
Aachen
Department of Computer Science

Technical Report

On Optimal DAG Reversal

Uwe Naumann

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2007-05

RWTH Aachen · Department of Computer Science · March 2007

The publications of the Department of Computer Science of RWTH Aachen

University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

On Optimal DAG Reversal

Uwe Naumann

LuFG Informatik 12 (Software and Tools for Computational Engineering), Department of
Computer Science

RWTH Aachen University, D-52056 Aachen Germany
WWW: http://www.stce.rwth-aachen.de, Email: naumann@stce.rwth-aachen.de

Abstract. Runs of numerical computer programs can be visualized as directed
acyclic graphs (DAGs). We consider the problem of restoring the intermediate
values computed by such a program (the vertices in the DAG) in reverse or-
der for a given upper bound on the available memory. The minimization of the
associated computational cost in terms of the number of performed arithmetic
operations is shown to be NP-complete. The reversal of the data-flow finds appli-
cation, for example, in the efficient evaluation of adjoint numerical programs. We
derive special cases of numerical programs that require the intermediate values
exactly in reverse order, thus establishing the NP-completeness of the optimal
adjoint computation problem. Last but not least we review some state-of-the-
art approaches to efficient data-flow reversal taken by existing software tools for
automatic differentiation.

1 Motivation

The role of numerical simulation and optimization in computational science and
engineering has gained significant importance over the last decades. Our ability
to understand, for example, physical, chemical, and biological processes has im-
proved with the growing computational resources and, more importantly, with
the deepening insight into mathematical and algorithmic issues. Numerical sim-
ulation programs map potentially very large numbers of input parameters (let
there be n) onto often much fewer outputs (say m of them, also referred to as
the objectives). The classical numerical approach to quantifying the sensitivi-
ties of those objectives with respect to the parameters through finite difference
quotients yields a computational complexity of O(n). Note that certain high-end
applications such as, for example, the simulation of ocean circulation (see, for
example, mitgcm.org) may have a runtime of several days to produce physi-
cally relevant results on the latest high-performance computing platforms. The
number of parameters may reach values of the order of n = 109. Hence, forward
sensitivity analysis would require n runs of the simulation, which is simply not
feasible.

Adjoint methods and corresponding program transformation techniques have
been developed to replace the dependence on n with that on the number of ob-
jectives m. Often (for example, in least-squares approaches to data assimilation)
the number of objectives is equal to one. In this case adjoint programs deliver
the sensitivities of the objective with respect to all input parameters at O(1).

Tangent-linear and adjoint codes can be generated from a given numerical
simulation program by a semantic program transformation technique known as
automatic differentiation (AD) [7]. A large number of successful applications of
AD to real-world problems in science and engineering have been reported on in

the proceedings of the four international conferences on the subject held in 1991
[4], 1996 [1], 2000 [3], and 2004 [2].

1 SUBROUTINE F(l , a , x , y)
2 IMPLICIT NONE
3 INTEGER l
4 REAL a (2∗ l) , x , y
5 INTEGER i
6 INTRINSIC SIN
7

8 y = 1 .
9 DO i =1, l

10 y = y ∗ a (i)∗SIN(a (l+i)∗x)
11 ENDDO
12 END

Fig. 1. Numerical Simulation Program

1 SUBROUTINE F D(l , a , ad , x , y , yd)
2 IMPLICIT NONE
3 INTEGER l
4 REAL a (2∗ l) , ad (2∗ l) , x , y , yd
5 INTEGER i
6 INTRINSIC SIN
7

8 y = 1 .
9 yd = 0.0

10 DO i =1, l
11 yd = (yd∗a (i)+y∗ad (i)) ∗SIN(a (l+i) ∗x) + y∗a (i)∗x∗ad (l+i

)∗COS(a (l+i)∗x)
12 y = y∗a (i)∗SIN(a (l+i)∗x)
13 ENDDO
14 END

Fig. 2. Tangent-Linear Numerical Program (generated by Tapenade)

Example Consider the scalar function y = F (a, x) defined as

y =
2·l−1
∑

i=0

ai · sin(ai+1 · x) .

An implementation in Fortran is shown in Figure 1. A centered-finite difference
approximation of the gradient F ′ = ∂y

∂a
requires 2 · n = 4 · l function evaluations.

The corresponding tangent-linear code ẏ = Ḟ (a, ȧ, x) ≡ F ′ ·ȧ needs to be called n

4

times with ȧ ranging over the Cartesian basis vectors in IRn. Refer to Figure 2 for
a corresponding tangent-linear Fortran code generated by the AD tool Tapenade1

[10]. The rules for generating tangent-linear code follow immediately from the
chain rule of differentiation. The original code is augmented per assignment with
the corresponding statement for computing a directional derivative of the left-
hand side with respect to the active arguments (the components of a in our case)
on the right-hand side. See line 11 in Figure 2.

1 SUBROUTINE F B(l , a , ab , x , y , yb)
2 IMPLICIT NONE
3 INTEGER l
4 REAL a (2∗ l) , ab (2∗ l) , x , y , yb
5 INTEGER i , i i 1
6 REAL temp , tempb
7 INTRINSIC SIN
8

9 y = 1 .
10 DO i =1, l
11 CALL PUSHREAL4(y)
12 y = y∗a (i)∗SIN(a (l+i)∗x)
13 ENDDO
14 DO i i 1 =1 ,2∗ l
15 ab (i i 1) = 0 .0
16 ENDDO
17 DO i=l ,1 ,−1
18 CALL POPREAL4(y)
19 temp = x∗a (l+i)
20 tempb = SIN(temp) ∗yb
21 ab (i) = ab (i) + y∗tempb
22 ab (l+i) = ab (l+i) + y∗a (i) ∗COS(temp)∗x∗yb
23 yb = a (i) ∗tempb
24 ENDDO
25 yb = 0.0
26 END

Fig. 3. Adjoint Numerical Program (generated by Tapenade)

The adjoint code ā = F̄ (a, x, ȳ) ≡ (F ′)T · ȳ shown in Figure 3 gives the gra-
dient after a single run with ȳ = 1. For n = 2 · 104 the centered finite difference
approximation (similarly the tangent-linear code) takes roughly 45 seconds on
our laptop. The adjoint code produces the same numerical result as the tangent-
linear code in less than one second. Note that the adjoint code uses the repeatedly
overwritten values of y (see line 12 in Figure 3) in reverse order. Tapenade in-
serts corresponding push and pop statements on lines 11 and 18 to store the
required values on a stack. The rules for generating adjoint code derive from the

1 See http://tapenade.inria.fr:8080/tapenade/index.jsp.

5

associativity of the chain rule taking into account overwrites in physical mem-
ory. Refer to [7] for further information on AD and its mathematical foundations.

The computational complexity of the gradient accumulation differs from that of
the underlying function evaluation merely by a constant factor. The minimiza-
tion of this factor is one of the major challenges in modern high-performance
scientific computing. The difficulty arises from the fact that the data-flow in ad-
joint programs is reversed compared to that of the original simulation. Certain
intermediate values computed by the simulation program need to be recovered in
reverse order. Compare the used instances of y on line 12 with lines 21 and 22 in
Figure 3. Overwriting of program variables and the fact that system memory is
always limited (and way too small to store all intermediate values persistently)
makes reaching this objective problematic. For example, the memory require-
ment of the adjoint code in Figure 3 will exceed the available memory for large
values of l. The only solution lies in a hybrid approach that uses the available
memory to store certain checkpoints from which other required values can be
recomputed. Moreover, the recomputation should be as efficient as possible. The
central question is the following: Which values should be stored and which ones
should be recomputed such that the runtime of the adjoint code is minimized
under the given constraints?

Optimizing the recomputation of an intermediate value amounts to playing
the pebble game that is known to be PSPACE-complete [11]. Hence it is among
the hardest problems that can be solved by a Turing machine using a polyno-
mial amount of memory and unlimited time. Due to the missing time limit the
distinction between deterministic and nondeterministic Turing machines is irrel-
evant in this case. Recall that the NP-complete problems are the hardest among
those that can be solved by a nondeterministic Turing machine using a polyno-
mial amount of memory and time. It is unknown whether the PSPACE-complete
problems lie outside of NP or not. The same statement holds for NP and P, the
class of problems that can be solved by a deterministic Turing machine using a
polynomial amount of memory and time.

In this paper we assume persistent memory (main memory and/or files on
hard disc for extremely large problems) for storing intermediate values. Recompu-
tation is performed in nonpersistent memory (ideally in registers). The assumed
nonpersistence derives from the maximum degree of freedom for memory access
that is required for the intended optimization of the recomputation by heuristic
approximation of a winning strategy for the pebble game. Hence, we consider
a hierarchical setup where the recomputation part is optimized for a previously
determined usage of the persistent memory. We assume unit cost for a STORE
operation that writes to persistent memory as well as for a floating-point op-
eration (FLOP) to compute a value as a function of the respective arguments.
The cost of LOAD operations to access persistent or nonpersistent memory is
assumed to be part of the following FLOP. Alternatively, one could argue that
the LOAD cost is negligible due to prefetching. Moreover, we assume that the
values to be made available in reverse order enter some nontrivial subsequent
computation, for example, the computation of partial derivatives in the context
of evaluating adjoints. These prerequisites represent a good approximation for

6

our main target application, that is the efficient data-flow reversal in adjoint
numerical programs.

The formalism is build on the representation of the program as a directed
acyclic graph as described in Section 2. Existing algorithms are based on heuris-
tics that use structural properties of the program (potentially augmented with
conservative information on the computational costs of parts of the program) to
derive a checkpointing scheme. Links to work in this area are given in Section 4.
In this paper we formulate the Optimal Data-Flow Reversal problem and
we propose a proof for its NP-completeness. In Section 3 we establish the link
with the Optimal Checkpointing problem in adjoint programs. To our knowl-
edge the computational complexity of this combinatorial optimization problem
has not been looked at so far.

2 Data-Flow Reversal

Following the notation in [7] we consider implementations of vector functions

F : IRn → IRm, y = F (x) , (1)

as computer programs that are expected to decompose for given inputs x into a
single assignment code

vj = ϕj(vi)i≺j , (2)

for j = 1, . . . , q. The notation i ≺ j is used to denote vi as an argument of
ϕj . There are n independent input variables xi = vi−n, i = 1, . . . , n, p interme-

diate variables vj , j = 1, . . . , p, and m dependent output variables yk = vp+k,
k = 1, . . . ,m. W.l.o.g., we assume that all dependent variables are mutually
independent. We set q = p + m. A DAG G = (V,E) is induced by the single
assignment code. Vertices represent the single assignment code variables whereas
edges encode the dependence relation as (i, j) ∈ E if and only if i ≺ j. Hence, G
has n sources and m sinks.

The Optimal Data-Flow Reversal problem is to recover the values of the
n + q single assignment code variables in reverse order for a given upper bound
n ≤ K ≤ n + q on the available memory and such that the number of required
FLOPs becomes minimal. This number vanishes identically for K = n + q. In
reality one rarely has that much memory at ones disposal. The values of the
inputs need to be stored in any case as they cannot be recomputed from other
values. Hence, K ≥ n.

Example The single assignment code of the straight-line program2

t = x0 · sin(x0 · x1)

x0 = cos(t)

x1 = t/x1

is shown in Figure 4. The objective is to recover v5, . . . , v−1 in that order for the
given upper bound K on the available memory. For K = n + q = 7 a store-all
strategy uses the available memory like a stack. For K = 2 one stores v−1 and
v0 followed by recomputing v5 (4 FLOPs), v4 (4 FLOPs), v3 (3 FLOPs), v2 (2
FLOPs), and v1 (1 FLOP) at a cumulative cost of 14 FLOPs. The number of

2 The flow of control is fixed by evaluation of the program at a given input. Hence, we can
focus on straight-line programs.

7

v−1 = x0; v0 = x1

v1 = v−1 · v0

v2 = sin(v1)
v3 = v−1 · v2

v4 = cos(v3)
v5 = v3/v0

x0 = v4; x1 = v5

-1 0

1

2

3

4 5

Fig. 4. Single Assignment Code and Corresponding DAG

intermediate and dependent single assignment code variables q is a sharp lower
bound on the cost for making these values available. A single function evaluation
is required in any case. There are data-flow reversals that have unit cost per
recomputed value based on certain stored values. For example, in Figure 4 one
could only store v−1, v0, v2, and v3. The values of v5, v4, and v1 can be recomputed
as a function of their stored predecessors at the cost of a single FLOP each. Hence,
one can ask for a data-flow reversal with unit cost per recomputed value that
consumes minimal memory. We refer to the corresponding decision problem as
the Minimum Memory Data-Flow Reversal (MMDFR) problem.

In order to prove the NP-completeness of MMDFR we pick a known NP-
complete problem P and we design a polynomial transformation from each in-
stance of P to an instance of MMDFR. Furthermore, we need to show that
there is a solution for the given instance of P if and only if there is one for its
counterpart in MMDFR. We pick P =Vertex Cover.

Vertex Cover (VC) Given a graph G = (V,E) is there a subset W ⊆ V of
size ω ≤ Ω, s.th. each edge in E is incident with at least one vertex from W ?

Theorem VC is NP-complete.

Proof See [5]. �

Vertex Cover in Dags (VCD) Given a directed acyclic graph G = (V,E) is
there a subset W ⊆ V of size ω ≤ Ω, s.th. each edge in E is incident with at
least one vertex from W, that is either the source or the target (or both) of each
edge is in W ?

Proof Consider an arbitrary instance of VC on a graph G = (V,E). Enumerate
all vertices and make edges directed s.th. (i, j) ∈ E ⇔ i < j. This procedure
is illustrated by Figure 5 (a) and (b). The resulting directed graph G′ has no
cycles. Obviously, it has a vertex cover W ′ of size ω ≤ Ω if and only if G has a
vertex cover W of the same size. Simply set W ′ = W. �

Formally, the MMDFR problem is stated as follows.

MMDFR Given are a DAG G and an integer n ≤ K ≤ n+q. Is there a data-flow
reversal with cost n + q that uses k ≤ K memory?

8

1 2

3

4

−1 0

1 2

3

4

(a) (b) (c)

Fig. 5. Reduction VC → VCD → MMDFR

Before we prove MMDFR to be NP-complete we have a quick look at an ex-
ample. Consider Figure 5 (c). For K = 6 store-all is a solution to MMDFR.
For K = 5 we could store v−1 and v0 in addition to any three variables out of
v1, . . . , v4. Storing v1 and v3 or v3 and v4 would solve MMDFR for K = 4. You
may wish to verify that there is no solution for MMDFR with K ≤ 3. Equiva-
lently, there is no vertex cover of size ω ≤ 1 for the graph in Figure 5 (a) nor for
its directed acyclic versions, one of which is shown in Figure 5 (b).

Theorem MMDFR is NP-complete.

Proof We reduce from VCD. A given solution of MMDFR is verified trivially by
counting the number of FLOPs for persistent memory of a given size.

Derive an instance of MMDFR for any instance of VCD on a DAG G′ =
(V ′, E′) as follows: Add a unique predecessor to each of the n′ sources in G′ to
get G = (V,E). Hence, V ′ = {1, . . . , q} and V = X∪V ′, where X = {1−n, . . . , 0}.
Moreover n = n′ and m = m′. We claim that there is a solution for MMDFR on
G with K = Ω + n if and only if there is a solution for VCD with Ω on G′.

“⇐” We need to store the n sources of G as they cannot be recomputed.
For a given vertex cover W ⊆ V ′ of G′ we observe that the predecessors of any
v ∈ V ′ \ W are in W. Hence, the values in V ′ \ W can be recomputed at unit
cost from stored values. It follows that the overall cost for MMDFR is less than
or equal to K = Ω + n if |W | ≤ Ω.

“⇒” Consider a solution for MMDFR with overall cost n + q and memory
requirement k ≤ Ω + n for storing M ⊆ V. Suppose that W ≡ M \ X is not a
vertex cover in G′. Hence, there is an edge (i, j) ∈ E′ with i 6∈ W and j 6∈ W.
All values vk, k = 1, . . . , p, k 6= j can be obtained at unit cost by either restoring
their previously stored values (if k ∈ W) or recomputing them from known values
at unit cost by a single FLOP (if k 6∈ W). The recomputation of vj takes two
FLOPs as it involves the recomputation of vi whose value is nonpersistent and
has therefore to be recomputed again at the cost of a single FLOP. The overall
cost of the given MMDFR solution adds up to n + q − 2 + 3 = n + q + 1 which
is no longer optimal (contradiction).

The reuse of already vacated persistent memory to store vj does not change
this situation. We still need to perform one FLOP to recompute vj. The subse-

9

quent STORE has unit cost as well as the FLOP required to recompute vi. The
total costs still exceeds the optimum by one.

In general we observe quadratic growth in arithmetic complexity along any
path through vertices that are not in W if previously vacated persistent memory
is not reused. Otherwise we still get linear growth. The optimal cost is achieved
only if all these paths have length zero or one implying that W must be a vertex
cover in G′. �

MMDFR is merely an intermediate step toward the problem that we are ac-
tually interested in. Instead of fixing the overall cost and minimizing the required
memory we are really faced with an upper bound on the available memory. Our
objective is to use this memory “wisely”, that is to store as many values as pos-
sible such that the overall cost becomes minimal. We refer to this combinatorial
optimization problem as the Fixed Memory Minimum Cost Data-Flow Re-
versal or simply the Optimal Data-Flow Reversal (ODFR) problem. It
can be formulated as a decision problem as follows.

ODFR Given are a DAG G and integers K and C such that n ≤ K ≤ n + q
and K ≤ C. Is there a data-flow reversal that uses at most K memory and costs
c ≤ C?

Theorem ODFR is NP-complete.

Proof An algorithm for ODFR can be used to solve MMDFR as follows: For
K = n + q store-all is a solution of ODFR for C = n + q. Now decrease K by
one at a time as long as there is a solution of ODFR for C = n+ q. The smallest
K for which such a solution exists is the solution of the minimization version
of MMDFR. Again, a given solution is trivially verified in polynomial time by
counting the number of FLOPs performed by the respective code. �

3 Link with Adjoints

Recall from Section 1 that the adjoint version of a numerical program F as
defined in Equation (1) computes adjoints x̄ of the inputs as a function of x and
given adjoints ȳ of the outputs according to

x̄ = F̄ (x, ȳ) ≡ F ′(x)T · ȳ .

The Optimal Checkpointing problem for F̄ is to determine for a given upper
bound K on the available persistent memory a set of values computed by the
single assignment code as defined in Equation (2) such that the computational
cost of the adjoint propagation becomes minimal. In the following we distin-
guish between two variants of adjoint propagation, due to the incremental and
nonincremental reverse modes of AD [7].

The link between ODFR and Optimal Checkpointing in adjoint compu-
tations is not immediately apparent. Referring back to the example in Section 1
we note that adjoint codes do not necessarily use the intermediate values in
strictly reverse order. For example, the value of v−1 is used prior to that of v1

as it labels edge (2, 3) in Figure 4 whereas v1 is an argument of the local par-
tial derivative cos(v1) that labels edge (1, 2). In order to apply ODFR we need

10

to show that there are numerical programs whose adjoints use the intermediate
values in strictly reverse order. The order in which the intermediate values are
used depends on the order of the computation of the local partial derivatives
(the edge labels in the linearized DAG).

1 2 3

4

a b c

1 2 3

sin sin sin

+

+

a b c

1 1

1

1

1 2 3

P

i≺4
sin

a b c

Fig. 6. Reduction DAG → Computational Graph (Nonincremental Adjoints)

3.1 Nonincremental Adjoints

In nonincremental reverse mode the labels of the outgoing edges are computed
for all vertices in the linearized DAG (second line in Equation (3)).

vj = ϕj(vi)i≺j for j = 1, . . . , q

ckj =
∂ϕj

∂vk

for j ≺ k and v̄j =
∑

k:j≺k

ckj · v̄k for j = q, . . . , 1 − n
. (3)

In order to apply ODFR to nonincremental adjoints we construct a numerical
program such that all edge-labels (local partial derivatives) depend only on the
value of the respective edge’s source. For j = 1, . . . , q set, for example,

vj =
∑

i≺j

sin(vi) where
∂ sin

∂vi
=

∂ sin

∂vi
(vi) ≡ cos(vi) .

Constant folding according to 1·x = x gives the original graph [14]. The procedure
is illustrated by Figure 6. The resulting nonincremental adjoint code requires all
intermediate variables in reverse order, implying the ODFR problem.

11

1 2 3

4

a b c

1 2 3

+

+

exp

1 1

1

1

a = b = c

1 2 3

exp
`
P

i≺4

´

a a a

Fig. 7. Reduction DAG → Computational Graph (Incremental Adjoints)

3.2 Incremental Adjoints

In incremental reverse mode the labels of the incoming edges are computed for
all vertices in the linearized DAG (second line in Equation (4)).

vj = ϕj(vi)i≺j ; v̄j = 0 for j = 1, . . . , q

cj,i =
∂ϕj

∂vi
; v̄i = v̄i + cj,i · v̄j for i ≺ j and j = q, . . . , 1

. (4)

All edge-labeled DAGs can be regarded as linearized computational graphs, such
that the edge labels (local partial derivatives) depend only on the value of the
respective edge’s target. A constructive description of a corresponding numerical
program is the following. For j = 1, . . . , q set

vj = exp





∑

i≺j

vi



 such that
∂vj

∂vi

≡ vj .

Again, constant folding according to 1 · x = x gives the original graph as shown
in Figure 7. As a result the incremental adjoint code requires all intermediate
variables in reverse order, implying the ODFR problem.

4 Approaches to Efficient Data-Flow Reversal in Automatic

Differentiation

Reversal of the data flow in numerical programs yields the need for control-
flow reversal. Various methods have been investigated in the literature covering
both intraprocedural [17] and interprocedural flow of control [6, 7, 15]. Program
analysis plays a crucial role in adjoint code generation [8, 9]. As a compile-time
activity the code generation needs to be conservative in the sense that correct
adjoints are guaranteed to be computed for arbitrary inputs. Hence, adjoint

12

compilers should always put robustness above efficiency. Nevertheless efficiency
is often crucial, especially in the context of large-scale numerical simulations
where a factor between the runtimes of the original and the adjoint codes of six
and more may already be too large for the adjoint mode to be applicable. An
example for such an application is the MIT general circulation model [16].

Relevant special cases of the Optimal Checkpointing problem have been
considered in [7, 18, 19]. The authors focus on time evolutions

F : IRn → IRn

with
xl = F (x0) = fl(fl−1(. . . (f1(x0)) . . .)) (5)

and xi = fi(xi−1) for i = 1, . . . , l that are implemented as loops updating the
state vector x at each iteration i. Given values for l and s (number of checkpoints,
that is copies of the state vector, that can be stored persistently), the aim is to
solve the Evolution Reversal (ER) problem that is to minimize the time
t(l, s) needed for the reversal of F. For non-uniform step costs ti for i = 1, . . . , l
one gets

t(l, s) = min
1≤l̂<l





l̂
∑

i=1

ti + t(l − l̂, s − 1) + t(l̂, s)





The elements of the right-hand side of this relation are

–
∑l̂

i=1
ti – the cost for advancing to the checkpoint at l̂;

– t(l− l̂, s−1) – the cost for reversing the right subchain with s−1 checkpoints;
– t(l̂, s) – the cost for reversing the left subchain.

The number of potential reversal schemes is exponential in l. Fortunately, the
following two properties qualify the ER problem for dynamic programming. Over-

lapping subproblems: The problem for l includes the problems for l̂ ≤ l. Optimal

substructure: A solution for l is optimal if and only if it solves all its subproblems.
We consider the work on efficient / optimal loop reversal as a special case of

the Optimal Checkpointing problem to be highly relevant. Obviously, loops
are the main reason for numerical programs becoming large-scale in terms of
computational complexity. Solutions for the ER problem and its variants are key
ingredients of efficient adjoint computations. The proof that Optimal Check-
pointing is in fact NP-complete can be seen as justification for past and ongoing
work on relevant special cases as well as on heuristics for approximately solving
the general problem.

5 Summary and Conclusion

In this paper we have considered the optimal reversal of directed acyclic graphs
of numerical simulation programs. Given was an upper bound on the persistent
memory available for storing the values associated with the vertices in the graph.
These values needed to be recovered in reverse order while keeping the compu-
tational complexity to a minimum. The corresponding Optimal Data-Flow
Reversal problem has been shown to be NP-complete. The NP-completeness
of the Optimal Checkpointing problem in adjoint computations followed.

13

Our results should be regarded as contributions to a better understanding of
the theoretical foundations of adjoint computations. The need for efficient adjoint
codes is likely to increase with the ongoing progress in work on large-scale inverse
problems and nonlinear optimization. The potential impact of the idea behind
the proof on algorithm development remains unclear. Polynomial reductions to
other well-studied NP-complete problems may grant us access to a variety of
approximation algorithms and / or powerful heuristics. Novel approaches to ad-
joint code generation will most likely be based on static information on the code
structure, possibly augmented with dynamic information about the computa-
tional complexities of code fragments generated by profiling runs. The reversal
of address computations represents another very important factor. Work is un-
derway to formalize the address computation reversal problem and to provide
algorithms for its (approximate) solution.

We would like to conclude with an important observation. The automatic gen-
eration of efficient adjoint code must be regarded as one of the major challenges
in compiler-based semantic transformation of numerical programs. It requires ex-
pertise in numerical analysis as well as compiler construction. A large number of
highly interesting combinatorial problems arise. The ability to generate adjoint
code automatically will become an important feature of special compilers for sci-
entific computing. Work is underway to develop prototypes to demonstrate the
usefulness of this approach [12, 13]. Development and support of an industrial-
strength adjoint code compiler remains a major task in software engineering.

References

1. M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors. Computational Differentiation:
Techniques, Applications, and Tools, Proceedings Series. SIAM, 1996.

2. M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris, editors. Automatic Differ-
entiation: Applications, Theory, and Tools, number 50 in Lecture Notes in Computational
Science and Engineering, Berlin, 2005. Springer.

3. G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Naumann, editors. Automatic
Differentiation of Algorithms – From Simulation to Optimization, New York, 2002. Springer.

4. G. Corliss and A. Griewank, editors. Automatic Differentiation: Theory, Implementation,
and Application, Proceedings Series. SIAM, 1991.

5. M. Garey and D. Johnson. Computers and Intractability - A Guide to the Theory of NP-
completeness. W. H. Freeman and Company, 1979.

6. R. Giering and T. Kaminski. Recipes for adjoint code construction. ACM Transactions on
Mathematical Software, 24(4):437–474, 1998.

7. A. Griewank. Evaluating Derivatives. Principles and Techniques of Algorithmic Differen-
tiation. SIAM, Apr. 2000.

8. L. Hascoët and M. Araya-Polo. The adjoint data-flow analyses: Formalization, properties,
and applications. In [2], pages 135–146. Springer, 2005.

9. L. Hascoët, U. Naumann, and V. Pascual. To-be-recorded analysis in reverse mode auto-
matic differentiation. Future Generation Computer Systems, 21:1401–1417, 2005.

10. L. Hascoët and V. Pascual. Tapenade 2.1 user’s guide. Technical report 300, INRIA, 2004.

11. R. Tarjan J. Gilbert, T. Lengauer. The pebbling problem is complete for polynomial space.
SIAM J. Comput., (9):513–524, 1980.

12. M. Maier and U. Naumann. Intraprocedural adjoint code generated by the differentiation-
enabled NAGWare Fortran compiler. In G. Montero B.H.V. Topping and R. Montenegro,
editors, Proceedings of the Fifth International Conference on Engineering Computational
Technology. Civil-Comp Press, Kippen, Stirlingshire, United Kingdom, 2006.

13. U. Naumann and J. Riehme. Computing adjoints with the NAGWare Fortran 95 compiler.
In [2], pages 159–170. Springer, 2005.

14

14. U. Naumann and J. Utke. Optimality-preserving elimination of linearities in Jacobian
accumulation. Electronic Transactions on Numerical Analysis, 21:134–150, 2005. Special
Volume on Combinatorial Scientific Computing.

15. U. Naumann and J. Utke. Source templates for the automatic generation of adjoint code
through static call graph reversal. In P. Sloot et al., editor, Computational Science - ICCS
2005, Proceedings of the International Conference on Computational Science, Atlanta, GA,
USA, May 22-25, 2005, Part I, volume 3514 of LNCS, pages 338–346. Springer, 2005.

16. P. Heimbach and C. Hill and R. Giering. An efficient exact adjoint of the parallel MIT
general circulation model, generated via automatic differentiation. Future Generation Com-
puter Systems, 21(8):1356–1371, 2005.

17. J. Utke, A. Lyons, and U. Naumann. Efficient reversal of the intraprocedural flow of control
in adjoint computations. Journal of Systems and Software, 79:1280–1294, 2006.

18. A. Walther. Program Reversal Schedules for Single- and Multi-processor Machines. PhD
thesis, Institute of Scientific Computing, Technical University Dresden, Germany, 1999.

19. A. Walther and A. Griewank. New results on program reversals. In [3], chapter 28, pages
237–243. Springer, 2001.

15

