RWTH Aachen

Department of Computer Science
Technical Report

Intraprocedural Adjoint Code
Generated by the
Differentiation-Enabled NAGWare
Fortran Compiler

Michael Maier and Uwe Naumann

ISSN 0935-3232 . Aachener Informatik Berichte . AIB-2006-03

RWTH Aachen . Department of Computer Science . March 2006

The publications of the Department of Computer Science of RWTH Aachen University
are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Intraprocedural Adjoint Code Generated by the
Differentiation-Enabled NAGWar e Fortran Compiler

Michael Maier and Uwe Naumann

LUFG Informatik 12 (Software and Tools for Computational Engineering)
Department of Computer Science
RWTH Aachen University, D-52056 Aachen Germany
WWW: htt p://ww. st ce. rwt h-aachen. de, Email:
{mai er | naumann}@t ce. r wt h- aachen. de

Abstract. In this paper we report on recent advances made in the development of the first
Fortran compiler that provides intrinsic support for computing derivatives. We focus on the
automatic generation of intraprocedural adjoint code. Technical details of the modifications
made to the internal representation as well as case studies are presented. For example, the
new feature allows for the computation of large gradients at a computational cost that is
independent of their sizes. Numerous numerical algorithms — derivative-based optimization
algorithms in particular — will benefit both from the convenience of the approach and from
the efficiency of the intrinsic derivative code.

1 Introduction

We start with an example to motivate the need for adjoints in numerical computing.
Consider the problem of minimizing the following function f : IR™ — IR that is due to

Griewank [7].
y:f(x):Z4SO—Hcos<7>+1 . 1)
i=1 i=1 v

It usually serves as a test problem for global optimization algorithms. Interval arithmetic
can be used in combination with a branch-and-bound method and with an interval New-
ton step for local refinement of the enclosure as described in [4] to compute a verified
solution to this problem. The algorithm requires the repeated evaluation of the gradient
f'(x) € IR™ at various points x. Moreover, the Hessian f”(x) € IR™*" is required to
check for concavity of f over a given subinterval. The interval method is merely one
way to approach this optimization problem. A large number of algorithms for both lo-
cal and global optimization have been proposed in the literature. See, for example, [6]
and [5] for a comprehensive introduction to these fields. Most algorithms use deriva-
tive information to determine descent directions in the context of some kind of search
procedure. This is where we come in.

The classical approach to numerical differentiation uses finite difference quotients
to approximate the values of derivatives. Centered finite differences defined by

toy o X — f(x—¢)
J'(x) = >

are known to exhibit second-order accuracy as opposed to only first order accuracy ob-
tained when using forward or backward differences. Tangent-linear code that can be
generated automatically according to the principles of forward mode automatic differ-
entiation [8] produces accurate® directional derivatives by computing the inner product

y=<f'(x),x>

! up to machine precision

where x is a direction in the input space IR™ and y € IR. This approach has been taken
by the first prototype of the differentiation-enabled NAGWare Fortran compiler [10].

The computational complexity of the accumulation of the full gradient by either
finite difference approximation or tangent-linear code is O(n). Every single input needs
to be perturbed or, similarly, the derivative in the direction of each Cartesian basis vector
needs to be computed. It is well known that for large n neither of the two approaches is
feasible. The solution comes in the form of reverse mode automatic differentiation [8].
It builds the basis for semantic source transformation algorithms that generate adjoint
code f for the computation of

x=f(x9) =7 f(x)

automatically. The adjoint input vector x becomes equal to the gradient f’(x) when
setting ¢ = 1. A single evaluation of the adjoint code is sufficient (compared with n
evaluations of the tangent-linear code).

The theoretical computational complexity suggests that adjoint codes are the method
of choice when it comes to the accumulation of large gradients. Unfortunately, writing
adjoint codes, and, even more so, generating them automatically, is everything but a
trivial task. We will see that the computation of adjoints requires the reversal of the flow
of data (and, hence, also the reversal of the flow of control) of the original program
that implements f(x). Combine this with the requirement to develop a fully functional
compiler front-end for the programming language of your choice and the scope of the
development becomes apparent. While many of the basic underlying techniques have
been well known for some time now the development of an adjoint code compiler still
remains a highly complex task. In particular the generation of efficient adjoint code
requires a high level of understanding of the original code resulting in static data-flow
analyses tailored toward the specific semantic source transformation [11].

The work described in this paper builds on previous prototypes of the differentiation-
enabled NAGWare Fortran compiler. We focus on the transformation of single subrou-
tines F'(x,y) that compute outputs y € IR™ as functions of given inputs x € R"
into adjoint subroutines F(x,y,x) for computing x = F'(x)” -y, where F'(x) is the
Jacobian of F and F’(x)7 is its transposed.

The structure of this paper is as follows: In Section 2 we review the basic princi-
ples of tangent-linear and adjoint codes in the shape of the forward and reverse modes
of automatic differentiation. We summarize the features of previous prototypes of the
differentiation-enabled NAGWare Fortran compiler that provide both tangent-linear and
adjoint capabilities. The heart of this paper is represented by Section 3. Therein we dis-
cuss the novel extension of the compilers adjoint capabilities. Technical details about
how the control- and data-flow reversals are realized are illustrated with the help of
intuitive examples. Case studies are presented in Section 4. We draw conclusions in
Section 5 and we give a brief outlook to future work.

2 Préiminariesand Summary of Prior Work

We consider computer programs that evaluate vector functions y = F'(x) with

F:R"— IR™

2.1 Automatic Differentiation

Automatic differentiation (AD) expects the evaluation of F' to decompose into a se-
guence of elemental computational operations

Vj :goj(vi)Hj forj = 1,...,(] . (2)

We adopt Griewank’s notation [8]. Hence, i < j if v; is an argument of ¢; and ¢ =
p+m.Wesetv; =x,_;forj=n—1,...,0and y; = v,y forj =1,...,m. Refer
to [8] for a comprehensive discussion of AD.

Under the usual assumptions about differentiability of the elemental functions we
can compute local partial derivatives

0p; .
cji = a—ij(vk)k<j forj=1,...,q . 3)

Forward mode AD computes y = F’ - x where F’ = F’(x) is the Jacobian matrix of F
as

@jzzcﬁ-z}i forj=1,...,q . (4)

1<7J

Alternatively, the transposed product x = (F')T - y can be computed by incremental
reverse mode AD (see Section 3.2) after initializing o; =0fori=1—mn,...,pas

Vit = Cji - U5 forj=p,....,1—n,i<j . (5)

Such adjoints are of particular interest in large-scale optimization since they allow for
gradients to be computed with a computational complexity that is independent of n.

Example Consider the simple function y = sin(z; - x2). The equivalent of Equation (2)
becomes

Vo] =15 Vg =Tg; V1 =vU_1-Up; Vg =sin(vi); y=uvo

The generation of tangent-linear and adjoint codes is based on such statement-level
single assgnment code. Applying Equation (3) and Equation (4) we get the tangent-

linear code

Vo1 =21
V-1 =21
Vg = Tg
Vg = T2

’[)1:1}_1'00-1—0_1'1}0 //

V1 = V-1 "7

7‘)2 = COS(Ul) . 1)1

vy = sin(vy)
Y =02

Yy=12

821,1
=1
// 2,
87)0
770 g
// s
c = ou _ V)
e P
0
/] o= a_Zj = cos(vr)
oy
// Doy 1

We use C-style // to marks comments. Specifically we list the local partial derivatives
of the left-hand side of each elementary assignment with respect to the variables on the

right-hand side.

According to Equation (5) the adjoint code requires the values of intermediate vari-
ables in reverse order. Hence, it is preceded by the evaluation of these values as follows:

V-1 =1
Vg = T2
V1 = V-1
vy = sin(vy)
Y=

v =Y

Vg =v-1- 01

V_1 =19 U1

01 = cos(vy) - Uy

// begin augmented forward code

// end augmented forward code

// begin adjoint code

// end adjoint code

//
//
//

//

0
Yy
81}2
c21 = cos(vy)
C1,0 = V-1
C1,—-1 = Vo
v _
8%’2
8v_1 —1
8%’1

In a larger context we need to set y = 0 after the first adjoint statement and we need
to increment the adjoints of x; (see Section 3.2).

2.2 Previous Prototypes of the Compiler

The current research prototype of the differentiation-enabled NAGWare Fortran 95 com-
piler is based on three previous prototypes.

In [9] we describe an approach to the generation of tangent-linear code that is based
on operator overloading. The compiler provides an intrinsic Fortran module that con-
tains redefined arithmetic operators and intrinsic functions for variables of a new derived
data type. The latter contains variables for the function value as well as for the direc-
tional derivative. The advantage of this method is its high degree of robustness that
can be achieved quite easily by simply relying on the compilers resolution method for
overloaded operations.

The efficiency of the tangent-linear code can be improved by preaccumulation of
local gradients at the level of scalar assignments. The operations count is reduced con-
siderably if a large number of directional derivatives is computed. Refer to [10] for
further details on this approach.

The statement-level gradients can be accumulated and stored during an evaluation of
correspondingly augmented forward code. In order to propagate adjoints these gradients
can be restored and used in reverse order inside the adjoint code. This method has been
proposed in [14]. Its main disadvantage is the requirement of hashing memory addresses
in order to access the correct adjoint memory. This address translation is typically slow.
Hence, we launched the next stage of the CompAD project in order to overcome this
problem by generating intraprocedural adjoint code based on explicit data- and control-
flow reversal as described below.

3 Intrinsic Intraprocedural Adjoint Code

Our algorithm transforms a given abstract syntax tree (AST) of the original numerical
program into one that represents the adjoint program. The unparser walks the trans-
formed AST to generate the adjoint code in C. Thus we are in line with the NAGWare
Fortran 95 compiler’s strategy that transforms the given Fortran code into optimized C
and then uses a native C compiler to generate efficient machine code for the respective
target architecture. The transformation is best illustrated by an example.

3.1 Example
Consider a subroutine FUNC(C, A, B) that contains the single statement

C=SIN(A-B)

Original AST The internal representation of this code inside the NAGWare Fortran
compiler is as follows.

SUBROUTI NE FUNC |Node [1d:43] [Internal Subprograni
- Node [1d:24] [Subroutine]
+- Leaf [1d:18] ("FUNC') [Synbol]
+- (Argument List and Type Declarations)
- Node [1d:41] [Assignnment]
+- Leaf [I1d:35] ("C') [ldent.]
+- Node [1d:40] [Function Reference]
| +- Leaf [1d:36] [Procedure] ("SIN') [Synbol]
| +- Node [1d:39] [Multiplication (*)]
| | +- Leaf [Id:37] ("A") [ldent.]
| | +- Leaf [1d:38] ("B") [ldent.]
END SUBROUTI NE |+- Leaf [I1d:42] [Program Subtree End]
We use our own tree printer routine to generate the above output. The main purpose

of this mechanism lies in debugging. We use a custom exception type that generates

+
I
C=SINA-B |+
I
I
I
I
I
I

a printout of the AST each time it is raised. Thus we have full access to the present
state of the AST. This support has turned out as extremely useful for past and ongoing
development.

Transformed AST We generate statement-level single assignment code as described in
the previous section. The values of certain auxiliary variables are then required in re-
verse order by the adjoint code to evaluate the values of the local partial derivatives of
the elementary arithmetic operators and intrinsic functions. Note that required values
may be overwritten by succeeding statement-level single assignment codes unless the
program consists of only a single statement. Hence these values need to be stored by
the augmented forward code and restored later by the adjoint code. Lacking data-flow
analysis one needs to assume conservatively that the values of all auxiliary variables are
required by the adjoint code. Therefore the statement-level single assignment code is
augmented with PUSH statements preceding each of its assignments. The correspond-
ing POP’s occur in the adjoint code.

SUBROUTI NE FUNC [Node [1d:43] [Internal Subprograni

+- Node [1d:24] [Subroutine]

| +- Leaf [1d:18] ("FUNC') [Synbol]

| +- (Argument List and Type Declarations)

Augmented Subroutine Body:

PUSH(vo) +- Node [1d:49] [Generic (Overloaded) CALL]
| +- Leaf [1d:48] ("PUSH') [Synbol]
| +- Leaf [1d:47] ("wo") [ldent.]
+- Node [1d:51] [Assignnent]

| +- Leaf [1d:46] ("we") [ldent.]
| +- Leaf [1d:38] ("B") [ldent.]
+- Node [1d:55] [Generic (Overloaded) CALL]
| +- Leaf [1d:54] ("PUSH') [Synbol]
| +- Leaf [1d:53] ("wuni") [ldent.]
+- Node [1d:57] [Assignnent]

| +- Leaf [1d:52] ("wvi") [ldent.]
| +- Leaf [1d:37] ("A") [ldent.]
+- Node [1d:63] [Ceneric (Overloaded) CALL]
| +- Leaf [1d:62] ("PUSH') [Synbol]
| +- Leaf [1d:61] ("w2") [ldent.]
+- Node [1d:65] [Assignnent]

| +- Leaf [1d:60] ("wv2") [ldent.]
I

I

|

+

I

|

+

I

|

I

I

+

I

I

+

I

I

Uo—B

PUSH((%1)

PUSH(’U2)

V2 = V1 X Vo

+- Node [1d:39] [Multiplication (*)]
| +- Leaf [1d:58] ("v:i") [ldent.]
| +- Leaf [1d:59] ("w") [!dent.]
- Node [1d:70] [CGeneric (Overloaded) CALL]
+- Leaf [1d:69] ("PUSH') [Synbol]
+- Leaf [1d:68] ("w3") [ldent.]
- Node [1d:72] [Assignnent]
+- Leaf [1d:67] ("ws") [ldent.]
+- Node [1d:40] [Function Reference]
| +- Leaf [1d:36] [Procedure] ("SIN') [Synbol]
| +- Leaf [1d:66] ("wv2") [ldent.]
- Node [1d:76] [Ceneric (Overloaded) CALL]
+- Leaf [1d:75] ("PUSH') [Synbol]
+- Leaf [1d:74] ("C") [ldent.]
- Node [I1d:41] [Assignment]
+- Leaf [1d:35] ("C') [ldent.]
+- Leaf [1d:73] ("ws") [ldent.]

PUSH(’U3)

vy = S| N(’U2)

PUSH(©)

C:U3

POP(C)

Vo = CCB(UQ) X U3

POD(7.)3)

V1 = U2 X g

Vo = Vg X w1

POD(Uo)

Reversed & Adjoint Subroutine Body:

+-

Node [1d: 89] [Assignment]

+- Leaf [1d:87] ("v3") [ldent.]

+- Leaf [1d:88] ("¢") [ldent.]

Node [1d:92] [Assignment]

+- Leaf [1d:91] ("¢") [ldent.]

+- Leaf [1d:90] [Constant] [|NTEGER Constant]
Node [1d:95] [Ceneric (Overl oaded) CALL]
+- Leaf [1d:94] ("POP") [Synbol]

+- Leaf [1d:93] ("C') [ldent.]

Node [1d: 103] [Assignnent]

+- Leaf [1d:98] ("wu2") [ldent.]

+- Node [1d:102] [Multiplication (*)]

| +- Node [1d:101] [Function Reference]
| | +- Leaf [1d:100] ("COS") [Synbol]

| | +- Leaf [1d:99] ("wv2") [ldent.]

| +- Leaf [1d:97] ("w3") [|dent.]

Node [1d:106] [Ceneric (Overloaded) CALL]
+- Leaf [1d:105] ("POP") [Synbol]

+- Leaf [1d:104] ("w3") [ldent.]

Node [1d:113] [Assignnment]

+- Leaf [1d:108] ("u:") [ldent.]

+- Node [1d:112] [Multiplication (*)]

| +- Leaf [1d:110] ("w2") [ldent.]

| +- Leaf [1d:111] ("wo") [ldent.]

Node [1d:119] [Assignnment]

+- Leaf [1d:114] ("wvo") [ldent.]

+- Node [1d:118] [Multiplication (*)]

| +- Leaf [1d:116] ("wu2") [ldent.]

| +- Leaf [1d:117] ("w»n") [ldent.]

Node [1d:122] [Ceneric (Overloaded) CALL]
+- Leaf [1d:121] ("POP") [Symnbol]

+- Leaf [1d:120] ("wv2") [ldent.]

Node [1d:130] [Assignnment]

+- Leaf [1d:124] ("a") [|dent.]

+- Node [1d:129] [Addition (+)]

| +- Leaf [1d:127] ("a") [ldent.]

| +- Leaf [1d:128] ("©") [ldent.]

Node [1d:133] [Assignnment]

+- Leaf [1d:132] ("u:") [ldent.]

+- Leaf [1d:131] [Constant] [|NTEGER Constant]
Node [1d:136] [Ceneric (Overloaded) CALL]
+- Leaf [1d:135] ("POP") [Synbol]

+- Leaf [1d:134] ("v1") [ldent.]

Node [Id: 144] [Assignnment]

+- Leaf [1d:138] ("b") [ldent.]

+- Node [1d:143] [Addition (+)]

| +- Leaf [ld:141] ("b") [!dent.]

| +- Leaf [1d:142] ("we") [|dent.]

Node [1d: 147] [Assignnment]

+- Leaf [1d:146] ("wvo") [ldent.]

+- Leaf [1d:145] [Constant] [|NTEGER Constant]
Node [1d: 150] [Generic (Overloaded) CALL]
+- Leaf [1d:149] ("POP") [Synbol]

+- Leaf [1d:148] ("we") [ldent.]

END SUBROUTI NE

I
I
+-
I
I
+-
I
I
+-
I
I
I
I
I
I
+-
I
I
+-
I
I
I
I
+-
I
I
I
I
+-
I
I
+-
I
I
I
I
+-
I
I
+-
I
I
+-
I
I
I
I
+-
I
I
+-
I
I
+-

Leaf [1d:42] [Program Subtree End]

A runtime support module is provided that contains implementations for PUSH and
POP.

3.2 Data-Flow Reversal

The adjoint code uses certain intermediate values in reverse order to determine the val-
ues of the local partial derivatives. Hence, the values of these variables need to be made
available somehow. The two fundamental approaches to this problem are the so-called
“store-all” and “recompute-all” strategies. While the latter results in an unacceptable
quadratic computational complexity the former may lead to infeasible memory require-
ments for very large programs. In order to be able to generate adjoints for large-scale
numerical simulation programs one has to follow a hybrid strategy that stores some val-
ues in so-called checkpoints while recomputing others from these checkpoints. The im-
plementation of such a checkpointing scheme inside the differentiation-enabled NAG-
Ware Fortran 95 compiler is the subject of future work. For the time being we pursue a
“store-all” strategy. Lacking AD-specific data-flow analysis [11] we have implemented
a “copy-on-def” method that saves the values of all program variables prior to them
getting overwritten. For example,

z = sin(x)
T=Y*2z
becomes
call PUSH (z)
z = sin(z)
call PUSH (z)
T=x %2z
call POP(x)
Z=zZ+x-T; T=2-T
call POP(z)

Let us have a closer look at this code in order to understand the way the adjoint code is
generated.

Incremental Adjoint Code In incremental reverse mode the local partial derivatives are
computed during the adjoint evaluation (second line in Equation (6)).

v; = @;(vi)izj; v, =0 forj=1,....¢q
_ 9% : (6)

Cji = o U =0 +cj;-v; fori<jandj=gq,...,1
K3

Consider an arbitrary assignment of the form
vj = ©j(vi)i<j (7

10

where, possibly, &v; € {&wv; : @ < j} as well as &v;, = &wy, fori; < jand i < j.
We use &wv to denote the address of a variable v in memory.

In general, it is undecidable at compile time if &v;, = &uw;, as this may depend
on parameters that are only available at run time. Alias analysis [15] may provide some
insight. Lacking any program analysis one needs to assume conservatively that &v; =
&w; for all i < j to ensure the correctness of the adjoint code.

As a consequence of overwriting a given location in memory may represent different
code list variables. Note that the adjoints of all code list variables need to be initialized
with zero to ensure the correctness of the incremental reverse mode. The adjoint of v;
in Equation (7) dies (its value is no longer used) once it has been used to increment
the adjoints of all arguments of ;. However, the memory location &wv; may well be
incremented by some succeeding adjoint statement for the reasons stated above. Hence,
adjoint variables need to be reset to zero immediately after their death.

If we can prove that some &uv; is always read only once after its initialization and
before getting overwritten, then its adjoint does not need to be initialized with zero
and all adjoint statements that have v; on the left-hand side simply overwrite its value.
Building the statement-level single assignment code as described in the Example in
Section 2.1 ensures that the above holds for all auxiliary non-program variables. Hence,
adjoints of auxiliary variables are always overwritten and need neither be initialized nor
reset to zero at their death. It is guaranteed that they are defined before being used.

3.3 Control-Flow Reversal

The reversal of the flow of data implies the reversal of the flow of control. We need
to provide a method that allows us to follow the original flow of control in reverse in
the adjoint code. W.1.0.g., we assume that variable flow of control is caused only by
branch statements (I F- THEN, | F- THEN- ELSE) and loops (DO, DO- WHI LE). Their
representations in the abstract syntax tree are then handled as described in the following.
Similar approaches are used by the AD tools TAPENADE [12] and OpenAD [17].

Branches

Original | F- THEN statements are always transformed into | F- THEN- EL SE state-
ments with an empty ELSE branch. Hence, the resulting AST looks as follows:

IF (---) THEN |+- Node [1d:40] [Block |IF Statenent]
+- (Branch Condition)

(Branch(true)-Body)

Leaf [1d:46] [ELSE]
(Branch(false)-Body)

Leaf [1d:52] [END | F]

+ + + +—

1

2

3 ..

4 ELSE
5 ...

6 ENDIF
Augmented Forward In order to memorize the flow through the | F- THEN- EL SE state-

ment we augment the original forward computation with statements that push a branch
id (1 for I F branch; 0 for ELSE branch) onto a special control stack.

11

1 IF (---) THEN +- Node [1d:40] [Block |F Statenent]

2 | +- (Branch Condition)

3 - +- (Branch(true)-Body)

4 CONTROLPUSH(1) [+- Node [1d:67] [CGeneric (Overloaded) CALL]

5 | +- Leaf [1d:68] ("CONTROLPUSH') [Specific Nane]

6 | +- Leaf [1d:66] ("CONTROLPUSH') [|dent./Sym Nane]
7 | +- Leaf [1d:65] [Constant] [|NTEGER Constant]

s ELSE +- Leaf [1d:46] [ELSE]

9 - +- (Branch(false)-Body)

10 CONTROLPUSH(O0) |+- Node [1d:79] [Ceneric (Overloaded) CALL]

1 | +- Leaf [1d:80] ("CONTROLPUSH') [Specific Nane]

12 | +- Leaf [1d:78] ("CONTROLPUSH') [|dent./Sym Nane]
13 | +- Leaf [1d:77] [Constant] [|NTEGER Constant]

14 ENDIF +- Leaf [1d:52] [END | F]

The subroutines CONTROLPUSH and CONTRCOLPOR are part of the runtime support
module.

Adjoint The reverse section of the adjoint code retrieves the branch id from the control
stack. Depending on its value it then executes the adjoint of the | F or ELSE branches.

CONTRCOLPOP(_b) Node [1d:93] [Ceneric (Overloaded) CALL]
+- Leaf [1d:94] ("CONTROLPOP") [Specific Nane]
+- Leaf [1d:92] ("CONTROLPOP") [Ident./Sym Nane]
+- Leaf [1d:91] ("_b") [ldent./Sym Nane]
Node [1d:102] [Block | F Statenent]
+- Node [1d:100] [.EQ]
| +- Leaf [1d:99] [Constant] [|NTEGER Constant]
| +- Leaf [1d:101] ("b") [Ident./Sym Nane]
- (Adjoint Branch(false)-Body)
Leaf [1d:119] [ELSE]
e (Adjoint Branch(true)-Body)
12 ENDI F +- Leaf [1d:134] [END I F]

The explicit conversion of | F- THEN statements into | F- THEN- EL SE statements is
necessary to ensure a balanced control stack.

IF (0 .EQ b) &
THEN

© ® N o O A W N -
+___-I|-___+

ELSE

1S
+
i

[N
=
+
[

L oops

Original DO- WHI LE loops result in an AST as the following:

1 DO WHILE (---) |+ Node [1d:31] [DQ
2 | +- Node [1d:30] [WH LE]
3 | | +- (Loop Condition)
4 +- (Loop Body)
+- ...
5 END DO +- Leaf [1d:44] [END DQ

DOloops are analogous.

Augmented Forward One way to reverse the flow of control is to enumerate all basic
blocks and to simply push their indexes onto the control stack during the execution of
the augmented forward code [16]. This approach may lead to unacceptably high mem-
ory requirements in the presence of loops as the number of values pushed onto the stack
is multiplied with the number of loop iterations. To overcome this problem one may
simply count the number of iterations performed by the loop in the augmented forward
section and store this value for later use by the reverse section of the adjoint code. This
idea results in the following augmented forward code:

12

1 4 =0 +- Node [1d:57] [Assignnent]

2 | +- (Initial Assignment)

3 DO VWH LE (---) +- Node [1d:31] [DQ

4 | +- (Loop Condition + Body)

5 d=li+1 +- Node [1d:66] [Assignnent]

6 | +- Leaf [1d:62] (".i") [ldent.]

7 | +- Node [1d:64] [Addition (+)]

8 | | +- Leaf [1d:63] (".") [ldent.]

9 | | +- Leaf [1d:65] [|NTEGER Constant]

10 END DO +- Leaf [I1d:44] [END DO

11 CONTROLPUSH (.) |+- Node [1d:69] [Ceneric (Overloaded) CALL]

12 | +- Leaf [1d:70] ("CONTROLPUSH') [Specific Nane]
13 | +- Leaf [1d:68] ("CONTROLPUSH') [Ident./Sym Nane]
14 | +- Leaf [1d:67] ("4") [!dent./Sym Nane]

Adjoint The adjoint loop is implemented as a DOloop that performs as many iterations
as the original loop while executing the adjoint of the loop body.

CONTROLPOP (i) |[+- Node [1d:85] [Generic (Overloaded) CALL]

+- Leaf [1d:86] ("CONTROLPOP") [Specific]

+- Leaf [1d:84] ("CONTROLPOP") [|dent./Sym Nane]
+- Leaf [1d:83] ("4") [ldent./Sym Nane]

© 0 N o g b W NP

I
I
I
DO _c=1, . +- Node [1d:91] [DQ
| +- Node [1d:90] [Do Specification]
| | +- Leaf [1d:87] ("c") [ldent./Sym Nane]
| | +- Leaf [1d:88] [|NTEGER Constant]
| | +- Leaf [1d:89] (".") [ldent./Sym Nane]
10 e +- (Adjoint Loop Body)
11 END DO +- Leaf [1d:44] [END DQ

3.4 Software Development | ssues

/ Object \
/ A\
7/ \
/ e \
/ \
{ +ToSting()) A——
Engine ! +...() | N
9 ! Node Scope : Proprietary C
-VerboseMode sesy ! | «usesy | data structures
+Transform() Adjoint I - : and classes
T . +GetNext() +GetNext() r—==== >
| «uses» | |[+GetChild() +GetRoot() |
! +Augmented() 0 +..() !
L3 +Reverse() : | l !
+Adjoint() | I - I :
i ! «uses» Builder «uses» | |
i ! ! !
N +CreateFunction() | //
N +TransformCondition() /
. +...() 4

Fig. 1. C++-Interface to the NAGWare Fortran Compilers C-API

The described parse tree transformations are handled by an adjoint transformation
engine based on an object-oriented interface to the original compiler API provided by
the NAGWare compiler. Figure 1 summarizes the three layers of this interface.

The first layer is the low-level API containing proprietary C data structures, macros,
and functions that are used by the compiler itself in the standard compilation process.
The second layer is based on these data structures and classes. This layer is a C++

13

interface introducing an object-oriented model to the parse tree providing access to and
the ability to modify parse tree nodes, scopes, and entries in associated string tables.
Therefore the layer itself is organized in a hierarchical class structure starting with the
basic Qbj ect class that every other class is derived from to offer consistency in the
use of objects. A Scope class instance can move through every single scope using the
CGet Next () method. Get Root () returns the root node of the associated parse tree as
an instance of the Node class. A Node object also offers a Get Next () method to get
the following node in the parse tree or an associated child node using Get Chi | d() .
Every class instance hasa ToSt ri ng() method that returns a description of the object.
For example, all parse tree visualizations in this paper are rendered by the Node class
implementation of ToStri ng() .

By an own set of exception classes Exceptions are handled by a set of exception
classes. Debugging of complex parse tree structures is simplified considerably. The user
is informed through detailed error messages and parse tree dumps are generated to iso-
late erroneous structures.

Builder-classes provide support for parse tree modifications. They handle complex
operations, such as adding and removing nodes and variables, with very few method
calls. This is where the third layer starts. It contains the two classes Adj oi nt and
Engi ne. The latter is a driver-like class an instance of which is created by the com-
piler whenever adjoint code generation is requested. The Engi ne object then iterates
through all scopes searching for subroutines and applies adjoint code transformation to
them. The latter is implemented by the Adj oi nt class in two stages: First the original
subroutine is augmented for the subsequent data- and control-flow-reversal and, second,
the adjoint code is generated.

Though there are several advantages and disadvantages in choosing an object-oriented
API, compatibility to other AD projects that use an object-oriented interface is the great-
est advantage. We are primarily interested in compatibility with OpenAD 2 and, in par-
ticular, with its algorithmic core called xai f Boost er [18].

4 Case Studies

41 Griewank

Extensive tests were performed with Griewank’s function implemented in Fortran 90 as
follows:

o
=

.DO
i =1,

89_0

a(i)*x2) / 400

S
+ (
* COS (a(i) / SQRT (DBLE (i)))

cC =¢
d=d
END DO
c=c¢—d
In Table 2 we list the results obtained by running the adjoint code vs. finite differences
and we show the absolute error for n = 5and z; = 1 fori = 1,...,5.. The latter

is given in single precision whereas the former are in double precision. The following
driver was used to generate the results.

Zhttp://ww. nts. anl . gov/ openad

14

I Compute gradient with intrinsic adjoint

c- = 1.D0
CALL griewank_adj (s, a, c.)

a_, c,

I Approximate gradient by forward finite differences

CALL griewank (s, a, c)
DO i =1, s
I Perturb current input vector element
ae(i) = a(i) + e
CALL griewank (s, ae, cl)
I Restore input vector
ae(i) = a(i)

I Compute divided difference
b (i) = (¢l —¢c) / e
END DO

Absolute Error
0.0000000¢*°°

—1.4901161e =%

—17.4505806e %

Finite Differences

0.4291500188546848
0.1695582052541056
0.1074227018449392
7.9390989486530394¢ ~°%|7.9390993779071550e %2 | —7.4505806¢ ~°°

6.3416055468902388¢~2(6.3416059070675601e ~°%| 0.0000000e+°
Table 2. Gradient by Adjoints vs. Finite Differences for Griewank’s test problem

Adjoint

0.4291500041640747
0.1695581977732323
0.1074226956746736

The runtime behavior is documented in Figure 2. We observe that the overhead due

to storing and restoring values of intermediate variables is negligible for the considered
problem sizes. The adjoint code performs very well. The computational complexity of
the finite difference approximation grows with the number of inputs. The vertical axis
shows relative CPU times. The actual values depend heavily on the hardware platform.

4.2 Bratu

We consider a variant of the Bratu problem from the MINPACK test problem collection

[1] given as the following Fortran code.

12.0 * (1 + 10 % exp (x(1) / (1.0 + prm(2) = x(1))))
1

exp (x(1) / (1.0 + prm(2) * x(1)))

h =20/ (dim + 1)

F(1) -2 % X(1) + h x h x prm(1) / &

F(2) X(1) + h x h % prm(1) / &
2.0 =

DO i = 2, dim — 1

F(i—1) = F(i-1) + x(i) + h
12.0 % exp (x(i) / (1.0

F(i) = F(i) — 2 % x(i) +h
1.2 % exp (x(i) / (1.0
F(i+1) = x(i) + h

15

* h x prm(1l) / &
+ prm(2) x x(i)))
* h x prm(1) / &
+ prm(2) *x x(i)))
* h x prm(1) / &

CPU

CPU

200

150

100

50

300

250

200

150

100

50

A Adjoints
+ Forward Differences

T T T T T T
5000 10000 15000 20000 25000 30000

Dimension of Input Vector

Fig. 2. Adjoints vs. Finite Differences on Griewank’s Test Problem

A Adjoints
+ Forward Differences

T T T T
2000 4000 6000 8000

Dimension of Input Vector

Fig. 3. Adjoints vs. Finite Differences on Bratu Problem

16

12.0 % exp (x(i) / (1.0 + prm(2) * x(i)))
END DO

F(dim—1) = F(dim—-1) + x(dim) + h « h * prm(1) / &
12.0 x exp (x(dim) / (1.0 + prm(2) = x(dim)))
F(dim) = F(dim) — 2 % x(dim)
F(dim) = F(dim) + h « h = prm(1) / 12.0 x (1 + 10 % &
exp (x(dim) / (1.0 + prm(2) * x(dim))))

Our objective is to compute the Jacobian matrix of F with respect to both x and pr m In
our example we set di m=7. Using the intrinsic adjoint code that is generated automati-
cally by the differentiation-enabled NAGWare Fortran 95 compiler we get the following
7 x 9 Jacobian:

-1.89 1.01 0.00 0.00 0.00 0.00 0.00 0.21 -0.48
1.01 -1.87 1.01 0.00 0.00 0.00 0.00 0.40 -1.78
0.00 1.01 -1.87 1.01 0.00 0.00 O0.00 0.49 -2.70
0.00 0.00 1.01 -1.87 1.01 0.00 0.00 0.56 -3.50
0.00 0.00 0.00 1.01 -1.87 1.01 O0.00 0.49 -2.70
0.00 0.00 0.00 0.00 1.01 -1.87 1.01 0.40 -1.78
0.00 0.00 0.00 0.00 0.00 1.01 -1.89 0.21 -0.48

It is obtained by initializing the adjoints of the dependent variables y asa 9 x 9 iden-
tity matrix. Notice, that F is sparse. A column-compressed version can be computed by
applying Curtis-Powell-Reid seeding [2] to the tangent-linear code (or, equivalently, the
finite difference approximation) as, for example, described in [3]. With the eighth and
ninth column of the Jacobian being dense row compression is not possible in adjoint
mode.

With m = n — 2 the Bratu problem is not our typical application for adjoint mode.
It must be expected that the runtime performance of the adjoint code lacks behind that
of finite differences due to the overhead resulting from storing and restoring all inter-
mediate values. The correctness of this conjecture is illustrated in Figure 3.

5 Conclusions and Outlook

We have presented a research prototype of the differentiation-enabled NAGWare For-
tran 95 compiler that produces intraprocedural adjoint code. Numerical tests show a
considerable speedup of medium to large scale gradient computations due to the inde-
pendence of the number of adjoint function evaluations on the number of inputs of the
underlying numerical model.

Ongoing research and development aims toward the intrinsic generation of interpro-
cedural adjoint code inside the compiler. Our objective is to be able to handle numerical
simulation programs written in Fortran 95 that result from a large variety of real-world
applications in science and engineering.

Acknowledgments

Michael Maier was supported via a subcontract by the University of Hertfordshire, Hat-
field, UK.

Malcolm Cohen from NAG Ltd., Oxford, UK has provided his expertise on technical
issues while we made ourselves familiar with the compiler’s internals.

17

References

1.

2.

3.

o o

10.

11.

12.

13.

14.

15.
16.

17.
18.

B. AVERIK, R. CARTER, AND J. MORE, The MINPACK-2 Test Problem Collection (Preliminary
Version), Argonne Technical Report ANL/MCS-TR-150, Argonne National Laboratory, 1991.

A. CURTIS, M. POWELL, AND J. REID, On the Estimation of Sparse Jacobian Matrices, J. Inst. Math.
Appl. 13 (1974), 117-119.

J. RIEHME AND U. NAUMANN, Using the Differentiation-Enabled NAGWare Fortran 95 Compiler —
A Guided Tour, Proceedings of ECCOMAS 2004, Jyvaskyld, Finland.

R. Hammer, M. Hocks, U. Kulisch, and D. Ratz, Numerical Toolbox for Verified Computing I, Springer
Series in Computational Mathematics, Springer, 1993.

R. Horst and P.M. Pardalos (eds.), Handbook of Global Optimization, Kluwer, 1995.

J. Nocedal and S. Wright, Numerical Optimization, Springer, 1999.

A. Griewank, Generalized descent for global optimization, Journal of Optimization Theory and Ap-
plications 34, 11-39, 1981.

A. Griewank, Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation, Fron-
tiers in Applied Mathematics, SIAM, 2000.

M. Cohen, U. Naumann and J. Riehme, Toward Differentiation-Enabled Fortran 95 Compiler Tech-
nology, Proceedings of the 2003 ACM Symposium on Applied Computing, 143-147, 2003,

U. Naumann and J. Riehme, A Differentiation-Enabled Fortran 95 Compiler, ACM Transactions on
Mathematical Software, 31(4), 458-474, 2005.

L. Hascoét, Uwe Naumann, and V. Pascual, TBR Analysis in Reverse Mode Automatic Differentiation,
Future Generation Computer Systems 21, 1401-1417, Elsevier, 2005.

V. Pascual and L. Hascoét: Extension of TAPENADE towards Fortran 95, in [13], Springer, 2006.

M. Biicker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.): Automatic Differentiation: Appli-
cations, Theory, and Implementations, Lecture Notes in Computational Science and Engineering, vol.
50, Springer, 2006.

U. Naumann and J. Riehme, Computing Adjoints with the NAGWare Fortran 95 Compiler, in [13],
Springer, 2006.

S. Muchnick, Advanced Compiler Design and Implementation, Morgan Kaufmann Publishers, 1997.
J. Utke, A. Lyons, and U. Naumann, Efficient Reversal of the Intraprocedural Flow of Control in
Adjoint Computations, to appear in Journal of Systems and Software, Elsevier 2006.

URL: http://ww. nts. anl . gov/ openad

J. Utke and U. Naumann, Software Technological Issues in Automatizing the Semantic Transformation
of Numerical Programs, Software Engineering and Applications, M. Hamza, ed., ACTA Press, 417-
422, 2003.

18

