
Aachen
Department of Computer Science

Technical Report

Unranked Tree Automata with Sibling

Equalities and Disequalities

Wong Karianto and Christof Löding

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2006-13

RWTH Aachen · Department of Computer Science · October 2006

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Unranked Tree Automata with Sibling Equalities and

Disequalities

Wong Karianto and Christof Löding

Lehrstuhl für Informatik 7, RWTH Aachen, Germany
{karianto,loeding}@informatik.rwth-aachen.de

Abstract. We propose an extension of the tree automata with constraints be-
tween direct subtrees (Bogaert and Tison, 1992) to unranked trees. Our approach
uses MSO-formulas to capture the possibility of comparing unboundedly many
direct subtrees. Our main result is that the nonemptiness problem for the deter-
ministic automata, as in the ranked setting, is decidable. It turns out that the
main difficulty is indeed the absence of the rank, as it gives a certain bound on the
number of distinct subtrees needed in order to satisfy an equality or disequality
constraint. We overcome this difficulty by finding such a bound via a brute-force
method.

Keywords: (unranked) tree automata, monadic second-order logic, equality and
disequality constraints

1 Introduction

The notion of unranked trees, that is, finite (ordered) trees for which there are
no constraints on the number of successors of a node, has recently regained in-
terest from the research community, especially due to the application of such
trees as models of semi-structured data. As with ranked trees, automata-related
and logic-related notions have been developed for unranked trees. In fact, many
results that hold for the ranked case have been shown to hold for the unranked
case as well; for example, one can show that the regular languages of unranked
trees, that is, those that are recognizable by (say, bottom-up) finite automata,
coincide with those that are definable in monadic second-order logic. For refer-
ences on this and other results, the reader is referred to, for example, the surveys
[Nev02] and [Lib05] as well as the references therein.

A current trend in the theory of unranked tree automata is concerned with
the development of automaton models that are more expressive than the finite
automata and, at the same time, still permit good (algorithmic) properties. In
particular, an approach has been to incorporate the notion of constraints in
the definition of unranked tree automata. To illustrate this, let us consider a
transition of a bottom-up finite automaton on unranked trees. Such a transition
is usually described by a tuple (L, a, q) where L is a regular language over the
state set of the automaton, a is a symbol from the input alphabet, and q is a
state of the automaton. Intuitively, this transition can be applied at a node if
(a) the node is labeled with a, (b) the node has k subtrees that evaluate to
the states q1, . . . , qk, and the word q1 . . . qk belongs to L. Now, here is the point
where constraints come into play; one restricts the applicability this transition by
requiring that among the states q1, . . . , qk, for instance, a particular state occurs
at least half as often as k. Note that such a constraint cannot be captured by
the regular language L of the transition above.

Examples of unranked tree automata with numerical constraints are the Pres-
burger automata of Seidl et. al. [SSM03,SSMH04] and, almost equivalently, the
sheaves automata of Lugiez and Dal Zilio [DL03]. In these models, the applica-
bility of transitions is subject to numerical constraints expressed in Presburger
arithmetic (the first-order logic over the natural numbers). It turns out that
these classes of automata share many good properties with the finite automata.
In particular, the nonemptiness problem for these automata is decidable, which
relies on the decidability of Presburger arithmetic. As an application of the latter
result, the authors of these papers develop classes of logic-based query languages
over unranked trees; some of which then turn out to enjoy decidable satisfiability.

Apart from numerical constraints, another type of constraint that has been
considered in the classical setting of ranked trees deals with the aspect of non-
linearity, which, for instance, appears in the (non-regular) language of trees of
the form a(tt). In order to capture this aspect, it has been suggested that the
applicability of a tree automaton transition is subject to some equality tests
between subtrees of the node under consideration; for references, see, for instance,
[CDG+97]. However, it turns out that tree automata with such constraints, in
the most general form where it is allowed to compare arbitrary subtrees, fail
to have decidable nonemptiness problem [MS81]. Furthermore, undecidability
remains even if the equality tests are imposed only to cousin subtrees, that
is, subtrees of depth at most two [Tom92]. Hence, several subclasses of tree
automata with equality constraints with decidable nonemptiness problem have
been proposed in the literature, such as the reduction automata as well as its
variants [DCC95,CCC+94,JRV06].

Another subclass of tree automata with equality constraints has been sug-
gested by Bogaert and Tison in [BT92]; they restrict the equality tests to sibling
subtrees (subtrees of depth one). For this class of (ranked) tree automata, they
are able to show not only that it forms a Boolean algebra, but also that the
nonemptiness problem for this class is decidable. Actually, the latter result is
shown for the deterministic automata, but the corresponding results holds for
the nondeterministic ones as well, as Bogaert and Tison show that the latter can
be determinized.

In this paper, we aim at extending the latter results to the unranked setting.
The first obstacle we need to deal with stems from the unboundedness aspect:
as opposed to the ranked setting, the number of pairs of sibling subtrees to be
compared is not a priori bounded and may increase with the size of the input
tree. In order to define an automaton model properly the (possibly unboundedly
many) equality tests must be finitely representable. We propose using formulas
of monadic second-order logic over the state set of the underlying automaton
to address the pairs of siblings to be compared. In this way, we meet the two
requirements just mentioned: unbounded number of but finitely representable
equality tests between sibling subtrees. Throughout this paper, we will refer to
the unranked tree automata with constraints between siblings that we propose
as UTACS.

The main result of this paper is that the nonemptiness problem for determin-
istic UTACS is decidable. We do this by adapting Bogaert and Tison’s nonemp-
tiness decision procedure. However, as the termination of this procedure relies
on the particular rank of the input alphabet, which is absent from our setting,

2

we need to find an appropriate termination criterion for our decision procedure.
More precisely, we develop a brute-force method to find a bound on the number
of distinct subtrees that are needed in order to apply a transition.

In contrast to Bogaert and Tison’s automata, however, there exists a non-
deterministic UTACS that is not equivalent to any deterministic UTACS. Thus,
this paper leaves open the question whether the nonemptiness problem for non-
deterministic UTACS is decidable.

Related works. The works that serve as a motivation for this paper have been
mentioned above.

Lugiez [Lug03] considers unranked, unordered trees as the so-called multitrees
and proposes multitree automata with constraints among sibling multitrees in
the transitions. He shows that these automata, with an appropriate definition
of the constraints, are closed under all Boolean operations, are determinizable,
and have a decidable nonemptiness problem. The constraints he uses incorporate
both numerical (Presburger) constraints and inclusion relations among multisets
of (multi)trees. By using Boolean combinations of constraints of the latter kind,
it is then possible to impose equality tests among sibling (multi)trees, so his work
also extends Bogaert and Tison’s. Nevertheless, his approach is not comparable
to ours in several respects. In his approach, besides unorderedness, evaluating
a constraint in an unbounded (unordered) sequence of (multi)trees is reduced
to evaluating the constraint in an (unordered) sequence of multisets of trees
whose length is bounded by the number of states of the underlying automaton.
Consequently, first, equality tests are imposed between multisets of trees (in our
setting: between trees), and second, the number of equality tests depends on the
number of states of the automaton instead of the size of the input (multi)tree.

Structure of the paper. Following this introduction, we fix the notations we
are going to use throughout our exposition. In Section 3 we present our automa-
ton model and indicate some closure properties. Then, in Section 4 we show our
main result, namely that the emptiness problem for deterministic UTACS is de-
cidable. Section 5 indicates some possible variations of our automaton model. We
conclude with some remarks on further prospects in Section 6. Finally, Appendix
A and B give some details omitted from the main part of the paper.

2 Preliminaries

We denote the set of natural numbers by N and the set of positive integers by
N+. For k > 0, we denote the set of k-tuples of natural numbers by N

k. As usual,
tuples of natural numbers are ordered by comparing them componentwise. For
a natural number m, whenever no confusion might arise, m̄ denotes the tuple
(m, . . . , m) consisting of k-many m’s.

Regular word languages and monadic second-order logic. We follow the
presentation in [Tho97].

Let A be a finite, nonempty alphabet. We denote the empty word by ε. The
set of all words and the set of all nonempty words over A are denoted by A∗ and

3

A+, respectively. The set of regular languages over A is denoted by Reg(A), and
the set of regular languages over A that exclude the empty word is denoted by
Reg+(A). For a word w over A, let |w| denote its length.

A nonempty word w over A defines the word structure 〈{1, . . . , |w|}, S, <,

(χa)a∈A〉, denoted as w, where S denotes the usual successor relation, < denotes
the usual order relation, and χa is the set of those positions in w that are labeled
with a, for each a ∈ A.

The formulas of monadic second-order (MSO, for short) logic over words over
A, which we will simply refer to as MSO-formulas (over A), are built up from:

– first-order variables x, y, z, . . . , which range over positions;
– monadic second-order variables X, Y, Z, . . . , which range over sets of posi-

tions;
– atomic formulas x = y, x < y, S(x, y), X(x), and χa(x), for all a ∈ A and

for all variables x, y, X;
– Boolean connectives (such as ∧, ∨, ¬, →, ↔) and first-order as well as

monadic second-order quantifiers.

For an MSO-formula ϕ, we will write ϕ(x1, . . . , xn, X1, . . . , Xm) to indicate that
ϕ may contain free occurrences of the variables x1, . . . , xn, X1, . . . , Xm. Then,
the semantics of ϕ is given by a word structure w and an assignment of posi-
tions κ1, . . . , κn and of sets K1, . . . , Km of positions in w to the free variables
x1, . . . , xn, X1, . . . , Xm, respectively. If, with this interpretation, ϕ holds, we write
w |= ϕ(κ1, . . . , κn, K1, . . . , Km).

It is well known that MSO-sentences (that is, formulas without free variables)
over A exactly define the regular languages of nonempty words over A. For more
details, the reader is referred to [Tho97].

Trees and tree languages. We denote the set of words over or sequences of
(positive) natural numbers by N

∗ (and N
∗
+, respectively).

A tree domain D is a nonempty subset of N
∗
+ such that for each u ∈ D we

have

– u′ ∈ D, for each prefix u′ of u, and
– if ui ∈ D, for some i ∈ N+, then also uj ∈ D, for each j ∈ {1, . . . , i}.

Let Σ be a nonempty, finite (unranked) alphabet. A tree t over Σ (or, for
short, Σ-labeled tree) is given by a mapping t : domt → Σ where domt ⊆ N

∗
+ is

a finite tree domain. The elements of domt are referred to as the nodes of t. The
node ε is called the root of t. A node u ∈ domt is said to have k ∈ N successors
if ui ∈ domt, for all i with 1 ≥ i ≥ k, and ui 6∈ domt, for all i > k. In this case,
we call ui the i-th successor of u, and we say that ui and uj are sibling nodes,
for each i and j with 1 ≥ i, j ≥ k. A leaf of t is a node without any successor.

Given a node u of t, the subtree of t at u, denoted as t|u is the tree given by
t|u with domt|u = {v ∈ N

∗
+ | uv ∈ domt} and t|u(v) = t(uv), for all v ∈ domt|u .

Moreover, t|u is called a direct subtree of t if |u| = 1.
In order to simplify our presentation, we sometimes refer to a tree t as

a(t1 · · · tk) in order to indicate that the root of the tree t is labeled with a and
if it has k successors at which the subtrees t1, . . . , tk are rooted; that is, ti = t|i,
for each i with 1 ≤ i ≤ k.

4

A set of Σ-labeled trees is called a tree language over Σ. The tree language
containing all Σ-labeled trees is denoted by TΣ .

An ordered sequence of Σ-labeled trees is called a hedge over Σ. The set of
all Σ-labeled hedges is denoted by HΣ .

3 Automata with Equality and Disequality Constraints

between Siblings on Unranked Trees

In the framework of ranked trees, automata with equality and disequality con-
straints between direct subtrees, as introduced in [BT92], extend the usual bot-
tom-up tree automata in the following sense. On a given input tree, such an au-
tomaton works in a bottom-up fashion, i.e., from the leaves to the root, thereby
assigning states to the nodes of the tree according to its transitions. Moreover,
the application of a transition on a node of the tree is subject to some equality
and disequality constraints between the direct subtrees of that particular node. In
other words, such a transition is of the form (q1, . . . , qk, α, a, q) where q1, . . . , qk, q

are states of the automaton, a is a symbol of rank k, and α is a Boolean combina-
tion of atomic equality and disequality constraints. For example, the constraint
1 = 2 ∧ 2 = 3 expresses the property that the first, second, and third direct
subtrees of the node under consideration are equal to one another.

In this case, an atomic constraint simply addresses the direct subtrees to be
compared directly, which is possible since the number of successors of the node
under consideration is bounded by the rank k. For instance, we can express the
constraint “all direct subtrees are equal to one another” by saying

∧

1≤i,j≤k

i = j .

When moving on from ranked tree automata to unranked tree automata,
we encounter the fact that the number of successors of a node, while applying
a transition, is no longer bounded by some rank. For instance, the length of
the sequence of states that have been assigned to the successors of a node may
be arbitrarily large. The usual approach to this phenomenon is to replace the
sequence of states q1, . . . , qk in a transition with a regular word language over
the set of states. In this way, we allow the number of successors of a node to be
arbitrarily large (but finite) while ensuring a finite representation (by means of,
for example, regular expressions over the set of states) of the automaton model.

The same phenomenon occurs if we now want to add equality and disequality
constraints between the direct subtrees of a node. For example, if we want to
express that “all direct subtrees are equal to one another”, then we will have to
address infinitely many pairs of direct subtrees to be compared.

In the following, we propose a mechanism to address the pairs of direct sub-
trees, while taking into account the unboundedness aspect. More precisely, we
will use MSO-formulas with two free first-order variables as atomic constraints.
Then, we can ensure that equality and disequality constraints built up from such
atomic constraints are finitely representable.

Constraints between siblings. Let A be a finite, nonempty alphabet. An
atomic sibling constraint over A is given by an MSO-formula ϕ(x, y) over A that

5

may contain free occurrences of the first-order variables x and y. Furthermore,
we distinguish four types of usages of atomic constraints: ∃EQ-constraints, ∃NEQ-
constraints, ∀EQ-constraints, and ∀NEQ-constraints. Intuitively, an ∃EQ-constraint
(∃NEQ-constraint) says that “there is a pair of positions that satisfies ϕ and the
subtrees at these positions are equal (or distinct, respectively)”. Likewise, a ∀EQ-
constraint (∀NEQ-constraint) says that “for each pair of positions that satisfies
ϕ the subtrees at these positions must be equal (or distinct, respectively)”. The
sibling constraints over A are built up from atomic sibling constraints by means
of Boolean connectives. The set of all sibling constraints over A is denoted by
CONSA.

Formally, we define the semantics of CONSA as follows. A nonempty word
w over A and a hedge h = t1 . . . t|w| over an alphabet Σ are said to satisfy an
atomic sibling constraint ϕ if, depending on the type of ϕ, one of the following
holds.

– ∃EQ-constraint: there exist κ, λ ∈ {1, . . . , |w|} such that w |= ϕ(κ, λ) and
tκ = tλ.

– ∃NEQ-constraint: there exist κ, λ ∈ {1, . . . , |w|} such that w |= ϕ(κ, λ) and
tκ 6= tλ.

– ∀EQ-constraint: for all κ, λ ∈ {1, . . . , |w|}, if w |= ϕ(κ, λ), then tκ = tλ.

– ∀NEQ-constraint: for all κ, λ ∈ {1, . . . , |w|}, if w |= ϕ(κ, λ), then tκ 6= tλ.

This semantics is extended to Boolean combinations of atomic sibling constraints
as usual.

As a remark, we observe that the ∃EQ-constraints are dual to the ∀NEQ con-
straints with respect to negation, and vice versa. Likewise, the ∃NEQ-constraints
are dual to the ∀EQ constraints, and vice versa. Hence, it suffices to consider
only positive (that is, without negation) Boolean combinations of atomic sibling
constraints.

Tree automata with constraints between siblings. An automaton with
equality and disequality constraints between siblings on Σ-labeled trees (UTACS)
is defined as a tuple A := (Q, Σ, Λ, ∆, F) where

– Q is a finite, nonempty set of states;

– F ⊆ Q is the set of final or accepting states;

– Λ ⊆ Σ × Q contains the leaf transitions; and

– ∆ ⊆ Reg+(Q) × CONSQ × Σ × Q is the set of inner-node transitions.

Given a Σ-labeled tree t, a run of A on t is defined as a Q-labeled tree
ρ : domt → Q such that for each node u ∈ domt the following holds.

– If u is a leaf node, then (t(u), ρ(u)) ∈ Λ.

– If u has k successors with the direct subtrees t1, . . . , tk, respectively, then
there exists a transition (L, α, t(u), ρ(u)) ∈ ∆ such that

• the word ρ(u1) . . . ρ(uk) ∈ L, and

• the word ρ(u1) . . . ρ(uk) and the hedge t1 . . . tk satisfy α.

In case such a run exists, we write t →A ρ(ε) or just t → ρ(ε), whenever no
confusion might arise, and say that the tree t evaluates to ρ(ε). The run ρ is said

6

to be accepting if ρ(ε) ∈ F . The tree t is accepted by A if there is an accepting
run of A on t. The set of trees accepted by A is denoted by T (A).

The UTACS A is called deterministic if, for each tree t ∈ TΣ , there exists at
most one state q with t → q.

Example 1. The set of well-balanced trees over the alphabet {a} can be recog-
nized by a UTACS by taking Q = F = {q}, Λ = {(a, q)} and ∆ = {Q+, ϕ, a, q}
where ϕ(x, y) = true is a ∀EQ-constraint.

By adapting the standard constructions from the ranked setting (see, for
example, [CDG+97,BT92]), one can show that the class of (nondeterministic)
automata with constraints between siblings on unranked trees is closed under
union and intersection, and that the class of deterministic automata is closed
under complementation. On the other hand, the nondeterministic automata are
more powerful than the deterministic ones, as opposed to the ranked case, where
determinization is possible.

Proposition 2. There exist a tree language that is recognizable by a nondeter-
ministic UTACS, but not by any deterministic UTACS’s.

The proof of Proposition 2 is quite technical and therefore omitted here; the
interested reader is referred to Appendix A. Nevertheless, we give here the tree
language that we use to separate the two classes: it is the set of trees of the form
depicted in Figure 1. Intuitively, such a tree consists of a root labeled with a and
below it strands of b’s. All but two of the b-strands are of the same length, and the
two special b-strands themselves are of the same length. With nondeterminism,
essentially, we would guess the positions of the latter b-strands and mark them
by means of a special state. Then, using this particular state, we can address
the appropriate pairs of positions that should be equal and those that should be
disequal.

With determinism, this is no longer possible; the fact that there are b-strands
of arbitrary length prevents the possibility of using a special state to mark the
positions of the two particular b-strands and thus also of addressing these two
particular positions in the constraints.

a

b . . . b b b . . . b b b . . . b

Fig. 1. Trees separating nondeterministic and deterministic UTACS’s (the dashed lines repre-
sent b-strands)

Question 3. Is the class of nondeterministic UTACS’s closed under complemen-
tation?

7

4 Nonemptiness Problem: the Deterministic Case

In the ranked setting, it has been shown in [BT92] that the nonemptiness prob-
lem for deterministic automata with sibling constraints is decidable, which carries
over into nondeterministic automata since the latter can be determinized. Also
note that the restriction to comparing only sibling subtrees is essential in order
to have the decidability of the nonemptiness problems: the nonemptiness prob-
lem for automata with constraints between arbitrary subtrees or between cousin
subtrees has been shown to be undecidable (see [CDG+97] and the references
therein).

The method used in [BT92] is an adaptation of the standard marking algo-
rithm: one needs to find, for each state q of the given automaton, a tree that
evaluates to this state. In order to satisfy the disequality constraints, however,
one may need to find more than one of such trees. In the ranked case the ter-
mination of the nonemptiness procedure then relies on the maximal arity of the
given tree automaton as this gives the maximal number of distinct trees needed
for each state.

Herein lies our main obstacle to a nonemptiness decision procedure in the
unranked setting: as the arity of a tree node is unbounded, it is not quite clear
how to bound the number of distinct trees needed in order to satisfy a disequality
constraint. In other words, if we want to transfer the marking algorithm to the
unranked setting, we are facing two questions, namely what kind of bound we
need and how we can find this bound.

The following subsections deal with these questions. In the first subsection,
we state our main lemma: we assert that for each transition there is a bound on
the number of distinct trees needed in order to apply this transition. We present
a procedure to find these bounds and proof this lemma in the third subsection;
before this, in the second subsection we will present some preparatory definitions
and statements. Finally, we present the nonemptiness decision procedure for
deterministic UTACS’s in the last subsection.

4.1 The Bound Lemma

Let A = (Q, Σ, ∆, Λ, F) be a deterministic UTACS, and let τ = (L, α, a, q) be a
transition of A. A word w ∈ Q+ is said to be suitable for τ if τ can be applied,
thus resulting in a tree that evaluates to q, provided that, for each state occurring
in w, sufficiently many trees evaluating to this state are given, In this case, let
Jw, τK ∈ N

|Q| be a tuple of natural numbers that indicates, for each state, the
number of distinct trees that are used for a particular application of τ .1

Remark 4. Note that, in general, Jw, τK is not unique and that Jw, τK(p), for each
p ∈ Q, does not need to exceed |w|.

Consequently, in order to analyze the applicability of τ , it suffices only to
consider words that are suitable for τ , for if a word w is not suitable for τ , then
there is no hedge together with which w can both belong to L and satisfy the
constraint α. Moreover, in the following exposition we can assume that Sτ , the

1 Alternatively, Jw, τK can be seen as a mapping Jw, τK : Q → N where Jw, τK(p) is assigned
the p-component of Jw, τK, for each p ∈ Q.

8

set of words in L that are suitable for τ , is nonempty as τ otherwise cannot be
applied at all and can thus be removed from ∆.

Our aim is to show the existence of a bound N such that for each word w

that is suitable for τ , if Jw, τK(p) exceeds N , for some p ∈ Q, then we can find
another τ -suitable word w′ that does not exceed N . This is stated in the following
lemma, to which we will refer to as the bound lemma.

Lemma 5. Let A be a deterministic UTACS. There exists some N ≥ 0 such
that, for each transition τ of A and for each word w ∈ Sτ , there exists a word
w′ ∈ Sτ such that

(5a) Jw′, τK ≤ N̄ ,

(5b) Jw′, τK ≤ Jw, τK, and

(5c) for any p ∈ Q, if Jw, τK(p) > N , then Jw′, τK(p) > 0.

In essence, the lemma asserts that, if a transition τ can be applied by means of
the word w, then we can replace w with another word w′ such that, for each state
p ∈ Q, the number of distinct trees evaluating to p that are needed to apply τ

by means of w′ exceeds neither N nor the corresponding number when w is used
instead of w′. The third condition in the bound lemma is needed for technical
reason; it asserts that if a component p ∈ Q in Jw, τK exceeds N , then it must
occur in w′. The proof of the bound lemma will be given below.

4.2 Suitable Words: Regularity and Restrictions

Let A = (Q, Σ, Λ, ∆, F) be a deterministic UTACS. In this subsection, we show
that, for each transition of A, the set of words that are suitable for it is regu-
lar. Moreover, if we impose some further restrictions on this set, which we will
introduce later on in this subsection, the resulting sets are still regular.

Let us first consider some preprocessing of (the constraints of) the transitions
of a (deterministic) UTACS, which leads to the normal form from Lemma 6
below.

Conjunctions of atomic constraints. Let α be a sibling constraint over Q;
that is, α is a positive Boolean combination of atomic sibling constraints over
Q (i.e., of ∀EQ-, ∀NEQ-, ∃EQ-, or ∃NEQ-constraints). Then, α can be transformed
into a disjunction of conjunctions of atomic constraints, say α ≡ α1 ∨ · · · ∨ αk,
for some k ≥ 1, where each αi is a conjunction of atomic constraints. Hence,
given a transition (L, α, a, q) of A, we may split it into k transitions of the form
(L, αi, a, q), for each i with 1 ≤ i ≤ k. Note that, although there may be more
than one αi that can be satisfied at once, all of these transitions lead to q, so
determinism is retained.

Merging for-all constraints. Let α be a conjunction of atomic sibling con-
straints over Q, and let ϕ and ψ be two ∀EQ-constraints therein. That is, ϕ(x, y)
and ψ(x, y) are both MSO-formulas with two free variables. Then, for any word

9

w ∈ Q+ and any hedge t1 · · · t|w| ∈ HΣ , we have

w and t1 · · · t|w| satisfy ϕ ∧ ψ,

iff for all κ, λ ∈ {1, . . . , |w|}, if w |= ϕ(κ, λ), then tκ = tλ,

and if w |= ψ(κ, λ), then tκ = tλ,

iff for all κ, λ ∈ {1, . . . , |w|}, if w |= ϕ(κ, λ) ∨ ψ(κ, λ), then tκ = tλ.

Hence, we may replace ϕ∧ψ with one single ∀EQ-constraint defined by θ(x, y) :=
ϕ(x, y)∨ψ(x, y). Similarly, we may replace a conjunction of two ∀NEQ-constraints
with one single ∀NEQ-constraint.

Lemma 6. Each UTACS is equivalent to one where each constraint occurring
in A is a conjunction consisting of an ∀EQ-constraint θ∀EQ

, an ∀NEQ-constraint
θ∀NEQ

, ∃EQ-constraints ϕ1, . . . , ϕk, and ∃NEQ-constraints ψ1, . . . , ψ`.

Next, let us fix a transition τ = (L, α, a, q) of A. We show that for each
transition in A, the set of suitable words for this transition is a regular subset of
Q+.

Lemma 7. The set Sτ ⊆ Q+ is regular.

Proof. By Lemma 6, we can assume that α is a conjunction of an ∀EQ-constraint
θ∀EQ

, an ∀NEQ-constraint θ∀NEQ
, ∃EQ-constraints ϕ1, . . . , ϕk, and ∃NEQ-constraints

ψ1, . . . , ψ`.
Roughly speaking, a word w ∈ Q+ is suitable for τ if and only if, first, it

belongs to L and, second, the constraints in α do not cause conflicts in w; for
instance, any pair (κ, λ) of positions in w satisfying θ∀EQ

may not satisfy θ∀NEQ
.

Moreover, since A is supposed to be deterministic, if a pair of positions is declared
to have equal subtrees by α, then the Q-labels of those positions must be equal.

More precisely, a word w ∈ Q+ is suitable for τ if and only if all of the
following requirements are met:

1. The word w belongs to L.
2. There exist some pairs of positions in w, say, (x1, y1), . . . , (xk, yk), (x′

1, y
′
1),

. . . , (x′
`, y

′
`), such that

– the sets {(x1, y1), . . . , (xk, yk)} and {(x′
1, y

′
1), . . . , (x

′
`, y

′
`)} do not overlap,

that is, for each i = 1, . . . , k and j = 1, . . . , `,

{xi, yi} 6= {x′
j , y

′
j} ,

which stands as an abbreviation for

¬(xi = x′
j ∧ yi = y′j) ∧ ¬(xi = y′j ∧ yi = x′

j) ,

is satisfied;
– for each i = 1, . . . , k, the pair (xi, yi) satisfies

ϕi(xi, yi) ∧ ¬(θ∀NEQ
(xi, yi) ∨ θ∀NEQ

(yi, xi)) ∧
∧

p∈Q

(χp(xi) ↔ χp(yi)) ;

– for each j = 1, . . . , `, the pair (x′
j , y

′
j) satisfies

ψj(x
′
j , y

′
j) ∧ ¬(θ∀EQ

(x′
j , y

′
j) ∨ θ∀EQ

(y′j , x
′
j)) ∧ ¬(x′

j = y′j) .

10

3. For each pair (x, y) of positions in w, the formulas

θ∀EQ
(x, y) → ¬(θ∀NEQ

(x, y) ∨ θ∀NEQ
(y, x)) ∧

∧

p∈Q

(χp(x) ↔ χp(y))

and
θ∀NEQ

(x, y) → ¬(θ∀EQ
(x, y) ∨ θ∀EQ

(y, x)) ∧ ¬(x = y)

are satisfied.

It is not difficult to write an MSO-sentence that captures all these requirements,
so we conclude that Sτ is indeed regular. ut

Let R be a subset of Q, and let d̄ ∈ N
|R| be a tuple of natural numbers. In

order to simplify our presentation, let us fix dp = d̄(p), for each p ∈ R.
We recall that a word w is suitable for τ if, given sufficiently many trees for

each state occurring in w, the transition τ can be applied. Now, w is said to be
suitable for τ with respect to R and d̄ if the transition τ can be applied under
the assumption that for each state p occurring in w:

– there are dp many distinct trees that evaluate to p, if p ∈ R, and
– there are sufficiently many distinct trees that evaluate to p, if p 6∈ R.

We denote the set of all words that are suitable for τ with respect to R and d̄

by Sτ,R,d̄.

Remark 8. If ē ∈ N
|R| is a tuple of natural numbers with d̄ ≤ ē, then we have

Sτ,R,d̄ ⊆ Sτ,R,ē.

Moreover, by adapting the proof of Lemma 7, we can show that the latter
set Sτ,R,d̄ is regular, too.

Lemma 9. The set Sτ,R,d̄ ⊆ Q+ is regular.

Proof. Again, by Lemma 6, we can assume that α is a conjunction of an ∀EQ-
constraint θ∀EQ

, an ∀NEQ-constraint θ∀NEQ
, ∃EQ-constraints ϕ1, . . . , ϕk, and ∃NEQ-

constraints ψ1, . . . , ψ`.
Here, we need a finer analysis of the suitable words. A word w ∈ Sτ respects

R and d̄ if the occurrences of p ∈ R can be partitioned into dp-many sets of
positions, and moreover, this partitioning may not cause conflict in w. As an
illustration, if a pair (κ, λ) of positions in w satisfy θ∀EQ

, and if they are labeled
with a state from R, then both positions must lie in the same partition.

In other words, a word w ∈ Q+ is suitable for τ with respect to R and d̄ if
and only if all of the following requirements are met:

1. The word w belongs to L.
2. There exists a family of sets of positions is w, say (Cp

jp
)p∈R,jp=1,...,dp

, such
that:
(a) for each p ∈ R, the sets C

p
1 , . . . , C

p
dp

define a partitioning on the set of
positions that are labeled with p:

∀x
∧

p∈R



χp(x) →

dp∨

jp=1



C
p
jp

(x) ∧
∧

kp∈{1,...,dp}\{jp}

¬C
p
kp

(x)









∧
∧

p∈R

dp∧

jp=1

[

C
p
jp

(x) → χp(x)
]

11

(b) there exist some pairs of positions in w, say, (x1, y1), . . . , (xk, yk), (x′
1, y

′
1),

. . . , (x′
`, y

′
`), such that

– the sets {(x1, y1), . . . , (xk, yk)} and {(x′
1, y

′
1), . . . , (x

′
`, y

′
`)} do not over-

lap, that is, for each i = 1, . . . , k and j = 1, . . . , `,

{xi, yi} 6= {x′
j , y

′
j}

is satisfied;
– for each i = 1, . . . , k, the pair (xi, yi) satisfies

ϕi(xi, yi) ∧ ¬(θ∀NEQ
(xi, yi) ∨ θ∀NEQ

(yi, xi))

∧
∧

p∈Q\R

(χp(xi) ↔ χp(yi))

∧
∧

p∈R

dp∧

jp=1

(Cp
jp

(xi) ↔ C
p
jp

(yi)) ;

– for each j = 1, . . . , `, the pair (x′
j , y

′
j) satisfies

ψj(x
′
j , y

′
j) ∧ ¬(θ∀EQ

(x′
j , y

′
j) ∨ θ∀EQ

(y′j , x
′
j))

∧ ¬(x′
j = y′j)

∧
∧

p∈R

dp∧

jp=1

¬(Cp
jp

(x′
j) ∧ C

p
jp

(y′j)) ;

(c) for each pair (x, y) of positions in w, the formulas

θ∀EQ
(x, y) → ¬(θ∀NEQ

(x, y) ∨ θ∀NEQ
(y, x))

∧
∧

p∈Q\R

(χp(x) ↔ χp(y))

∧
∧

p∈R

dp∧

jp=1

(Cp
jp

(x) ↔ C
p
jp

(y))

and

θ∀NEQ
(x, y) → ¬(θ∀EQ

(x, y) ∨ θ∀EQ
(y, x))

∧ ¬(x = y)

∧
∧

p∈R

dp∧

jp=1

¬(Cp
jp

(x) ∧ C
p
jp

(y))

are satisfied.

It is now not difficult to write an MSO-sentence that captures all these require-
ments, so we conclude that Sτ,R,d̄ is indeed regular. ut

Let M be a subset of Q. We denote by Sτ,M and Sτ,R,d̄,M the restriction of
both sets, respectively, to those words in which each state in M occurs at least
once. As the former sets are regular, the latter sets also are. Also, Remark 8

12

still holds for the restriction to M : given a tuple ē ∈ N
|R| with d̄ ≤ ē, we have

Sτ,R,d̄,M ⊆ Sτ,R,ē,M .

Note that all the sets of suitable words we have introduced so far have been
shown to be regular. Hence, it is decidable whether they are empty or not, which
will be exploited in the following subsections.

4.3 Finding the Bound

Before we present the procedure for finding the bounds, let us illustrate the
method we are going to pursue by means of a simple example.

Example 10. Let A = (Q, Σ, Λ, ∆, F) be a deterministic UTACS with Q =
{q1, q2, q3, q4}, and let τ = (L, α, a, q1) be a transition of A.

Suppose that Sτ is not empty, so let v ∈ Sτ , say, with Jv, τK = (2, 6, 1, 5).
Then, Jv, τK already gives a first approximation of the bound N , namely 6. In
other words, if, for each state, there are six distinct trees that evaluate to this
state, then we can apply τ . Now, what happens if there are actually only one tree
for q1 and three trees for q2? Then, either (a) τ is indeed no longer applicable,
or (b) τ is still applicable, but we now need, say, 17 and 11 trees for q3 and q4,
respectively. In the latter case, thus, the bound must be updated to 17.

Example 10 illustrates our method in finding the bound:

1. start with an initial bound N ;

2. check, for all subsets R of Q and all tuples d̄ ∈ N
|R| with d̄ ≤ N̄ , whether the

set of τ -suitable words with respect to R and d̄ is empty or not;

3. in the latter case, update N accordingly and go back to 2.

Note that the bound N might get larger and larger during this process, so it
needs a careful implementation in order to guarantee termination.

Let A = (Q, Σ, ∆, Λ, F) be a deterministic UTACS. In the following, we
present an algorithm for finding the bound

– for a fixed transition τ = (L, α, a, q) ∈ ∆ of A, for which we can assume,
without loss of generality, that Sτ is not empty (otherwise, we can remove it
from A without affecting the language recognized by A);

– for a fixed nonempty subset M of Q in order to incorporate the third condition
of the bound lemma.

Later, we will take the maximum of all the bounds over all transitions of A and
all nonempty subsets of Q as the bound for A.

Let us now fix the notation we are going to use in the algorithm. We refer
to |Q|, the number of states of A, as m. Let n ≥ 0 be a natural number. We
denote by N≤n the set of natural numbers that are less than or equal to n, and
we refer to the set of m-tuples built from N≤n as (N≤n)m. Given a set R ⊆ Q

and a tuple z̄ ∈ N
m, we denote by z̄¹R the restriction of z̄ with respect to R,

that is, z̄¹R : R → N is an |R|-tuple with z̄¹R(p) = z̄(p), for all p ∈ R, and z̄¹R(p)
is undefined for all p ∈ Q \R. Likewise, given a set I ⊆ (N≤n)m of m-tuples, the
restriction of I with respect to R is defined as I¹R = {z̄¹R | z̄ ∈ I}.

13

Algorithm 11. The input consists of a deterministic UTACS A = (Q, Σ, ∆, Λ, F),
a transition τ of A, and a set M ⊆ Q of states. The output is a natural number,
which is supposed to be the bound with respect to τ and M .

1: function Bound(A, τ, M)
2: m ← |Q|
3: if Sτ,M = ∅ then return 0
4: end if
5: get a word uτ,M from Sτ,M

6: n ← |uτ,M | // see Remark 4
7: I ← (N≤n)m // I contains the m-tuples to be checked
8: for all R ⊆ Q do
9: I+

R ← ∅ // I+
R and I−R contain the tuples ē from I¹R that

10: I−R ← ∅ // have proven successful (i.e., Sτ,R,ē,M 6= ∅)
11: // and unsuccessful (i.e., Sτ,R,ē,M 6= ∅), respectively
12: end for
13: while I 6= ∅ do
14: get a tuple z̄ from I and remove it from I

15: for all R ⊆ Q do
16: d̄ ← z̄¹R

17: if there is no ē ≤ d̄ with ē ∈ I+
R then

18: // neither d̄ nor any ē ≤ d̄ has proven successful
19: if there is no ē ≥ d̄ with ē ∈ I−R then
20: // neither d̄ nor any ē ≥ d̄ has proven unsuccessful
21: if Sτ,R,d̄,M = ∅ then

22: I−R ← I−R ∪ {d̄} // d̄ has proven unsuccessful
23: else
24: I+

R ← I+
R ∪ {d̄} // d̄ has proven successful

25: get a word vτ,R,d̄,M from Sτ,R,d̄,M

26: n′ ← max{n, |vτ,R,d̄,M |} // update n and(∗)






27: I ← I ∪ ((N≤n′)m \ (N≤n)m) // put the new tuples
28: n ← n′ // into I

29: end if
30: end if
31: end if
32: end for
33: end while
34: return n

35: end function

Note, first, that the choice of uτ,M and vτ,R,d̄,M in Line 5 and 25, respectively, is
not unique and, second, that the time complexity of the algorithm depends on
this choice.

Lemma 12. For each A, τ , and M , the algorithm Bound(A, τ, M) terminates.

Proof. Toward a contradiction, suppose that the computation of Bound(A, τ, M)
does not terminate. This means that the while-loop in Line 13–33 of the algo-
rithm is executed infinitely often.

14

Line 14 ensures that after we have fetched a tuple from I, we also remove it
from I, and Line 27 ensures that only new tuples are put into I. Consequently,
in every execution of the while-loop we will always get a new tuple to consider.

The fact that the while-loop is executed infinitely often implies that new
tuples are added to I infinitely often; otherwise, I would eventually be empty
and the computation would eventually terminate. Putting new tuples into I is
done in Line 27, so this line and, more generally, Line 24–28 (the part marked
with (∗)) are executed infinitely often.

Furthermore, as there are only finitely many subsets of Q, there is one par-
ticular subset R ⊆ Q chosen in Line 15 for which (∗) is executed infinitely
often. Let us now restrict our attention to these particular iterations of (∗). Let
z̄1, z̄2, z̄3, · · · ∈ N

m be the (infinitely many) tuples from I where, for each i ≥ 1,
the tuple z̄i corresponds to the tuple that is fetched in Line 14 when (∗) is exe-
cuted for the i-th time with the choice of R in Line 15. Note that for each i ≥ 1
the i-th iteration puts z̄i¹R into I+

R . Now, by Dickson’s Lemma [Dic13] (see also
[BCMS01, Lemma 3]) there exist some i and j with i < j such that z̄i ≤ z̄j ,
which means, in particular, that z̄i¹R ≤ z̄j¹R. In the j-th iteration, however, z̄i¹R

belongs to I+
R , so the condition of the if -statement in Line 17 is violated. Thus,

(∗) is not executed, a contradiction. ut

Proof of Lemma 5. We now prove the bound lemma. Let A = (Q, Σ, ∆, Λ, F)
be a deterministic UTACS. To begin with, let us define the bound N as

max{Bound(A, τ, M) | τ ∈ ∆, M ⊆ Q} .

Let τ be a transition of A and w be a word in Sτ . Our task is now to find a
word w′ ∈ Sτ that meets the three requirements given in the lemma. In particular,
if τ can be applied by using w, then this must also hold for w′.

If Jw, τK ≤ N̄ , then we are done: we just need to take w as w′ and verify that
all three requirements of the lemma are met.

Otherwise, there exist some states for which the corresponding values of Jw, τK
exceed N . Let M ⊆ Q be the (nonempty) set of these states; that is,

M = {p ∈ Q | Jτ, wK(p) > N} .

We now consider the computation of Bound(A, τ, M), that is, the computation
of Algorithm 11 with A, τ , and M as its inputs.

By the definition of suitable sets, the word w belongs to the set Sτ,M , so
this set is not empty. In particular, we obtain the word uτ,M from Line 5. If
Juτ,M , τK ≤ Jw, τK, then we are done by taking this word as w′; it is not difficult
to verify that the word w′ = uτ,M satisfies the requirements of the lemma.

Before handling the case Juτ,M , τK 6≤ Jw, τK, let us first illustrate this situation
by means of Figure 2: we assume that we have the states q0, . . . , q9 and the tuples
Juτ,M , τK = (3, 6, 4, 5, 6, 1, 7, 5, 2, 5) and Jw, τK = (6, 8, 10, 11, 3, 4, 11, 2, 5, 8). The
states for which Jw, τK exceeds N are q2, q3, q6, so these states constitute the
set M . The case Juτ,M , τK 6≤ Jw, τK occurs since, for instance, Juτ,M , τK(q4) >

Jw, τK(q4). Actually, this means that the applicability of τ by means of w, which
requires 3 distinct trees evaluating to q4, does not imply the applicability of τ

by means of uτ,M , which requires 6 of such trees. Consequently, we cannot use

15

uτ,M as a replacement for w; technically speaking, the word uτ,M violates the
requirement (5b) of Lemma 5. Thus, our goal is now to find another word for
which this implication holds (within the computation of Bound(A, τ, M)). For
this implication, the tuple Jw, τK provides us with the necessary restrictions on
the number of distinct trees; we distinguish two kinds of states:

– For q0, we have Jw, τK(q0) ≤ Bound(A, τ, M). This means that, if we take
a word v resulting from the computation of Bound(A, τ, M), it might be
the case that Jv, τK(q0) > Jw, τK(q0), in which case the applicability of τ by
means of w does not imply the applicability of τ by means of v, similar to uτ,M

above. Hence, we should only consider those words v for which Jv, τK(q0) ≤
Jw, τK(q0). Similarly, this argumentation applies to the states q4, q5, q7, and
q8.

– For q1, we have Jw, τK(q1) > Bound(A, τ, M). The q1-component of a word
v resulting from the computation of Bound(A, τ, M), by the design of Algo-
rithm 11, never exceeds Bound(A, τ, M), so, with respect to q1, the applica-
bility of τ by means of w always implies the applicability of τ by means of v.
Hence, we do not need to impose any restriction on the q1-component of v.
Similarly, this argumentation applies to the states q1, q2, q3, q6, and q9.

To sum up, we have to look for a word v in the computation of Bound(A, τ, M)
under the restriction that the q0-, q4-, q5-, q7-, and q8-component of Jv, τK do
not exceed 6, 3, 4, 2, and 5, respectively. Using the notation of Algorithm 11,
this restriction is represented by the set R = {q0, q4, q5, q7, q8} and the tuple d̄ =
(6, 3, 4, 2, 5). Since w belongs to Sτ,R,d̄,M , this set is not empty. Hence, there exists
some ē ≤ d̄ that has proven successful in the computation of Bound(A, τ, M),
thereby giving a word that satisfies all the requirements of Lemma 5.

6

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9

N

Bound(A, τ, M)

r

r

r

r

r

r

r

r

r

r Jw, τK

Juτ,M , τK

Fig. 2. The case Juτ,M , τK 6≤ Jw, τK in the proof of Lemma 5: the horizontal and the vertical
axis represent the states and the number of distinct trees needed for the states, respectively.
The connecting lines between points are only meant for readability.

Formally, let us assume that Juτ,M , τK 6≤ Jw, τK, that is, there exists some
state s ∈ Q such that

Juτ,M , τK(s) > Jw, τK(s) . (1)

16

We now want to look for another word v for which the applicability of τ by
means of w implies the applicability of τ by means v by considering subsets of
Sτ,M with respect to some appropriate restrictions R and d̄. As explained above,
for each state p ∈ Q, we distinguish two cases:

– If Jw, τK(p) ≤ Bound(A, τ, M), then, among the words resulting from the
computation of Bound(A, τ, M), we should only consider those words whose
p-component does not exceed Jw, τK(p).

– If Jw, τK(p) > Bound(A, τ, M), then the p-component of the words resulting
from the computation of Bound(A, τ, M) will never exceed Jw, τK(p); thus,
intuitively, we can assume that there are sufficiently many distinct trees eval-
uating to p.

Hence, we define the set R as

{p ∈ Q | Jw, τK(p) ≤ Bound(A, τ, M)}

and the tuple d̄ ∈ N
|R| by setting

d̄(p) = Jw, τK(p)

for all p ∈ R. Note that, due to (1) and because Bound(A, τ, M) ≥ Juτ,M , τK(s),
the set R is not empty. Furthermore, by the definition of R and d̄, the word w

belongs to Sτ,R,d̄,M , so this set is not empty either. Consequently, there exists
some ē ≤ d̄ that has proven successful in the computation of Bound(A, τ, M).
Without loss of generality, let us assume that d̄ itself has proven successful. That
is, at some point of the computation of Bound(A, τ, M) the part marked with (∗)
is executed, thereby giving a word vτ,R,d̄,M from Line 25. Now, it is not difficult
to verify that the latter word indeed satisfies the requirements of the lemma, so
we can take it as the desired word w′. ut

4.4 The Nonemptiness Decision Procedure

We are now ready to describe an algorithm that, given a deterministic UTACS
A, decides whether the language accepted by A is empty or not. In essence, this
algorithm is an adaptation of the standard marking algorithm (see, for example,
[CDG+97]): it consists of a main loop that in each round, for each state, collects
a tree resulting from applying a transition based on the trees collected from
previous rounds. The bound resulting from Lemma 5 gives the maximal number
of distinct trees for each state we ought to collect; the main loop is iterated until
either we cannot construct new trees anymore, or we have collected, for each
state, as many trees as the bound. Thus, the algorithm eventually terminates.

Algorithm 13. The input is a deterministic UTACS A = (Q, Σ, Λ, ∆, F), to-
gether with the bound N from Lemma 5. The output is ‘yes’, if T (A) is not
empty, or ‘no’, otherwise. For each state q ∈ Q, we use Tq to store the trees
evaluating to q that we have collected so far. In addition, we will use d̄ ∈ N

|Q| to
keep track of the number of trees we have collected so far for each state; that is,
at any time of the computation, d̄(q) contains the current value of |Tq|, for each
q ∈ Q.

17

1: function Nonempty(A)
2: initialize each Tq with {a ∈ Σ | (a, q) ∈ Λ}
3: repeat
4: if there exist some transition τ = (L, α, a, q) ∈ ∆, some τ -suitable
5: word w = q1 . . . qm ∈ Sτ,Q,d̄, and some trees t1 ∈ Tq1 , . . . , tm ∈ Tqm

6: such that w and t1 . . . tm satisfy α, and |Tq| < N

7: then
8: Tq ← Tq ∪ {a(t1 . . . tm)}
9: end if

10: until no new tree can be constructed, or we have d̄ = N̄

11: if there exists some q ∈ F such that Tq 6= ∅ then
12: return ‘yes’
13: else
14: return ‘no’
15: end if
16: end function

Note that we do not explicitly give a detailed implementation of the algo-
rithm, especially concerning the implementation of the main loop above (Line
3–10). A more detailed implementation of the algorithm can be found in Ap-
pendix B.

As explained above, the termination of Algorithm 13 is guaranteed by the
existence of the bound from Lemma 5.

Algorithm 13 is sound: there (in particular, in Line 3–10) trees are constructed
according to the transition relation ∆ of A. Thus, if the output of the algorithm
is ‘yes,’ then we have indeed constructed a tree that is accepted by A.

The completeness of Algorithm 13 (that is, if T (A) is nonempty, then the
output of the algorithm must be ‘yes’) follows from the following lemma, which
asserts that, if a tree t evaluates to a state q, then either we will eventually
construct it, or we already have N trees evaluating to q.

Lemma 14. For any t ∈ TΣ and any q ∈ Q, if t →A q, then we have t ∈ Tq or
|Tq| = N .

Proof. The proof is by induction on the structure of t. If t only consists of a leaf,
then the claim holds, as Tq is initialized by means of the leaf transitions.

Let us now consider t = a(t1 . . . tm) with t → q, and let ρ be the run of A on
t. In particular, we have ρ(ε) = q. To simplify our presentation, we will refer to
ρ(i) as qi (that is, ti → qi), for each i = 1, . . . , m, and refer to the word q1 . . . qm

as w. By the definition of runs, there exists some transition τ = (L, α, a, q) ∈ ∆

such that w belongs to L, and w and t1 . . . tm satisfy α. A more precise statement
about w concerns its suitability with respect to τ : we have w ∈ Sτ,Q,d̄, where
d̄(s) contains the number of occurrences of s among q1, . . . , qm, for each s ∈ Q.

If Tq contains N trees, then the assertion of the lemma trivially holds. Hence,
in the sequel, let us assume

|Tq| < N . (2)

By the induction hypothesis, we have ti ∈ Tqi
or |Tqi

| = N . If ti ∈ Tqi
, for

all i = 1, . . . , m, then we will eventually construct t according to Line 3–10 of
Algorithm 13 by means of τ , w, and t1, . . . , tm, so we have t ∈ Tq.

18

Otherwise, we aim to be able to construct N distinct trees evaluating to q out
of the trees in

⋃

s∈Q Ts by using the transition τ and some appropriate τ -suitable
word u. Let us consider the set R ⊆ Q defined as

R := {r ∈ Q | there exists some 1 ≤ i ≤ m such that ti → r and ti 6∈ Tr} .

Roughly speaking, R contains the states r for which at least one of the ti’s
evaluating to r does not belong to Tr; by the induction hypothesis, Tr thus
contains N trees.

For the word u, we want to take such a τ -suitable word that

(i) Ju, τK ≤ N̄ ,
(ii) Ju, τK ≤ Jw, τK, which means that any state s ∈ Q occurring in u also occurs

in w, so the set Ts is not empty,
(iii) R is not empty, and
(iv) at least one state of R, say p, occurs in u.

We distinguish two cases. First, if Jw, τK ≤ N̄ , then we take w as u. The conditions
(i), (ii), (iii), and (iv) then follow immediately from our assumptions. Second, if
Jw, τK 6≤ N̄ , this means that there exists some state p0 ∈ Q such that Jw, τK(p0) >

N . By Lemma 5, there exists some τ -suitable word w′ fulfilling the requirements
given therein, namely:

(5a) Jw′, τK ≤ N̄ ,
(5b) Jw′, τK ≤ Jw, τK, and
(5c) for any p0 ∈ Q with Jw, τK(p0) > N , we have Jw′, τK(p0) > 0.

We now take w′ as u. The conditions (i) and (ii) follow from (5a) and (5b),
respectively. Since Jw, τK(p0) > N , the state p0 belongs to R, so the condition
(iii) is satisfied. Further, by (5c), the state p0 occurs in w′, so the condition (iv)
is satisfied.

Let us now turn to our goal, namely to construct trees t′ evaluating to q

by using the transition τ and the τ -suitable word u chosen as above. For the
occurrences of r ∈ Q \ R in u, we use the trees among t1, . . . , tm that evaluate
to r; note that this is possible due to the condition (ii), and also note that these
trees, by the definition of R, belong to

⋃

s∈Q Ts. For the occurrences of r ∈ R,
we use the trees from Tr. This is, again, possible, due to the condition (i). As
a result, we obtain a tree t′ evaluating to q that is constructed out of the trees
in

⋃

s∈Q Ts, that is, out of the trees that we have already constructed in the
algorithm. Hence, we will eventually put t′ into Tq.

Now, let us consider the number of possibilities of constructing such a tree t′.
By the conditions (iii) and (iv), we can fix one particular state p ∈ R occurring
in u. Since |Tp| = N , there are at least

(
N

Ju,τK(p)

)
· (Ju, τK(p))! possibilities of

constructing such a tree,2 which is greater than or equal to N . Hence, we can
construct at least N trees belonging to Tq, which contradicts (2). ut

Let us summarize the main result of this section:

Theorem 15. The nonemptiness problem for deterministic UTACS is decidable.

2
`

N

Ju,τK(p)

´
represents the number of possibilities to choose Ju, τK(p) out of N trees from Tp,

while (Ju, τK(p))! gives the number of permutations of the so-chosen trees.

19

We conclude this section with two remarks on the method we have presented.

Remark 16. Throughout the algorithms above, actually, we just use the fact
that, for each transition, the set of words suitable for this transition is regular,
which in turn implies that the nonemptiness problem for this set is decidable.
In fact, we do not analyze the form of the equality and disequality constraints
appearing in the transitions at all. Hence, our method would still work if we vary
the definition of the constraints, as long as the regularity of the sets of suitable
words or, more generally, the decidability of the nonemptiness problem for these
sets, is maintained.

Remark 17. The method we have presented does not work for nondeterministic
UTACS. With determinism, we can assume that if two trees evaluate to two
different states, then these trees must be different as well. First, this observation
has then lead us to define the notion of suitability of words over the set of states
with respect to a transition, thereby reducing the analysis of the distinctness
among trees to that among states. Second, this assumption is needed in the
construction of trees in the proof of Lemma 14.

With nondeterminism, in contrast, two trees evaluating to distinct states
might still be equal. Thus, a more involved definition of suitability is required;
for instance, one might compare sets of states instead of single states. However,
it is still not clear whether, with this new definition, our method carries over into
nondeterministic automata.

5 Restrictions and Extensions of the Model

In this section, we indicate some possible variations of the automaton model we
have introduced and discuss how far our results, in particular with respect to the
decidability of the nonemptiness problem, are retained.

Sibling constraints without references to states. We recall that the atomic
constraints between siblings we have used in the definition of UTACS are given
by MSO-formulas over the state set of the underlying UTACS. In other words,
the MSO-formulas used as constraints may refer to states when defining the pair
of siblings that are supposed to be equal or disequal. The use of this ability has
been demonstrated in Proposition 2 when we proved that the nondeterministic
UTACS are more expressive than the deterministic ones.

With this phenomenon in mind, we now prohibit the reference to states in
the atomic constraints: the MSO-formulas used as atomic constraints lack atomic
MSO-formulas of the form χa(x). We denote the set of all sibling constraints
built from such atomic constraints by CONS and define its semantics as before.
Accordingly, the resulting UTACS’s are of the form (Q, Σ, Λ, ∆, F) where Q, Σ,
Λ, and F are as usual, and ∆ is a subset of Reg+(Q) × CONS × Σ × Q. Runs,
acceptance, and determinism are defined as usual.

With this definition, we can show that every nondeterministic restricted
UTACS can be transformed into a deterministic one by using the standard subset
construction (see, for instance, [CDG+97, Chapter 1 and 4]).

20

Comparing the output of a tree transducer. When applying a transition,
given a pair of siblings to be compared, what we do up to now is to check whether
the subtrees under these positions are equal or not. A more involved processing is
to feed the subtrees into a (deterministic) tree transducer and consider the output
trees instead of the subtrees themselves. For instance, if we want to define an
automaton accepting the set of well-balanced trees over a two-letter alphabet (as
opposed to Example 1), then we would like to forget the actual labeling of the
nodes and just take the structure of the trees into consideration. Furthermore, if
we consider bottom-up tree transducers, we can use MSO-formulas over the state
set of the transducer instead of the state set of the underlying UTACS. This kind
of extension, currently, is still at an early stage of discussion; in the sequel, we
just point out the essential definitions and the difficulties we encounter without
going into detail.

Let M be a deterministic bottom-up tree transducer with the state set P . For
simplicity, let Σ be both the input and the output alphabet of M, and let us refer
to the transduction defined by M as M : TΣ → TΣ . An atomic sibling constraint
consists of an MSO-formula ϕ(x, y) over P . As usual, we use atomic constraints
to form the set of all sibling constraints, which we will refer to as CONSM.
Accordingly, an inner-node transition of a UTACS A = (Q, Σ, Λ, ∆, F) is then
given by a tuple (L, α, a, q). Given a node u at which the tree t = a(t1 . . . tk)
with t1 → q1, . . . , tk → qk is rooted, this transition can be applied if the following
holds:

– The word q1 . . . qk belongs to L.
– For each i = 1, . . . , k, let pi be the state assumed by M after produc-

ing the output M(ti). Then, the word p1 . . . pk together with the hedge
M(t1) . . .M(tk) should satisfy the constraint α.

The notion of determinism is defined as usual. Note also that the restriction to
deterministic transducers is needed in order to fix the trees to be compared.

It turns out that our method of solving the nonemptiness problem for de-
terministic UTACS cannot be applied in this setting. For our method, similar
to our observation in Remark 17, we require that if the states assumed by the
transducer after producing two output trees, say, t and t′, are different, then t

and t′ must also be different. However, this assumption does not hold for deter-
ministic transducers in general, so a more restricted model of tree transducers is
required.

6 Conclusions

We have extended the tree automaton model defined by Bogaert and Tison in
[BT92] to the case of unranked trees. In the transitions, we use MSO-formulas
to address the pairs of positions to be compared. It then turns out that the
nondeterministic model, in contrast to the ranked setting, is more expressive
than the deterministic one. Our main result is that the nonemptiness problem
for the latter model is decidable: we adapt the standard marking algorithm,
which collects for each state a sufficient number of distinct trees. For this, we
have defined an appropriate bound for this number.

As far as the complexity of our nonemptiness decision procedure is concerned,
there are two issues that still need to be settled. First, the termination of the

21

bound algorithm is given by Dickson’s Lemma, so its time complexity depends
on the length of an antichain (the set I+

R in the bound algorithm). Second, the
complexity of our algorithms depends on the representation of the MSO-formulas
that are used as constraints. It is known, however, that the translation from MSO-
formulas to automata on words might involve a non-elementary blow-up. Thus,
a careful choice of the representation of the sibling constraints is needed in order
to analyze the complexity of our algorithms.

Other prospective future work includes: (a) developing a nonemptiness deci-
sion procedure that directly works on nondeterministic UTACS, (b) considering
extensions that involve tree transducers, and (c) considering automaton models
that allow determinization.

References

[BCMS01] Olaf Burkart, Didier Caucal, Faron Moller, and Bernhard Steffen. Verification on in-
finite structures. In Handbook of Process Algebra, chapter 9, pages 545–623. Elsevier,
2001.

[BT92] Bruno Bogaert and Sophie Tison. Equality and disequality constraintss on direct
subterms in tree automata. In Proceedings of STACS 1992, pages 161–171, 1992.

[CCC+94] Anne-Cécile Caron, Hubert Comon, Jean-Luc Coquidé, Max Dauchet, and Florent
Jacquemard. Pumping, cleaning and symbolic constraints solving. In Proceedings of

ICALP 1994, volume 820 of LNCS, pages 436–449. Springer, 1994.
[CDG+97] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez,

Sophie Tison, and Marc Tommasi. Tree Automata Techniques and Applications. Un-
published electronic book, available on http://www.grappa.univ-lille3.fr/tata,
1997. Current version released on 1st October 2002.

[DCC95] Max Dauchet, Anne-Cécile Caron, and Jean-Luc Coquidé. Automata for reduction
properties solving. Journal of Symbolic Computation, 20(2):215–233, 1995.

[Dic13] Leonard Eugene Dickson. Finiteness of the odd perfect and primitive abundant
numbers with n distinct prime factors. American Journal of Mathematics, 35(4):413–
422, 1913.

[DL03] Silvano Dal Zilio and Denis Lugiez. XML schema, tree logic and sheaves automata.
In Proceedings of RTA 2003, volume 2706 of LNCS, pages 246–263. Springer, June
2003.

[JRV06] Florent Jacquemard, Michael Rusinowitch, and Laurent Vigneron. Tree automata
with equality constraints modulo equational theories. In Proceedings of IJCAR 2006,
volume 4130 of LNAI, pages 557–571. Springer, 2006.

[Lib05] Leonid Libkin. Logics for unranked trees: An overview. In Proceedings of ICALP

2005, volume 3580 of LNCS, pages 35–50. Springer, 2005.
[Lug03] Denis Lugiez. Counting and equality constraints for multitree automata. In Pro-

ceedings of FOSSACS 2003, volume 2620 of LNCS, pages 328–342. Springer, 2003.
[MS81] Jocelyne Mongy-Steen. Transformation de noyaux reconnaissables d’arbres. Forêts

RATEG. PhD thesis, Université de Lille I, 1981.
[Nev02] Frank Neven. Automata, logic, and xml. In Proceedings of CSL 2002, volume 2471

of LNCS, pages 2–26. Springer, 2002.
[SSM03] Helmut Seidl, Thomas Schwentick, and Anca Muscholl. Numerical document queries.

In Proceedings of PODS 2003, pages 155–166. ACM Press, 2003.
[SSMH04] Helmut Seidl, Thomas Schwentick, Anca Muscholl, and Peter Habermehl. Counting

in trees for free. In Proceedings of ICALP 2004, volume 3142 of LNCS, pages 1136–
1149. Springer, 2004.

[Tho97] Wolfgang Thomas. Languages, automata, and logic. In Handbook of Formal Lan-

guages, Volume 3, chapter 7, pages 389–455. Springer, 1997.
[Tom92] Marc Tommasi. Automates d’arbres avec tests d’égalité entre cousins germains.

Technical report, Mémoire de DEA, Université de Lille I, 1992.

22

A Determinism versus Nondeterminism

We present a tree language that can be recognized by nondeterministic UTACS’s
but not by any deterministic ones.

Let Σ := {a, b}, and let T be a tree language over Σ containing trees with
the following properties. A tree t over Σ belongs to T iff

– domt ⊆ {ε} ∪ N{1}∗

– t(ε) = a and t(z) = b for any z ∈ domt \ {ε}.
– there exist x, y ∈ domt such that

• x, y ∈ N and 1 < x < y < max{n ∈ N | n ∈ domt} (i.e. y is not the
most-right child of the root),

• tx = ty, and
• for all z, z′ ∈ N \ {x, y} we have tz = tz′ and tz 6= tx.

Figure 3 illustrates a tree belonging to T . Intuitively, such a tree t consists of
a root labeled with a and below it strands of b’s. All but two of the b-strands
are of the same length, and the two special b-strands themselves are of the same
length.

a

b . . . b b b . . . b b b . . . b

Fig. 3. A tree belonging to T (the dashed lines represent b-strands)

Proposition 18. The tree language T can be recognized by a nondeterministic
UTACS.

The main idea for constructing a nondeterministic UTACS for T is to use a
special state to mark the positions of the two special b-strands nondeterministi-
cally and to impose the appropriate constraints accordingly: the subtrees under
the positions marked with the special state must be equal; all other subtrees
must be equal among themselves; and the former and the latter trees must be
different.

Formally, we define a nondeterministic UTACS with:

– the states q, p, and the final state qfin;
– the leaf transition (b, q);
– the inner-node transitions (q, true, b, q), (q, true, b, p), and (q+pq+pq+, ϕ∧ψ∧

θ, a, qfin) with

23

• ∃EQ-constraint ϕ(x, y) := (1 < x 6= y < max) ∧ Pp(x) ∧ Pp(y),
• ∀EQ-constraint ψ(x, y) := Pq(x) ∧ Pq(y) is a ∀EQ, and
• ∀NEQ-constraint θ(x, y) := (Pp(x) ∧ Pq(y)) ∨ (Pq(x) ∧ Pp(y)).

Proposition 19. The tree language T cannot be recognized by any deterministic
UTACS.

We will now sketch a proof of this proposition. Toward a contradiction, let us
assume that a deterministic UTACS, say A = (Q, Σ, Λ, ∆, F), recognizes T . In
order to simplify notation, let us refer to the set of transitions leading to some
final state as ∆fin. Furthermore, without loss of generality, we can assume that
each constraint occurring in A is a conjunction consisting of one ∀EQ-constraint,
one ∀NEQ-constraint, several ∃EQ-constraints, and several ∃NEQ-constraints. In
order to simplify notation, we refer to the set of transitions leading to some final
state as ∆fin.

The idea of the proof is to construct a tree from T that cannot be accepted
by A. For this, we will start from a tree belonging to T and then modify it step
by step, thereby preventing the applicability of A’s transitions that lead to a final
state.

First of all, since Q is finite, there is some state p of Q such that infinitely
many b-strands of different length are evaluated to p. Let us pick three of them,
say, s, t, and u. Now, for all integers n1, n2, n3 ≥ 1, we will consider the trees of
the form

a(s · · · s
︸ ︷︷ ︸

n1-times

t s · · · s
︸ ︷︷ ︸

n2-times

t s · · · s
︸ ︷︷ ︸

n3-times

) . (3)

By the definition of T , these trees belong to T and must hence be accepted by
A. Thus, by the choice of s and t, for every n1, n2, n3 ≥ 1 a transition τ ∈ ∆fin

with pn1+n2+n3+2 ∈ Sτ must exist. Let us refer to the word pn1+n2+n3+2 as
w(n1, n2, n3) and to the tree of the form (3) as t(n1, n2, n3).

Moreover, since the values of n1, n2, n3 ≥ 1 are arbitrary and, on the other
hand, ∆fin is finite, there must be a transition τ therein such that |Sτ ∩ p+| is
infinite. At this point, we can forget about those transitions that lack this prop-
erty as they cannot be applied to the trees of the form (3) anymore if n1, n2, n3

are sufficiently large.

Avoiding ∀NEQ-constraints. Our next step is to abandon the possibilities of using
transitions with ∀NEQ-constraints in order to accept trees of the form (3). More
precisely, we want to choose the values of n1, n2, and n3 such that for each
transition with a ∀NEQ-constraint θ either

(a) θ is trivially fulfilled as there is no pair (κ, λ) of positions in w(n1, n2, n3)
with w(n1, n2, n3) |= θ(κ, λ), or

(b) θ is not fulfilled as there is some pair (κ, λ) of positions in w(n1, n2, n3) with
w(n1, n2, n3) |= θ(κ, λ) and t(n1, n2, n3)κ = t(n1, n2, n3)λ, which means that
the underlying transition cannot be applied in order to accept t(n1, n2, n3).

Consider a transition τ ∈ ∆fin with a ∀NEQ-constraint θ. Let Pτ,θ := {pn ∈
Sτ | n ∈ N and there are some positions κ, λ in pn such that pn |= θ(κ, λ)}.

If Pτ,θ is finite, then we choose n1, n2, n3 to be greater than max{n ∈ N |
pn ∈ Pτ,θ}, so the case (a) above occurs.

24

Otherwise, consider a word pn ∈ Pτ,θ with the respective positions κ and λ.
Without loss of generality, let us assume κ < λ. Informally, the occurrences of κ

and λ can be illustrated as markers in the underlying word pn, as (4) shows:

κ λ

p · · · p · · · p · · · p (4)

• ◦

Now, as Sτ is regular and θ is an MSO-formula, Pτ,θ is regular. Thus, the stan-
dard pumping lemma for regular languages applies in the following sense: if n

is sufficiently large, then there exists some ‘period’ m ≥ 1 such that pn can be
decomposed into

κ λ

p · · · p · · · p · · · pm · · · p (5)

• ◦

or

κ λ

p · · · pm · · · p · · · p · · · p (6)

• ◦

or

κ λ

p · · · p · · · pm · · · p · · · p (7)

• ◦

and ‘pumping’ pm always results in a word to Pτ,θ (with the respective markers
κ′ and λ′). Moreover, we can do this sufficiently often such that the resulting
word can be decomposed into pn1ppn2ppn3 such that κ′ and λ′

– both lie in the pn1-part (this corresponds to (5)), or

– both lie in the pn3-part (this corresponds to (6)), or

– lie in the pn1-part and pn3-part, respectively (this corresponds to (7)).

In either case, we have t(n1, n2, n3)κ′ = t(n1, n2, n3)λ′ and w(n1, n2, n3) |= θ(κ′, λ′).
Hence, θ is not satisfied, so τ cannot be applied to accept t(n1, n2, n3).

If there is another transition τ ′ with a ∀NEQ-constraint, then we proceed as
above: we start with a word pn′

that ‘avoids’ τ with the respective positions κ′ and
λ′, and we obtain a pumping period m′. Now, in order to avoid the applicability
of the previous transition τ and the current transition τ ′, pumping must be done
with respect to the least common multiple of m and m′ as the period.

We proceed as above until each transition with a ∀NEQ-constraints falls into
one of the cases (a) or (b). Note that the fact that we only consider p-labeled
suitable words is crucial in order to avoid interference between the pumping
processes above.

25

Satisfying ∃EQ-constraints and ∃NEQ-constraints. Suppose now that n1, n2, n3

such that t(n1, n2, n3) can only be accepted by using some transition from ∆fin

such that either α contains no ∀NEQ-constraint, or α’s ∀NEQ-constraint is trivially
satisfied. Thus, let us fix such a transition τ = (L, α, a, q) ∈ ∆fin and let us assume

α = θ ∧
k∧

i=1

ϕi ∧
∧̀

j=1

ψ` (8)

where θ is a ∀EQ-constraint, ϕ1, . . . ϕk are ∃EQ-constraints, and ψ1, . . . , ψ` are
∃NEQ-constraints. Moreover, the applicability of τ implies that each of these
constraints is satisfied.

Let us first consider the ∃EQ-constraint ϕ1. As ϕ1 is satisfied, there exist
some κ1, λ1 ∈ {1, . . . , n1 + n2 + n3 + 2} such that w(n1, n2, n3) |= ϕ1(κ1, λ1) and
t(n1, n2, n3)κ1 = t(n1, n2, n3)λ1 . Now, following the same argumentation as with
avoiding ∀NEQ-constraints, we can replace n1, n2, n3 with appropriate n1

1, n
1
2, n

1
3

such that κ′
1 and λ′

1

– both lie at the very beginning of the pn1
1-part, or

– both lie at the very end of the pn1
3-part, or

– lie at the very beginning of the pn1
1-part and at the very end of the pn1

3-part,
respectively.

Note that the terms ‘very beginning’ and ‘very end’ are meant to be relative to the
length of the resulting word w(n1

1, n
1
2, n

1
3). In either case, we have t(n1

1, n
1
2, n

1
3)κ′

1
=

t(n1
1, n

1
2, n

1
3)λ′

1
and w(n1

1, n
1
2, n

1
3) |= θ(κ′

1, λ
′
1). Hence, ϕ1 is still satisfied.

Starting with n1
1, n

1
2, n

1
3, we next consider ϕ2 and obtain n2

1, n
2
2, n

2
3. Repeating

this procedure for all the remaining i = 3, . . . , k, we finally obtain nk
1, n

k
2, n

k
3 such

that all ∃EQ-constraints are satisfied, and moreover, all pairs of positions that
are used to satisfy these constraints occur only at the very beginning or at the
very end of the word w(nk

1, n
k
2, n

k
3).

Let us now consider the ∃NEQ-constraint ψ1. As ψ1 is satisfied, there exist
some µ1, ν1 such that w(nk

1, n
k
2, n

k
3) |= ψ1(µ1, ν1) and t(nk

1, n
k
2, n

k
3)µ1 6= t(nk

1, n
k
2, n

k
3)ν1 .

By the choice of t(nk
1, n

k
2, n

k
3) as a tree of the form (3), either one of the subtrees

at positions µ1 and ν1 must be one of the subtrees t, and the other one must
be s. Without loss of generality, let us assume that µ1 is the position of the left
subtree t and that the subtree at ν1 is s, as illustrated below:

µ1 ν1

s · · · s t s · · · s t s · · · s (9)

Using a similar pumping argument as before, we can replace nk
1, n

k
2, n

k
3 with

m1
1, m

1
2, m

1
3 such that in the resulting p-labeled word there is a pair of positions

µ′
1 and ν ′

1 such that

– the subtree at position µ′
1 is the left subtree t, and

– the subtree at position ν ′
1 is s, and ν ′

1 is either very far from µ′
1

µ′
1 ν ′

1

s · · · · · · s t s · · · · · · s t s · · · · · · s

26

or very near to µ′
1.

µ′
1 ν ′

1

s · · · · · · s t s · · · · · · s t s · · · · · · s

Here, the terms ‘far’ and ‘near’ are meant to be relative to the length of the
resulting p-labeled word.

In either case, we have t(m1
1, m

1
2, m

1
3)µ′

1
6= t(m1

1, m
1
2, m

1
3)ν′

1
and w(m1

1, m
1
2, m

1
3) |=

ψ1(µ
′
1, ν

′
1). Thus, ψ1 is satisfied.

As with the ∃EQ-constraints, we repeat this procedure for all the remaining
∃NEQ-constraints.

Finally, we obtain mk
1, m

k
2, m

k
3 such that all ∃EQ-constraints and all ∃NEQ-

constraints are satisfied, and moreover, all positions that are used to satisfy
these constraints either lie

– at the very beginning of w(mk
1, m

k
2, m

k
3), or

– at the very end of w(mk
1, m

k
2, m

k
3), or

– very near to mk
1 + 1 (the position of the left subtree t), or

– very near to mk
2 + 2 (the position of the right subtree t).

Again, the terms ‘very beginning’, ‘very end’, and ‘near’ are meant to be relative
to the length of the resulting word w(mk

1, m
k
2, m

k
3). This word and the corre-

sponding positions are illustrated in Figure 4.

r r

t t| {z }

s
| {z }

s
| {z }

s

Fig. 4. An illustration of the word w(mk
1 , mk

2 , mk
3) (and of w(m1, m2, m3)); the grey areas

roughly mark the positions that are used to satisfy the ∃EQ-constraints and ∃NEQ-constraints;
the bullets represent the positions where t occurs.

Handling the ∀EQ-constraint. Before we turn to the ∀EQ-constraint θ of (8),
we observe that the area between the second and the third gray area in Fig-
ure 4 can be made arbitrarily large by replacing mk

1, m
k
2, m

k
3 with the appro-

priate m1, m2, m3. This is due to the fact that there are only finitely many
∃EQ-constraints and ∃NEQ-constraints. Therefore, in the following consideration
we will assume that m1, m2, m3 are chosen in such away that the gap between
the second and the third gray area is as large as we will need it to be.

Let us now consider the ∀EQ-constraint θ of (8). Further, let κ and λ be the
position of the subtrees t in w(m1, m2, m3).

If w(m1, m2, m3) 6|= θ(κ, λ), then we can replace the subtree at position λ

with u without affecting the satisfaction of θ nor of the other constraints:

– the ∃EQ-constraints are still satisfied since the positions that are used to
satisfy them do not include λ;

27

– the ∃NEQ-constraints are still satisfied since the satisfaction of these con-
straints relies upon the fact that the tree at position λ, namely t, is different
from the trees positions other than κ, namely s, and this is still the case with
u at position λ.

As a result, the tree
a(s · · · s

︸ ︷︷ ︸

m1-times

t s · · · s
︸ ︷︷ ︸

m2-times

u s · · · s
︸ ︷︷ ︸

m3-times

) ,

which does not belong to T , will be accepted by A as well, a contradiction.
If w(m1, m2, m3) |= θ(κ, λ), then, as with ∀NEQ-constraints, we can consider

the positions of κ and λ in w(m1, m2, m3) to be labeled with some markers, as
depicted in Figure 5. Again, as Pτ,θ is regular, and if the gap between the second
and the third gray area is sufficiently large, then we can find a position µ within
this gap, such that w(m1, m2, m3) |= θ(κ, µ) or w(m1, m2, m3) |= θ(µ, λ) holds.
In either case, the subtree at position µ must then be t, a contradiction.

r r

t t

• ◦
κ λ

| {z }

s
| {z }

s
| {z }

s

Fig. 5. The word w(m1, m2, m3) with the marked positions κ and λ

This concludes the proof of Proposition 19.

B A More Detailed Nonemptiness Decision Procedure

We present some details of Algorithm 13. In particular, we explain a possible
implementation of the main loop (Line3–10).

Let us first explain how the algorithm works and, additionally, fix the no-
tations we are going to use throughout the algorithm. Let A = (Q, Σ, Λ, ∆, F)
be a deterministic UTACS. For the sake of simplicity, let us assume that Q =
(q1, . . . , qr). For a state qi, we use Ti to store the trees evaluating to qi that we
have encountered during the execution of the algorithm. Thus, we initialize each
Ti by means of the leaf transitions Λ. The main loop of the algorithm, essentially,
consists of two blocks:

– The first block iterates the procedure Update, which works as follows. Let
us assume that the trees we have constructed so far are stored in T1, . . . , Tr

and T ′
1, . . . , T

′
r; the latter sets are used to store the trees most recently con-

structed (that is, in the last iteration of this block or of the whole main loop)
and should be disjoint to the former ones. Then, the existence of T ′

1, . . . , T
′
r

enables the possibility of constructing new trees out of the trees in T1, . . . , Tr.
To illustrate this, consider a tree t = a(t1 . . . tm), say, in Ti, where tj ∈ Tij .
Consider some tk among t1, . . . , tm. Now, if there exists some tree t′ ∈ T ′

ik
,

then we can replace every occurrence of tk in t with t′ and, under the assump-
tion that Tik and T ′

ik
are disjoint, obtain a new tree which also evaluates to

qi.

28

– If we cannot construct new trees in the first block any more, then, in the
second block, we construct one by looking for a fresh suitable word for some
transition. For this, we keep track of the τ -suitable words that we have used
so far in Wτ , for each transition τ .

Finally, we will use the tuples d̄, ē ∈ N
|Q| to determine whether a new iteration

of the main loop is needed.

Algorithm 20. The input is a deterministic UTACS A as described above, to-
gether with the bound N from Lemma 5. The output is ‘yes,’ if T (A) is not
empty, or ‘no,’ otherwise.

1: function Nonempty(A)
2: initialize each Ti with {a ∈ Σ | (a, p) ∈ Λ}
3: initialize each T ′

i with ∅
4: initialize each Wτ with ∅
5: initialize d̄ and ē with (|T1|, . . . , |Tr|)
6: repeat
7: while

⋃r
i=1 T ′

i 6= ∅ do
8: end while
9: d̄, ē ← (|T1 ∪ T ′

1|, . . . , |Tr ∪ T ′
r|)

10: if there exists some τ = (L, α, a, qi) ∈ ∆ such that
11: Sτ,Q,d̄ \ Wτ 6= ∅ and |Ti| < N then
12: choose some w = qi1 . . . qim from Sτ,Q,d̄ \ Wτ

13: Wτ ← Wτ ∪ {w}
14: Tnew ← {a(t1 . . . tm) | tj ∈ Tij , for each j = 1, . . . , m, and
15: w and t1 . . . tm satisfy α}
16: set T ′

i to be a subset of Tnew such that |Ti ∪ T ′
i | ≤ N

17: end if
18: ē ← (|T1 ∪ T ′

1|, . . . , |Tr ∪ T ′
r|)

19: until d̄ = ē

20: if there exists some i ∈ {1, . . . , r} such that qi ∈ F and Ti 6= ∅ then
21: return ‘yes’
22: else
23: return ‘no’
24: end if
25: end function

26: procedure Update(T1, . . . , Tr, T
′
1, . . . , T

′
r, (Wτ)τ∈∆)

27: initialize each Ti,new with ∅
28: for i = 1, . . . , r do
29: for all t = a(t1 . . . tm) ∈ Ti \ Σ with t1 ∈ Ti1 , . . . , tm ∈ Tim do
30: let w := qi1 . . . qim

31: for all τ = (L, α, a, qi) ∈ ∆ do
32: if w ∈ Wτ , and w and t1 . . . tm satisfy α then
33: Ti,new ← Tinew ∪ {t′ | t results from t by replacing at least
34: one tk with t′k ∈ T ′

ik
such that

35: w and t′1 . . . t′m satisfy α}
36: end if
37: end for

29

38: end for
39: end for
40: for i = 1, . . . , r do
41: Ti ← Ti ∪ T ′

i // merge Ti and T ′
i

42: set T ′
i to be a subset of Ti,new such that |Ti ∪ T ′

i | ≤ N

43: end for
44: end procedure

30

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years. A

complete list of reports dating back to 1987 is available from http://aib.informatik.rwth-

aachen.de/. To obtain copies consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email:

biblio@informatik.rwth-aachen.de

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

31

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

32

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

33

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

34

