Theorem 1: How to use a deriva-
tion tree t to check whether two nodes are identical with respect to 't?

Let t ∈ D(G). Obviously, each pair of positions x, y ∈ dom(t), where y ≺
x, defines a unique (bottom-up) path path(x, y) := x1 . . . xm in t where x1 =
x, xm = y and xi = xi+1.ji for ji ∈ N, i ∈ [1,m − 1]. Its corresponding trace is
given by trace(x1 . . . xm) := (j1, t(x1)) . . . (jm−1, t(xm−1))(j, t(xm)), where j = 0
if xm = ε. We define a finite (word) automaton running on traces of derivation
trees to check whether two given nodes – the i-th external node in t(x1) and
the node att(ej)(k) in t(xm) – are merged. In particular, this merge automaton
depends on the HRG G and the indices i, j, k only, but not on a specific derivation
tree.

Definition 11 (Merge Automaton). Let G = (ΣN , P, S) ∈ HRG, i, j ∈ [<(G)]
and k ∈ [k]. The merge automaton Ai,j,k = (Q,Γ, 1, δ, F) running on traces of
derivation trees of G is given by the set of states Q := {1}]({1, 0}×[<(G)]×[k]),
input alphabet Γ = [0,<(G)]×P , initial state q0, final states F := {(0, j, k)} and
the partial transition function δ : Q× Γ → Q, defined by:

δ(1, (x, p)) = (1, i, x) if x > 0,

δ(1, (0, p)) = (0, i, j) if lhs(p) = S,ENp = ∅ and i = j,

δ((1, x, y), (z, p)) = (1, x′, z) if attp(ey)(x) = extp(x
′),

δ((1, x, y), (z, p)) = (0, j, k) if u := attp(ey)(x) = attp(ej)(k)

and (z = 0 or u /∈ bextpc).

Intuitively, the automaton records the indices i, j, k in its state space and
updates them according to the rules of hyperedge replacement while moving
through a derivation tree.

Lemma 7 Let G = (ΣN , P, S) ∈ HRG, t ∈ D(G) and x, y ∈ dom(t) such that
y ≺ x. Furthermore, let u = extt(x)(i) and v = attt(y)(ej)(k). Then, u ∼t v if
and only if Ai,j,k accepts trace(path(x, y)).

Proof. By complete induction over the length of trace(path(x, y)). ut

We now turn to the proof of Theorem 1, in which the automaton from above
is used to verify whether two nodes are merged with each other.

Proof (of Theorem 1). Let G = (ΣN , P, S) ∈ TLG. W.l.o.g., we make two as-
sumptions in order to reduce the technical effort. First, we assume that every
production rule is “well-formed”, i.e. for each production rule p, all nodes in extp
and attp(e), e ∈ ENp , are distinct. It is a classical result that each HRG can be
transformed into an equivalent one satisfying this condition (cf. [12], Theorem
4.6). In particular, this transformation does not change tree-likeness of an HRG.
Second, we assume for each p ∈ P that rhs(p) does not contain inner nodes, i.e.
nodes which are neither external nor attached to any nonterminal hyperedge.
Otherwise, we introduce a new nonterminal symbol X /∈ ΣN with rkΣN (X) = 1
and a single production rule mapping X to a single external node. Then, we
attach a new nonterminal hyperedge labelled X to each inner node.

We have to define an MSO2 sentence ϕG such that H ∈ L(G) iff H |= ϕG.
In order to construct ϕG, a set of derivation trees is encoded in H using the
definition scheme (ψ, (succi)1≤i≤k, (tlbp)p∈P) from Lemma 5. Recall that this
definition scheme depends on a set of parameters W = A] S. An evaluation
of the parameters W determines a fixed derivation tree t. Due to Lemma 6, the
values of W can be chosen such that yield(t) ∼= H if H ∈ L(G). Then, ϕG is
given by

ϕG := conn ∧ ∃W : ψ(W) ∧ edges(W) ∧ anchors(W) ∧mergeNodes(W), (1)

where all subformulae except for ψ(W) are needed to assert yield(t) ∼= H. In the
following, we explain the components of ϕG in more detail.

1. All nodes of H are incident to at least one edge. Together with the conditions
on edges provided in (2), this ensures that every model of ϕG is a connected
graph. Formally, conn := ∀x∃y : inc(x, y).

2. Every edge corresponds to exactly one characteristic edge of an anchor node.
In particular, S forms a partition of all edges E of H.

edges(W) := Π(E,S) ∧
∧
Se∈S

∀x : Se(x)→ ∃y, z : chare(x, y, z) (2)

3. Every anchor node u ∈ tlbp has exactly the characteristic edges EΣp . Further-

more, if two edges e, e′ ∈ EΣp are attached to the same nodes in rhs(p), then
the same holds for the corresponding two edges of u:

anchors(W) :=
∧
p∈P
∀x : tlbp(x,W)→ αp(x,W) (3)

αp(x,W) :=
∧

u∈Vp\free(p)

βup (x,W) ∧
∧
e/∈EΣp

∀y, z : ¬chare(y, x, z)

βup (x,W) := ∃y :
∧
e∈EΣp
|̂
p

e−→u

∃!z : chare(z, x, y) ∧
∧
e∈EΣp
¬ |̂

p

e−→u

∀z : ¬chare(z, x, y)

4. Two nodes u ∈ Vt(x), v ∈ Vt(y), where x 6= y, represent the same node in
VH iff they are merged according to the rules of hyperedge replacement (see
Lemma 4). Since G is well-formed and every node is either external or at-
tached to some nonterminal hyperedge, this is the case iff u, v are merged
with the same non-external node. In this setting, external nodes of t(ε) are
a corner case and can be considered non-external.
Given an anchor node x ∈ dom(t), an inspection of the characteristic edges of
x allows us to verify whether a node corresponds to extt(x)(i) or attt(x)(ej)(k),
where i, j, k ∈ N.
Furthermore, given two anchor nodes x, y, a merge automaton Ai,j,k run-
ning on trace(path(x, y)) accepts iff the i-th external node of t(x) is merged
with the k-th node attached to the j-th nonterminal hyperedge of t(y) (see
Lemma 7). Applying Büchi’s Theorem [5] yields a corresponding MSO2 for-
mula for each automaton Ai,j,k. By Ai,j,k(x, y,W), we denote an MSO2 formula
which is satisfied iff the run of the respective merge automaton on the unique
path from x to y in the encoded derivation tree is accepting.
The MSO2 formula mergeNodes(W) then requires for each pair u, v of nodes
that u = v iff both represent the same external node of t(ε) or there ex-
ists an anchor node w ∈ Ap, p ∈ P , such that Ai,j,k(v, w,W) as well as
Ai′,j,k(v, w,W) holds for some i, i′, k ∈ <(G) and j ∈ k.

To complete the proof, we show how traces are encoded in derivation trees,
we provide a formal definition of mergedNodes(W) and we prove the correctness
of our construction.

Encoding of traces in derivation trees We encode a trace from x to y as a finite
word in a derivation tree using a definition scheme (ϑ,min,max, succ, (labl,p)p∈P,i∈[k])
with parameters P = {x, y}:
– The first and last element of the trace aremin andmax given bymin(z,P) :=
z = x, max(z,P) := z = y.

– The label of each element is defined as

labl,p(z,P) := tlbp(z) ∧ ∃z′ : succ(z′, z,P) ∧ succl(z
′, z)

if l 6= 0 and labl,p(z,P) := tlbp(z) ∧ ∀z′ :
∧
i∈k ¬succi(z

′, z) if l = 0.
– The domain formula ϑ(P) :=

∧
(i,p)6=(p,q) ∀z : ¬(labi,p(z,P) ∧ labi,p(z,P))

asserts that no element of a trace is labelled twice.
– The binary successor relation is given by

succ(z1, z2,P) := y z2 ∧
∧
i∈k

succi(z2, z1) ∧ z1 x

where z1 z2 denotes that z2 is reachable from z1 using the successor rela-
tions of the derivation tree, i.e. z1 z2 is defined as

∀X : [z1 ∈ X ∧ (∀u, v : (u ∈ X ∧
∧
i∈k

succi(u, v))→ v ∈ X)]→ z2 ∈ X.

The task of transforming a finite (string) automaton into an MSO formula defined
over models of finite words is classical (cf. [5]). The MSO2 formula corresponding
to a merge automaton Ai,j,k running on a trace as encoded above is denoted
by Ai,j,k(x, y,W) where W are the parameters used in the definition scheme of
derivation trees.

Formal construction of mergeNodes(W) Furthermore, we have to formally spec-
ify the MSO2 formula mergeNodes(W) to ensure that nodes are merged with each
other in compliance with Lemma 4. mergeNodes(W) is defined as

∀x, y : V (x) ∧ V (y)→ [x = y ↔ (sameExt(x, y,W) ∨merged(x, y,W)]. (4)

Figure 4 provides formal definitions of the required auxiliary formulae which are
briefly explained below.

– sameExt(x, y,W): This formula checks whether (x) and (x) represent the
same external node of the root of the derivation tree. These nodes are the only
ones which may not be merged with any node due to hyperedge replacement.
Thus, we have to treat them as a corner case.

– merged(x, y,W): This formula checks whether x and y are merged with
each other by requiring the existence of a common non-external node u =
attt(z)(ej)(k) for some anchor node (z) both are merged with. In case the
guessed node is non-free, it also asserts that u is equal to (x) and (x).

– mergej,k(x, y,W): This formula first determines the anchor node of x and
then applies a merge automaton to verify that x and u have to be merged.

– freej,k,p(x, z,W): This formula deals with a corner case in which a non-
external node of anchor node (z) is non-free and asserts that it is identical
to (x).

– exti(x, y,W): This formula holds iff y corresponds the i-th external node of
the anchor node (x).

– attj,k,p(x, y,W): This formula holds iff y corresponds to the k-th node at-
tached to the j-th nonterminal hyperedge of t(z) where z is the position in
the encoded derivation tree represented by anchor node x.

Correctness proof It remains to show the correctness of the construction de-
scribed above, i.e. H |= ϕG if and only if H ∈ L(G). We concentrate on the
direction H |= ϕG implies H ∈ L(G). The converse direction is rather straight-
forward, because W can be always be chosen such that a derivation tree of H
is encoded by Lemma 6. Thus, let H |= ϕG and t ∈ D(G) be a derivation tree
encoded by the definition scheme (ψ, (succi)i∈[k], (tlbp)p∈P) in Lemma 5 for an
interpretation . Due to (2), every node in H can be reached from a node in
the encoded derivation tree using at most one (characteristic) edge. We show
the following stronger proposition by complete induction over the height of an
encoded derivation tree t:

H |= ϕG[X] implies H ∼= yield(t) ∈ L(G[X]) for all X ∈ N.

h = 0: By (2), the set of all edges is partitioned by S and each edge of H is
attached to at least one anchor node, i.e. a node v such that tlbp(v, (W)) holds.
Furthermore, by (3), exactly the characteristic edges EΣp are associated with a
node v satisfying tlbp(v, (W)). Since h = 0 and we assumed the absence of inner
nodes, dom(t) is a singleton set and t(ε) contains only external nodes and no
nonterminal hyperedges. Hence, equal(x, y,W) in (4) is satisfied if and only if
(x) = (y), i.e. H ∼= t(ε) ∼= yield(t).

sameExt(x, y,W) :=∃z :
∨

p∈I,i∈[rkΣN (S)]

[extp,i(z, x,W) ∧ extp,i(z, y,W)]

merged(x, y,W) :=
∨
p∈P,

att(ej)(k)∈Vp

∃z : tlbp(z,W) ∧ freej,k,p(x, z,W)

∧mergej,k(x, z,W) ∧mergej,k(y, z,W)

mergej,k(x, y,W) :=
∨
i∈[<]

∃x1 : exti(x1, x,W) ∧ Ai,j,k(x1, y,W)

freej,k,p(x, z,W) :=

{
true if attp(ej)(k) ∈ free(p)

∃z1 : attj,k,p(z, z1,W) ∧ z1 = x otherwise

exti(x, y,W) :=
∨

p∈P,rkΣN (p)≥i

extp,i(x, y,W)

extp,i(x, y,W) :=tlbp(x,W) ∧

x = y if i = 1∧
e∈EΣp : |̂

p

e−→extp(i)
∃z : chare(z, x, y) otherwise

attj,k,p(x, y,W) :=tlbp(x) ∧
∧

e∈EΣp : |̂
p

e−→attp(ej)(k)

∃z : chare(z, x, y)

Fig. 4. Auxiliary formulae to identify attached, external and free nodes as well as applying
Lemma 7 to check whether two nodes are merged according to the rules of hyperedge replace-
ment. Here, I := {p ∈ P | lhs(p) = S}.

h > 0: By Lemma 5, the definition scheme (ψ, (succi)1≤i≤k, (tlbp)p∈P) encodes
a derivation tree t with unary labelling relations tlbp for each p ∈ P and binary
successor relations succi for each 1 ≤ i ≤ k. Let u0 = (r) be the root of this tree,
u1, ..., un its children and p0, ..., pn ∈ P the production rules such that ui ∈ tlbpi
for i ∈ [0, n]. Let H0 be the graph containing the node u0, the characteristic edges
E(u0) of u0 and all nodes reached from u0 using these edges. In other words H0

is isomorphic to t(ε) except that nonterminal hyperedges and free nodes have
been removed. Furthermore, for each i ∈ [n], consider a subgraph Hi of H which
is obtained as follows:

1. Let A(i) ⊆ {v ∈ VH | v ∈ tlbp, p ∈ P} be the nodes corresponding to t|i in
H.

2. Remove all characteristic edges E(v) from H, where v ∈ tlbp \ A(i), p ∈ P .

3. Then, Hi is the connected component of the resulting graph containing ui.

Now, observe that Hi |= ϕG[lhs(pi)] for the same interpretation  as before (re-
stricted to the nodes and edges in Hi). In particular, the derivation tree encoded
in Hi is t|i, and for each pair of nodes in Hi, there are accepting runs of merge
automata on t|i if there are corresponding runs on t by our initial assumption.
Hence, by induction hypothesis, we have Hi

∼= yield(t|i) ∈ LG[lhs(pi)] for each
i ∈ [n]. By construction of Hi, A(i) ∩A(j) = ∅ if i 6= j. Thus, all edges of H are
either characteristic edges of the root node of t or of some node in A(i), i ∈ [n],
i.e. EH ∼=

⊎
i∈[0,n]EHi .

It remains to verify that exactly the external nodes of H1, . . . ,Hr are merged
with the corresponding attached nodes of H0. Take two nodes u ∈ VHi , v ∈ VHj
for some i 6= j. The following cases arise:

– Either u or v does not correspond to an external node of some anchor node
in Hi and Hj , respectively. In other words, for all w ∈ A(i) and l ∈ [1,<(P)],
extl(w, u, (W)) is violated (or analogously for v and all anchors in A(j)).
Then, by Definition 3, u and v may not refer to the same node in yield(t)
which is ensured by (4), because mergej,k(x, y,W) only holds if (x) is an
external node.

– Both u and v correspond to external nodes of some anchor in Hi and Hj ,
but the formula equal(u, v, (W)) is violated. By definition of (4), this means
there exists no position z in t such that there are accepting runs of merge
automata for the some node in rhs(t(z)). By Lemma 7, u and v are not
merged due to hyperedge replacement and therefore refer to different nodes
in yield(t).

– The formula equal(u, v, (W)) holds. Then, u and v are external nodes for
some anchor nodes in Hi and Hj . Moreover, there are accepting runs of merge
automata terminating in the same position z of t for the same attached node
in rhs(t(z)). By definition of (4), this implies u = v and by Lemma 7 u and
v represent the same node in yield(t).

In each of these cases, (4) implies u = v if and only if u and v refer to the same
node in yield(t). To finish the proof, let ≈ be the reflexive, symmetric, and tran-
sitive closure of the relation {(u, v) ∈ VHi × VHj | equal(u, v, (W)) holds, i 6= j}.
Furthermore, let K0,K1, ...,Kn be disjoint, but isomorphic copies of H0, ...,Hn.
Then, by the previous observation, u ≈ v holds if and only if u 't v holds. Hence,
by Lemma 4,

H ∼= [
⊎

i∈[0,n]

Ki]/'t
∼= [

⊎
i∈[0,n]

Ki]/≈ ∼= yield(t).

Since t ∈ D(G), we have yield(t) ∈ L(G) which completes the proof. ut

5 Regular and CES-Grammars

In this section, we study an entirely syntactic fragment of TLGs, called context-
external separated TLGs (CES-TLG), and compare its expressiveness to Cour-
celle’s regular graph grammars [7].

Definition 12 (CES-Hypergraph). A hypergraph H = (V,E, att, lab, ext) ∈
HGΣN is context-external separated (CES) if and only if bctxtc ∩ bextc = ∅ and
neither ctxt nor ext contain repetitions.

By Definition 3, only external nodes of an HG are merged with attached
nodes of another HG during hyperedge replacement. Thus, it is straightforward
that M(a) = ∅ if every production rule of G ∈ HRG maps to a CES-hypergraph.

Definition 13 (CES-TLG). G ∈ HRG is a context-external separated TLG (CES-TLG)
if each of its production rules maps to a tree-like HG which is also a CES-
hypergraph.

Note that we do not require that the basic tree-like HGs a production rule
may be composed of to satisfy the CES property, i.e. tree-like HGs as described

in Remark 1 may be used as right-hand sides of production rules. Thus, our
recurring example HRG TLL illustrated in Figure 1 is a CES-TLG.

A regular graph grammar (cf. [7], section 5) is an HRG G = (ΣN , P, S) in
which for every production rule p ∈ P ,

1. extp contains no repetitions,

2. each edge e ∈ Ep is attached to at least one internal node, i.e. battp(e)c 6⊆
bextpc,

3. Any pair of nodes u, v ∈ Vp is connected by a terminal and internal path, i.e.
v is reachable in p from u by a path containing no nonterminal hyperedges
and no external nodes (except u and v).

We denote the class of regular graph grammars by RGG. In particular, Courcelle
showed that every regular tree language and sets of series parallel graphs are in
RGG [7].

Theorem 5. The class of languages generated by CES-TLGs is strictly larger
than the corresponding class of languages generated by Courcelle’s regular graph
grammars [7].

Proof (Sketch). We first observe that repetitions of context nodes can be re-
moved by replacing all hyperedges e1, ..., ek sharing the same context node by
a new nonterminal hyperedge e (labelled with a fresh nonterminal) that cap-
tures the effect of replacing all of these hyperedges (which is always possible,
cf. [12]). In particular, if e1, ..., ek (except at most one) can only be replaced by
CES-hypergraphs, then every production rule replacing the fresh nonterminal
contains exactly the same repetitions of context nodes as the graphs replacing
e1, ..., ek, i.e. all repetitions can be removed iteratively. Furthermore, every non-
terminal hyperedge occurring on the right-hand side of a production rule of a
regular graph grammar is attached to at least one non-free node. Hence, we may
assume w.l.o.g. that every production rule of a regular graph grammar G maps
to a CES-hypergraph. By Remark 1 and the previous observation, these HGs are
also tree-like, i.e. there exists a CES-TLG generating the the same language as G.
For the converse direction, consider the CES-TLG TLL shown in Figure 1 as an
example of a language not in RGG. ut

6 Separation Logic and Data Structure Grammars

We quickly recapitulate the close relationship between SL and HRGs studied in
[16]. To simplify notation, we assume w.l.o.g. that a heap h contains no unused
locations. Hence, for a heap containing n objects, we have dom(h) = [n · |Σ|].
Then every heap is associated with an HC as follows.

Definition 14 (Heap Mapping). The heap mapping µ : Hp → HCΣ is given
by µ(h) = (V,E, att, lab, ε) with V = bdom(h)c, E = {ev,s | v ∈ V, s ∈ Σ, h(v +
cn(s)) ∈ dom(h)}, att(ev,s) = v.bh(v + cn(s))c, and lab(ev,s) = s, where b.c
rounds down to a location in {1 + k · |Σ| | k ∈ N}.

With the connection between heaps and HCs established by the heap map-
ping µ, we call G = (ΣN , P, S) ∈ DSG and a formula ϕ(x1, ..., xn) ∈ SL whose

predicates are defined in Γ ∈ Env language-equivalent if for all h ∈ Hp and inter-
pretations , h,  |= ϕ(x1, ..., xn) if and only if H ∈ L(G) where H is isomorphic
to µ(h) except that the external nodes are set to ext = (x1) . . . (xn).

In the following, we briefly sketch one direction of Lemma 2 which intuitively
allows to translate SL formulae into DSGs and vice versa. Correctness proofs as
well as the backward direction are provided in [16].

Lemma 2 (Jansen et al. [16]) There exists a translation envJ.K : DSG→ SL×
Env, such that G and ϕ defined over Γ are language-equivalent for each G ∈ DSG

with envJGK = (ϕ, Γ). Conversely, there exists a translation hrgJ.K : SL×Env →
DSG such that ϕ and hrgJϕ, Γ K are language-equivalent for each Γ ∈ Env and
ϕ ∈ SL.

Let ϕ(x1, ..., xn) be an SL formula defined over an environment Γ ∈ Env and
a set of selectors Σ. We provide the construction of hrgJϕ(x1, ..., xn), Γ K ∈ DSG.

For each predicate name σ ∈ Pred defined in Γ , we introduce a nonterminal
Xσ. These nonterminals are collected in a set N .

Let σ(x1, ..., xm) be a disjunct of a predicate definition in Γ and Var(σ) the
set of variables in this disjunct. We construct a corresponding set H of tagged
hypergraphs, i.e. H consists of pairs (H, tag) where H ∈ HGΣN and tag : VH →
2Var(σ) maps each node to a set of variables of σ(x1, ..., xm). This construction is
defined inductively by a mapping tgraph as shown in Figure 5. Here, ∼ denotes
the equivalence relation induced by u ∼ v if and only if tag(u) ∩ tag(v) 6= ∅.
The unification operator ⇓ (H, tag) denotes the quotient according to ∼ and is
canonically extended to sets of tagged hypergraphs. Furthermore, it is assumed
that each graph contains a dedicated node representing the location null. The
external nodes of H are determined by

extH = tag−1(x1) . . . tag−1(xn).tag−1(null).

Here, the last node is used to ensure that all nodes representing the location null
are merged into one. Then, each pair (H, tag) ∈ tgraph(σ(x1, ..., xn)) is translated
by hrgJ.K into a production rule p = (Xσ, H). Let P be the set of all production
rules obtained by applying the procedure from above to every disjunct of every
predicate definition in Γ .

The formula ϕ(x1, ..., xn) is treated analogously. We introduce a fresh nonter-
minalXϕ and production rules Pϕ := {(Xϕ, H) | (H, tag) ∈ tgraph(ϕ(x1, ..., xn))}.
Then our construction yields the HRG

hrgJϕ(x1, ..., xn), Γ K = (ΣN] {Xϕ}, P] Pϕ, Xϕ).

The function tgraph yields tagged hypergraphs for each disjunct of each predi-
cate definition in an SL environment. However, if such a disjunct is unsatisfiable,
it is not guaranteed that all of these HGs are heap configurations. Similar to
Theorem 2, the following theorem allows us to automatically derive the largest
subset of heap configurations generated by a given HRG.

Theorem 6. For every G ∈ HRG, an HRG G′ can be constructed such that
L(G′) = L(G) ∩ HCΣ.

Proof. By application of the Filter Theorem for HRGs. ut

tgraph(emp) :={(H∅, tag∅)}
tgraph(x.s 7→ null) := ⇓ {(({u, v}, {e}, {e 7→ u.v}, {e 7→ s}, ε), {u 7→ {x}, v 7→ {null}})}

tgraph(x.s 7→ y) := ⇓ {(({u, v}, {e}, {e 7→ u.v}, {e 7→ s}, ε), {u 7→ {x}, v 7→ {y}})}
tgraph(ϕ1 ∨ ϕ2) :=tgraph(ϕ1) ∪ tgraph(ϕ2)

tgraph(ϕ1 ∗ ϕ2) := ⇓ {(H1]H2, tag1
+t tag2,) | (Hi, tagi) ∈ tgraph(ϕi), i ∈ {1, 2}}

tgraph(∃x : ϕ) := ⇓ {(H, tag ′) | (H, tag) ∈ tgraph(ϕ),

tag ′ = {v 7→ tag(v) \ {x} | v ∈ VH}}
tgraph(ρ(y1, ..., yk)) := ⇓ {(({v1, ..., vk}, {e}, {e 7→ v1 . . . vk.tag

−1(null)},
{e 7→ Xρ}, ε), {vi 7→ yi | i ∈ [1, k]})}, ρ ∈ Pred ,

tgraph(x = y ∧ ϕ) := ⇓ {(H, tag ′) | (H, tag) ∈ tgraph(ϕ), where

tag ′ :={v 7→ tag(v) ∪ {x, y} | {x, y} ∩ tag(v) 6= ∅}
] {v 7→ tag(v) | {x, y} ∩ tag(v) = ∅}}

⇓ (H, tag) :=

[H]/∼,

[v]/∼ 7→
⋃

v∈[v]/∼

tag(v) | v ∈ VH




Fig. 5. Inductive construction of tagged hypergraphs from a given SL formula.

Hence, these corner cases can be removed from the obtained grammar. The-
orem 6 also provides a solution for the satisfiability problem: First translate an
SL environment into an HRG, then apply Theorem 6 to obtain a DSG and solve
the emptiness problem using Lemma 3.

It should be noted that an application of Theorem 6 may increase the size
of an HRG exponentially in the number of selectors and the maximal arity of
predicates.

7 Tree-Like Separation Logic

The close relationship between SL and HRGs leads to portability of the obtained
TLG results to analogous SL results.

The largest SL fragment considered in this paper is SLtl, which is obtained
from applying Lemma 2 to tree-like DSGs.

Definition 15. An SLtl formula is an SL formula ϕ(x1, ..., xn), n ≥ 1, meeting
the following conditions:

– Anchoredness: All points-to assertions y.s 7→ z occurring in ϕ contain the
first parameter x1 of ϕ, either on their left-hand or right-hand side, i.e. x1 = y
or x1 = z.

– Connectedness: The first parameter of every predicate call in ϕ occurs in
some points-to assertion of ϕ.

– Distinctness: x1 is unequal to the first parameter of every predicate call oc-
curring in Γ .

An SLtl environment is an SL environment Γ where every disjunct of every
predicate definition is an SLtl formula.

Theorem 7. For every SLtl formula ϕ defined over an SLtl environment Γ there
exists a language-equivalent tree-like DSG G with L(G) = L(hrgJϕ, Γ K)∩HCΣ and
vice versa.

Proof (Sketch). Applying the translation hrgJϕ, Γ K from Lemma 2 to ϕ and Γ ,
one observes that every disjunct of every predicate definition is translated into
production rules mapping to (basic) tree-like HGs. In particular, the first pa-
rameter of every translated predicate definition corresponds to an anchor node
in each of these HGs. Thus, by the distinctness condition of SLtl, it is guar-
anteed that two anchor nodes of the resulting DSG are never merged. Hence,
the obtained DSG is tree-like. The converse direction is obtained analogously by
applying envJ.K to a tree-like DSG. ut

As a consequence, our results shown for TLGs presented in Section 4 also
apply to SLtl. Other fragments of TLGs presented in this paper are transferred
to corresponding SL fragments analogously. We omit a formal proof of Theorem 7
for lack of space and provide an example of an SLtl formula corresponding to
the DSG of our running example instead.

Example 9. Consider the SLtl formula ϕ := σ(x1, x2, x3, x4) defined over an en-
vironment Γ consisting of the following predicate definitions.

σ(x1, x2, x3, x4) := [∃x5, x6, x7 : x1.(p, l, r) 7→ (x2, x5, x6) ∗ σ(x5, x1, x3, x7)

∗ σ(x6, x1, x7, x4)] ∨ [∃x5 : x1.(p, l, r) 7→ (x2, x3, x5)

∗ x3.p 7→ x1 ∗ x5.p 7→ x1 ∗ γ(x5, x3, x4)]

γ(x1, x2, x3) := x2.n 7→ x1 ∗ x1.n 7→ x3

Applying the translation hrgJϕ, Γ K yields a tree-like DSG generating the same
language as the HRG TLL shown in Figure 1. In particular, the first disjunct of
σ(x1, x2, x3, x4) directly corresponds to the production rule in Figure 1(a), where
variable names match with node indices. The other two disjuncts, split across
two predicates, translate into basic tree-like HGs and correspond to the second
production rule.

We can exploit the additional requirements for DSGs to obtain a simple, yet
expressive, purely syntactical fragment of TLGs.

Definition 16 (∆-DSGs). Let ∆ ⊆ Σ be a nonempty set of terminal symbols.
Then G = (ΣN , P, S) ∈ DSG is a ∆-DSG if for each p ∈ P , rhs(p) is a tree-like
hypergraph and |̂ p has an outgoing edge labelled δ for each δ ∈ ∆.

Example 10. Our example HRG TLL shown in Figure 1 is a {p, l, r}-DSG.

Lemma 8 Every ∆-DSG with ∅ 6= ∆ ⊆ Σ is a TLG.

Proof. If two anchor nodes of a ∆-DSG G are merged, there exists t ∈ D(G),
δ ∈ ∆ and u ∈ Vyield(t) such that u has two outgoing edges labelled with δ, i.e.
G /∈ DSG. ut

A corresponding SL fragment is defined analogously to SLtl except that the
distinctness condition is replaced by a new condition: There exists at least one
selector s ∈ Σ such that every disjunct of every predicate definition contains an
assertion x1.s 7→ y, where x1 is the first paramter of the predicate and y is an
arbitrary variable. In terms of expressiveness, we may compare ∆-DSGs to SLbtw
[14], which is, to the best of our knowledge, the largest known fragment of SL
with a decidable entailment problem.

Theorem 8. ∆-DSGs are strictly more expressive than SLbtw, i.e. for every
SLbtw formula there exists a language-equivalent ∆-DSG, but not vice versa.

S

1

3 42

S S

p h p

1 12 2

1

2
h

Fig. 6. Tree-like DSG

Proof (Sketch). Every SLbtw environment over
a set of selectors Σ can be normalized such
that predicates are connected by their first
parameter. Then, applying the translation
hrgJ.K from SL to DSGs (see Lemma 2) yields
a language-equivalent Σ-DSG G (see Theo-
rem 6, Lemma 2 and Remark 1).

Conversely, the {h}-DSG G depicted in Figure 6 generates reversed binary
trees with an additional pointer to the head of another data structure. Obviously,
L(G) is SLtl-definable but not SLbtw-definable, because the number of allocated
locations from which the whole heap is reachable is fixed a priori for every SLbtw
formula and a corresponding environment. ut

8 Conclusion

SLRD HRG MSO2

TLGDSG

SL TL− DSGSLtl

SLbtw ∆− DSG

CES-TLG

RGG

Fig. 7. Fragments of HRG and SL

SL and DSGs are established for-
malisms to describe the abstract shape
of dynamic data structures. A sub-
stantial fragment of SL is known to co-
incide with the class DSG. However, the
entailment problem or, equivalently,
the inclusion problem is undecidable.

We introduced the class TLG of
tree-like grammars and showed that

every TLG is MSO2-definable. From this, some remarkable properties, like de-
cidability of the inclusion problem and closure under intersection, directly follow
from previous work on context-free and recognisable graph languages [8]. More-
over, the close correspondence between HRGs and SL yields several fragments of
SL, in particular SLtl, where an extended entailment problem is decidable. The
resulting fragments are more expressive than SLbtw, the largest fragment of SL
with a decidable entailment problem known so far.

Figure 7 depicts an overview of the SL and HRG fragments considered in this
paper, where an edge from formalism F1 to formalism F2 denotes that the class
of languages realizable by F2 is included in the class of languages realizable by
F1. All of these inclusion relations are strict. For completeness, we also added
the class SLRD of Separation Logic with inductive predicate definitions (cf. [14,
1]).

With regard to future research, investigating decision procedures and their
tractability for the entailment problem for (fragments of) SLtl is of great interest.
Although the entailment and inclusion problem is effectively decidable for the
fragments presented in this paper, our reliance on Courcelle’s theorem does not
lead to efficient algorithms. We hope that a combined approach – studying SL as
well as HRGs – will lead to further improvements in this area.

References

1. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M.I., Ouaknine, J.: Foundations
for decision problems in separation logic with general inductive predicates. In: FOSSACS.
Volume 8412 of LNCS. (2014) 411–425

2. Berdine, J., Calcagno, C., OâHearn, P.W.: A decidable fragment of separation logic. In:
FSTTCS. Volume 3328 of LNCS. (2005) 97–109

3. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: Memory safety for systems-level code. In: CAV.
Volume 6806 of LNCS. (2011) 178–183

4. Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic entailment proofs in sep-
aration logic. In: CADE-23. Volume 6803 of LNCS. (2011) 131–146

5. Büchi, J.R.: Weak second-order arithmetic and finite automata. Mathematical Logic Quar-
terly 6(1-6) (1960) 66–92

6. Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of finite graphs.
Information and Computation 85(1) (1990) 12–75

7. Courcelle, B.: The monadic second-order logic of graphs V: On closing the gap between
definability and recognizability. Theoretical Computer Science 80(2) (1991) 153–202

8. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach. Number 138. Cambridge University Press (2012)

9. Dodds, M.: From separation logic to hyperedge replacement and back. In: ICGT. Volume
5214 of LNCS. (2008) 484–486

10. Drewes, F., Kreowski, H.J., Habel, A.: Hyperedge replacement graph grammars. In: Hand-
book of Graph Grammars and Computing by Graph Transformation. (1997) 95–162

11. Dudka, K., Peringer, P., Vojnar, T.: Predator: A practical tool for checking manipulation
of dynamic data structures using separation logic. In: CAV. Volume 6806 of LNCS. (2011)
372–378

12. Habel, A.: Hyperedge Replacement: Grammars and Languages. Volume 643 of LNCS.
(1992)

13. Heinen, J., Noll, T., Rieger, S.: Juggrnaut: Graph grammar abstraction for unbounded
heap structures. ENTCS 266 (2010) 93–107

14. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with recursive
definitions. In: CADE-24. Volume 7898 of LNCS. (2013) 21–38

15. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.: Verifast: A
powerful, sound, predictable, fast verifier for C and Java. In: NFM. Volume 6617 of LNCS.
(2011) 41–55

16. Jansen, C., Göbe, F., Noll, T.: Generating inductive predicates for symbolic execution of
pointer-manipulating programs. In: ICGT. Volume 8571 of LNCS. (2014) 65–80

17. Lee, O., Yang, H., Yi, K.: Automatic verification of pointer programs using grammar-based
shape analysis. In: ESOP. Volume 3444 of LNCS. (2005) 124–140

18. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS.
(2002) 55–74

19. Salomaa, A., Rozenberg, G.: Handbook of Formal Languages, Vol. 3: Beyond Words.
Springer (1997)

Appendix

Appendix A provides a brief introduction to the filter theorem for HRGs. This
theorem is needed in the proofs of Theorem 2 and Theorem 6 which are provided
in Appendix B and Appendix C, respectively.

A The Filter Theorem for HRGs

The proofs of Theorem 6 and Theorem 2 apply a version of the filter theorem
(Lemma 1) due to Habel [12] which makes use of “compatible” predicates. This
section briefly introduces this theorem together with the most important defini-
tions. Details can be found in [12] (Chapter VI).

Let G = (ΣN , P, S) ∈ HRG. H ⇒ H ′ is a derivation step if there exists
e ∈ ENH and (labH(e),K) ∈ P such that H ′ ∼= H[e/K]. A derivation H ⇒? H ′ is
the application of finitely many derivation steps such that H ′ ∈ HGΣ . A handle
of X ∈ N is an HG X• consisting of a single nonterminal hyperedge labelled
X attached to rkΣN (X) distinct nodes. The projection of H ∈ HGΣN to the
HG derived from a single nonterminal hyperedge e ∈ ENH is denoted by H(e).
Furthermore, for a class C ⊆ HRG, let HGC be the set of all HGs generated by
some HRG in C.

The following definition is taken verbatim from [12] with minor modifications
to fit our notation.

Definition 17 (Compatible Predicates).

1. Let C ⊆ HRG, I a finite set, called the index set, PROP a decidable predicate
defined on pairs (H, I) with H ∈ HGC and I ∈ I, and PROP’ a decidable
predicate on triples (R, assign, I) with R ∈ HGC, a mapping ENR → I and
I ∈ I. Then PROP is called (C, PROP’)-compatible if for all G = (ΣN , P, S) ∈ C
and all derivations X• ⇒ R ⇒? H with X ∈ N and H ∈ HGCΣ, and for all
I ∈ I, PROP(H, I) holds if and only if there is a mapping assign : ENR → I
such that PROP’(R, assign, I) holds and PROP(H(e), assign(e)) holds for all
e ∈ ENR .

2. A predicate PROP0 on HGC is called C-compatible if predicates PROP and PROP’

and an index I0 exist such that PROP is (C, PROP’)-compatible and PROP0(H) =
PROP(H, I0) for all H ∈ HGC.

For every C-compatible predicate PROP0 and G ∈ C, one can construct a new
HRG generating all graphs generated by G which additionally satisfy PROP0.

Lemma 9 (Filter Theorem for HRGs [12]) Let PROP0 be a C-compatible pred-
icate for some class C of HRGs. For every HRG G ∈ C, there is an HRG GPROP0

such that L(GPROP0) = {H ∈ L(G) | PROP0(H) holds}.

Moreover, for each production rule p of the HRG GPROP0 , rhs(p) is isomorphic
to some rhs(q) up to the names of nonterminals, where q is a production rule of
G. The size of the new grammar is linear in G and |I|.

B Proof of Theorem 2

Theorem 2. For each HRG G, one can construct a TLG G′ such that L(G′) =
L(G) \M(G).

Let T denote the class of all HRGs in which every production rule maps
to a (basic) tree-like hypergraph. Given G ∈ T , we construct a T -compatible
predicate MRGG0 (H) such that for all H ∈ HGT , MRGG0 (H) holds if and only if
H /∈M(G). Then, Theorem 2 is a consequence of Lemma 9.

In the following we will see that it is decidable whether H ∈M(G) holds.

Lemma 10 Let G ∈ T , H ∈ L(G) and D(G)H := {t ∈ D(G) | yield(t) ∼= H}.
Then (1) D(G)H is a finite set and (2) it is decidable whether H ∈M(G).

Proof. (1) By definition, every production rule p of G maps to a (basic) tree-like
hypergraph. Hence, rhs(p) is either a single external node or contains at least
one terminal edge. Thus, |dom(t)| ≤ 2 · |EH | and D(G)H ⊆ {t ∈ D(G) | |dom(t)| ≤
2 · |EH |} is finite.

(2) Given a derivation tree t ∈ D(G) with yield(t) ∼= H, it is straightforward to
check whether H ∈M(G), e.g. by applying Lemma 7 to each pair x, y ∈ dom(t)
to check whether their anchor nodes are merged. Due to (1), it suffices to check
finitely many derivation trees to obtain either H ∈M(G) or H /∈M(G). ut

We now construct MRGG0 (H) together with the predicates required by Defi-
nition 17. Let I := 2[<(G)], i.e. every index I ∈ I is a set of integers in [<(G)].
Intuitively, I remembers which nodes attached to a nonterminal hyperedge have
already been merged with anchor nodes. We define two auxiliary sets for a given
set I ∈ I and an HG H:

– The set of all nodes in H representing anchor nodes is given by

|̂ (H) := {v ∈ VH | ∃t ∈ D(G)H , x ∈ dom(t) : v ut extt(x)(1)}.

– The set of all nodes attached to e as well as marked by assign is given by

V (e) := {attH(e)(j) | j ∈ assign(e) ∩ [rkΣN (lhs(e))]} for each e ∈ ENH .

Now, MRG’G(R, assign, I) holds if and only if V (ei)∩V (ej) = ∅ for each i 6= j, and
|̂
R /∈ V (ei), i.e. there exists no pair of nodes already known to be merged with

anchor nodes (according to assign and I) which are merged in R. The predicate
MRGG(H, I) holds if and only if H /∈M(G) and I = |̂ (H)∩bextHc. Furthermore,
we set MRGG0 (H) := MRGG(H, |̂ (H) ∩ bextHc).

Lemma 11 For each G ∈ T , MRGG0 (H) is a T -compatible predicate.

Proof. Let p = (X,R) be a production rule with ENR = {e1, ..., en} such that
H ∼= R[e1/H(e1), . . . , en/H(en)]. We have to show that MRGG(H, I) holds if and
only if there exists a mapping assign : ENR → I such that MRG’G(R, assign, I)
holds and MRGG(H(ei), assign(ei)) holds for each i ∈ [n].

“⇒”: Assume MRGG(H, I) holds. We choose assign : ENR → I such that ei 7→ |̂
(H(ei))∩bextH(ei)c for each i ∈ [n]. By definition, H /∈M(G), i.e. H(ei) /∈M(G)
for each i ∈ [1, n]. Now, assume |̂ R∈ V (ei) for some i ∈ [1, n]. Then, the anchor
of R is merged with some node in V (ei) and by definition of V (ei), two anchor
nodes are merged, i.e. H ∈ M(G). Analogously, if there are 1 ≤ i < j ≤ n such
that Vei ∩ Vej 6= ∅, there is a node v ∈ VR which is merged with an anchor node
in H(ei) and H(ej). Since H(ei) and H(ej) have disjoint nodes and edges, this
implies H ∈ M(G). Both cases lead to a contradiction, i.e. MRG’G(R, assign, I)
holds.

“⇐”: Conversely, assume there exists a mapping assign : ENR → I such that
MRG’G(R, assign, I) holds and MRGG(H(ei), assign(ei)) holds for each i ∈ [n]. By
definition, we have H(ei) /∈ M(G) for each i ∈ [n]. Thus, if H ∈ M(G), two
cases are possible:

1. Two nodes u, v with u ∈ |̂ (H(ei)), v ∈ |̂ (H(ej)), 1 ≤ i < j ≤ n are merged.
2. |̂ R is merged with some v ∈ |̂ (H(ei)), i ∈ [1, n].

In the first case, there is a node w ∈ VR that is merged with u as well as with
v, because H(ei),H(ei) are disjoint subgraphs of H. Hence, w ∈ V (ei) ∩ V (ej).
This is a contradiction, because V (ei)∩V (ej) = ∅ by definition. The second case
requires |̂ R∈ V (ei) which is also impossible by definition.

Since, the predicates MRGG(H, I) and MRG’G(R, assign, I) are decidable by
Lemma 10, it follows that MRGG0 (H) is a T -compatible predicate. ut

It remains to complete the proof of Theorem 2.

Proof. By definition, MRGG0 (H) = MRGG(H, |̂ (H) ∩ bextHc) holds if and only if
H ∈ M(G), because the second condition is always satisfied for I = |̂ (H) ∩
bextHc. Since MRGG0 (H) is a T -compatible predicate for any HRG G ∈ T , the
claim follows directly from Lemma 9. ut

C Proof of Theorem 6

Theorem 6. For every G ∈ HRG, an HRG G′ can be constructed such that
L(G′) = L(G) ∩ HCΣ.

Let C< be the class of all HRGs G with <(G) ≤ < and L(G) ⊆ HGΣ for some
finite alphabet of terminal symbols Σ. We construct a C<-compatible predicate
HCP0(H) such that for each H ∈ HCC< , HCP0(H) holds if and only if H ∈ HC.
Then, the claim follows from Lemma 9.

Given H ∈ HGΣ and v ∈ VH , we define the auxiliary set Γ (v) := {s ∈ Σ |
∃e ∈ E : att(e)(1) = v, labH(e) = s} collecting all labels of outgoing edges of v.
The index set of the predicates we have to construct is defined as I := (2Σ)≤<.
Intuitively, every I ∈ I records all terminal outgoing edges that have been added
to an external node in previous derivation steps. Analogously, assign(e) collects
all terminal symbols for each node v attached to e ∈ ENH , outgoing edges of v
introduced in further derivation steps may be labelled with without violating the
HC property. Now, for each H ∈ HGΣ , we define HCP’(R, assign, I) to hold if and
only if

1. attH(e1)(1) 6= attH(e2)(1) for all e1, e2 ∈ EΣH with labH(e1) = labH(e2),
2. Γ (extH(k)) ∩ I(k) = ∅ for each k ∈ [n] where n = |I| = |extH |,
3. Γ (attH(e)(k)) ⊆ assign(e)(k) for each k ∈ [rkΣN (e)], e ∈ ENH .

Moreover, we define HCP(H, I) := HCP’(H, ∅, I) and HCP0(H) = HCP(H, ∅|extH |).
Clearly, each of these predicates is decidable.

Lemma 12 HCP0(H) holds for H ∈ HG
C<
ΣN

if and only if H ∈ HC
C<
ΣN

.

Proof. If H ∈ HC
C<
ΣN

, every v ∈ VH has at most one outgoing terminal edge
e ∈ EH with labH(e) = s for each s ∈ Σ which satisfies the first condition. Since
I = ∅|extH |, the second condition is trivially satisfied.

Conversely, if HCP0(H) holds, we have attH(e1)(1) 6= attH(e2)(1) for all
e1, e2 ∈ EH with labH(e1) = labH(e2) ∈ Σ by the first condition. Thus, H ∈
HC
C<
ΣN

ut

Lemma 13 HCP0(H) is a C<-compatible predicate.

Proof. Let S• ⇒ R ⇒? H and I ∈ I. We have to show for any H ∈ HC
C<
ΣN

that

HCP0(H) holds if and only if there exists a mapping assign : ENR → I such that
HCP’(R, assign, I) holds and for each e ∈ ENR , HCP(H(e), assign(e)) holds.

“⇒”: Assume HCP0(H) holds. Then the first two conditions of HCP’(R, assign, I)
are satisfied regardless of our choice of assign. We choose assign : ENR → I such
that the k-th component of assign(e) contains all s ∈ Σ, the k-th attached
node of e has an outgoing edge labelled with. Thus, assign(e)(k) := {labR(e′) |
attR(e)(k) ∈ battR(e′)c} for each k ∈ [rkΣN (e)]. This trivially satisfies the third
condition of HCP’(R, assign, I). Moreover, since H satisfies the first condition,
HCP(H(e), assign(e)) holds for each e ∈ ENR .

“⇐”: Assume there is a function assign : ENR → I such that HCP’(R, assign, I)
holds and for each e ∈ ENR , HCP(H(e), assign(e)) holds. Then H(e) ∈ HCΣ
and labH(e)(extH(e)(k)) ∩ assign(e)(k) = ∅ for each k ∈ [|extH |]. By definition,
lab(attR(e)(k)) ⊆ assign(e)(k) for each k ∈ [rkΣN (e)]. Thus, replacing every non-
terminal hyperedge e ∈ ENR by H(e) yields a heap configuration, i.e. HCP0(H)
holds. ut

Proof (of Theorem 6). Let G = (ΣN , P, S) ∈ HRG and rkΣN (s) = 2 for each
s ∈ Σ. Then, G ∈ C<(G). By Lemma 13, HCP0(H) is a C<(G)-compatible predicate

and by Lemma 12, HCP0(H) holds if and only if H ∈ HC
C<(G)

ΣN
. Thus, applying

Lemma 9 yields a DSG G′ with L(G′) = {H ∈ L(G) | HCP0(H) holds}. ut

In particular, the construction of G′ is linear in the size of G and |I| (cf. the
proof of Theorem 5.1 in [12]).

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years.

A complete list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2012-01 Fachgruppe Informatik: Annual Report 2012
2012-02 Thomas Heer: Controlling Development Processes
2012-03 Arne Haber, Jan Oliver Ringert, Bernhard Rumpe: MontiArc

- Architectural Modeling of Interactive Distributed and Cyber-
Physical Systems

2012-04 Marcus Gelderie: Strategy Machines and their Complexity
2012-05 Thomas Ströder, Fabian Emmes, Jürgen Giesl, Peter Schneider-

Kamp, and Carsten Fuhs: Automated Complexity Analysis for
Prolog by Term Rewriting

2012-06 Marc Brockschmidt, Richard Musiol, Carsten Otto, Jürgen Giesl:
Automated Termination Proofs for Java Programs with Cyclic
Data

2012-07 André Egners, Björn Marschollek, and Ulrike Meyer: Hackers in
Your Pocket: A Survey of Smartphone Security Across Platforms

2012-08 Hongfei Fu: Computing Game Metrics on Markov Decision Pro-
cesses

2012-09 Dennis Guck, Tingting Han, Joost-Pieter Katoen, and Martin R.
Neuhäußer: Quantitative Timed Analysis of Interactive Markov
Chains

2012-10 Uwe Naumann and Johannes Lotz: Algorithmic Differentiation of
Numerical Methods: Tangent-Linear and Adjoint Direct Solvers
for Systems of Linear Equations

2012-12 Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp, Fabian
Emmes, and Carsten Fuhs: Symbolic Evaluation Graphs and Term
Rewriting — A General Methodology for Analyzing Logic Pro-
grams

2012-15 Uwe Naumann, Johannes Lotz, Klaus Leppkes, and Markus To-
wara: Algorithmic Differentiation of Numerical Methods: Tangent-
Linear and Adjoint Solvers for Systems of Nonlinear Equations

2012-16 Georg Neugebauer and Ulrike Meyer: SMC-MuSe: A Framework
for Secure Multi-Party Computation on MultiSets

2012-17 Viet Yen Nguyen: Trustworthy Spacecraft Design Using Formal
Methods

2013-01 ∗ Fachgruppe Informatik: Annual Report 2013
2013-02 Michael Reke: Modellbasierte Entwicklung automobiler

Steuerungssysteme in Klein- und mittelständischen Unternehmen
2013-03 Markus Towara and Uwe Naumann: A Discrete Adjoint Model for

OpenFOAM

2013-04 Max Sagebaum, Nicolas R. Gauger, Uwe Naumann, Johannes
Lotz, and Klaus Leppkes: Algorithmic Differentiation of a Com-
plex C++ Code with Underlying Libraries

2013-05 Andreas Rausch and Marc Sihling: Software & Systems Engineer-
ing Essentials 2013

2013-06 Marc Brockschmidt, Byron Cook, and Carsten Fuhs: Better ter-
mination proving through cooperation

2013-07 André Stollenwerk: Ein modellbasiertes Sicherheitskonzept für die
extrakorporale Lungenunterstützung

2013-08 Sebastian Junges, Ulrich Loup, Florian Corzilius and Erika
Ábrahám: On Gröbner Bases in the Context of Satisfiability-
Modulo-Theories Solving over the Real Numbers

2013-10 Joost-Pieter Katoen, Thomas Noll, Thomas Santen, Dirk Seifert,
and Hao Wu: Performance Analysis of Computing Servers using
Stochastic Petri Nets and Markov Automata

2013-12 Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs,
and Jürgen Giesl: Alternating Runtime and Size Complexity Anal-
ysis of Integer Programs

2013-13 Michael Eggert, Roger Häußling, Martin Henze, Lars Hermer-
schmidt, René Hummen, Daniel Kerpen, Antonio Navarro Pérez,
Bernhard Rumpe, Dirk Thißen, and Klaus Wehrle: SensorCloud:
Towards the Interdisciplinary Development of a Trustworthy Plat-
form for Globally Interconnected Sensors and Actuators

2013-14 Jörg Brauer: Automatic Abstraction for Bit-Vectors using Deci-
sion Procedures

2013-16 Carsten Otto: Java Program Analysis by Symbolic Execution
2013-19 Florian Schmidt, David Orlea, and Klaus Wehrle: Support for er-

ror tolerance in the Real-Time Transport Protocol
2013-20 Jacob Palczynski: Time-Continuous Behaviour Comparison Based

on Abstract Models
2014-01 ∗ Fachgruppe Informatik: Annual Report 2014
2014-02 Daniel Merschen: Integration und Analyse von Artefakten in der

modellbasierten Entwicklung eingebetteter Software
2014-03 Uwe Naumann, Klaus Leppkes, and Johannes Lotz: dco/c++ User

Guide
2014-04 Namit Chaturvedi: Languages of Infinite Traces and Deterministic

Asynchronous Automata
2014-05 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,

Carsten Fuhs, Jera Hensel, and Peter Schneider-Kamp: Auto-
mated Termination Analysis for Programs with Pointer Arith-
metic

2014-06 Esther Horbert, Germán Mart́ın Garćıa, Simone Frintrop, and
Bastian Leibe: Sequence Level Salient Object Proposals for
Generic Object Detection in Video

2014-07 Niloofar Safiran, Johannes Lotz, and Uwe Naumann: Algorithmic
Differentiation of Numerical Methods: Second-Order Tangent and
Adjoint Solvers for Systems of Parametrized Nonlinear Equations

2014-08 Christina Jansen, Florian Göbe, and Thomas Noll: Generat-
ing Inductive Predicates for Symbolic Execution of Pointer-
Manipulating Programs

2014-09 Thomas Ströder and Terrance Swift (Editors): Proceedings of the
International Joint Workshop on Implementation of Constraint
and Logic Programming Systems and Logic-based Methods in Pro-
gramming Environments 2014

2014-14 Florian Schmidt, Matteo Ceriotti, Niklas Hauser, and Klaus
Wehrle: HotBox: Testing Temperature Effects in Sensor Networks

2014-15 Dominique Gückel: Synthesis of State Space Generators for Model
Checking Microcontroller Code

2014-16 Hongfei Fu: Verifying Probabilistic Systems: New Algorithms and
Complexity Results

2015-01 ∗ Fachgruppe Informatik: Annual Report 2015
2015-02 Dominik Franke: Testing Life Cycle-related Properties of Mobile

Applications
2015-05 Florian Frohn, Jürgen Giesl, Jera Hensel, Cornelius Aschermann,

and Thomas Ströder: Inferring Lower Bounds for Runtime Com-
plexity

2015-06 Thomas Ströder and Wolfgang Thomas (Editors): Proceedings of
the Young Researchers’ Conference “Frontiers of Formal Methods”

2015-07 Hilal Diab: Experimental Validation and Mathematical Analysis
of Cooperative Vehicles in a Platoon

2015-08 Mathias Pelka, Jó Agila Bitsch, Horst Hellbrück, and Klaus Wehrle
(Editors): Proceedings of the 1st KuVS Expert Talk on Localiza-
tion

2015-09 Xin Chen: Reachability Analysis of Non-Linear Hybrid Systems
Using Taylor Models

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

