RWTH Aachen

Department of Computer Science
Technical Report

WRS'04
4th International Workshop on Reduction
Strategies in Rewriting and Programming

Sergio Antoy and Yoshihito Toyama (eds.)

ISSN 0935-3232 . Aachener Informatik Berichte . AlIB-2004- 06

RWTH Aachen . Department of Computer Science . June 2004

The publications of the Department of Computer Science of RWTH Aachen (Aachen Uni-
versity of Technology) are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Preface

This volume contains the preliminary proceedings of the Fourth International Work-
shop on Reduction Strategies in Rewriting and Programming (WRS’04). The
final prooceedings of the workshop will appear as a volume of the Electronic Notes in The-
oretical Computer Science series. The workshop was held on June 2nd, 2004, in Aachen,
Germany, as part of the Federated Conference on Rewriting, Deduction, and Programming
(RDP’04).

Reduction strategies in rewriting and programming continue to attract attention. As new
strategies are discovered and investigated, new results on rewriting and on computation
under particular strategies become available. A number of programming languages, e.g.,
Elan, Maude, *OBJ* and Stratego, and systems, e.g., Clean, Curry, and Haskell, permit
the explicit definition or modification of the computational reduction strategy. Research
in this field ranges from primarily theoretical questions about reduction strategies to very
practical application and implementation issues. There is a need for a deeper understand-
ing of reduction strategies in rewriting and programming, both in theory and practice,
since they bridge the gap between unrestricted general rewriting rewriting with particular
strategies. Moreover, reduction strategies bridge investigations of operational principles,
e.g., graph and term rewriting, narrowing and lambda-calculus, and semantics, e.g., nor-
malization, computation of values, infinitary normalization and head-normalization, with
implementations of programming languages.

The workshop is the fourth edition in a series of events intended to provide a forum for
presenting and discussing cutting-edge ideas and new results, recent developments, research
directions and surveys on existing knowledge in this area. The previous WRS editions were:
WRS 2001 (Utrecht, The Netherlands), WRS 2002 (Copenhagen, Denmark), and WRS
2003 (Valencia, Spain). The next edition is planned for April 2005 in Nara, Japan.

We would like to thank the program committee for providing three timely reviews for each
submitted paper, the invited speakers for accepting our invitation, the members of the
round table and the moderator for enriching the program, Portland State University and
Tohoku University for some financial support, the local organization, and our predecessors
for leading the way.

Sergio Antoy and Yoshihito Toyama
Program Co-Chairs

Program Committee

Sergio Antoy Portland (USA)
Roberto Di Cosmo Paris (France)
Jiirgen Giesl Aachen (Germany)
Bernhard Gramlich Wien (Austria)
Salvador Lucas Valencia (Spain)

Aart Middeldorp Innsbruck (Austria)

Jaco van de Pol Amsterdam (The Netherlands)
Pierre Réty Orléans (France)

Amr Sabry Bloomington (USA)

Yoshihito Toyama Sendai (Japan)

The technical program consists of four regular papers plus one position paper, two invited
talks by Jan Willem Klop and Olivier Danvy, and a round table moderated by Salvador
Lucas with Francisco Duran, Claude Kirchner, and Ralf Laemmel.

Additional Reviewers

Florent Jacquemard, Joost-Pieter Katoen, Sebastien Limet.

Contents

Reduction Cycles (invited talk)...... i
Jan Willem Klop

Autowrite: A Tool for Term Rewrite Systems and Tree Automata
Iréne Durand

Integrating Decision Procedures in Reflective Rewriting-Based Theorem
PrOVersS . ..o
Manuel Clavel, Miguel Palomino, Juan Santa-Cruz

Some Undecidable Approximations of TRSs
Jeroen Ketema

Normalization by Evaluation (invited talk)
Olivier Danvy

Invariant-Driven Strategies for Maude
Francisco Duran, Manuel Roldan and Antonio Vallecillo

DS-forest: A Data Structure for Fast Normalization and Efficiently Imple-
menting Strategies (POSItion Paper)t
Rakesh Verma and James Thigpen

Strategies in Programming Languages Today (round table).................
Round table: Salvador Lucas moderator

Maude’s Internal Strategies (round table paper).................
Francisco Durdn

Programmable rewriting strategies in Haskell (round table paper)...........
Ralf Lammel

Reduction Cycles

Jan Willem Klop

Vrije Universiteit Amsterdam
The Netherlands
jwk@cs.vu.nl

Autowrite: A Tool for Term Rewrite Systems and Tree
Automata

Iréne Durand

LaBRI, Université Bordeaux 1, France
idurand@labri.fr

Abstract Autowrite is an experimental software tool written in Common Lisp for handling term rewrite
systems and bottom-up tree automata. A graphical interface has been written using McCLIM, (the free
implementation of the CLIM specification) in order to free the user of any Lisp knowledge. Software and
documentation can be found at
http://dept-info.labri.u-bordeaux.fr/~idurand/autowrite

Autowrite was initially designed to check call-by-need properties of term rewrite systems. For this purpose,
it implements the tree automata constructions used in [10,3,5,13] and many useful operations on terms, term
rewrite systems and tree automata. In the first version of Autowrite [4], only the call-by-need properties
and a few other simple properties were available from the graphical interface. This new version of Autowrite
includes many new functionalities. There are new functionalities related to TRSs, but the most interesting
new feature is the possibility to directly handle (load, save, combine with boolean operations) bottom-up
tree automata. In addition, we have added on-line timing information. Since the first version the run-times
have been considerably improved due to better choices of data structures. The first version of Autowrite
was used to check call-by-need for most of the examples presented in [6]. Most of the time no alternative
proofs exists. The new features allowed testing many properties of examples presented in [7] for which no
easy proof can be written.

1 Introduction

Huet and Lévy [9] showed that for the class of orthogonal term rewrite systems (TRSs)
every term not in normal form contains a needed redex (i.e., a redex contracted in every
normalizing rewrite sequence) and that repeated contraction of needed redexes results in a
normal form if it exists. However, neededness is in general undecidable. In order to obtain a
decidable approximation to neededness, Huet and Lévy introduced the subclass of strongly
sequential TRSs.

In a strongly sequential TRS, at least one of the needed redexes in every reducible term
can be effectively computed. Moreover, Huet and Lévy showed that strong sequentiality
is a decidable property of orthogonal TRSs. Strong sequentiality is based on the idea of
approximating the TRS by replacing each right-hand side of every rule bu a fresh variable
(this known as the strong approzimation). That always makes a really rough approximation
of the system.

Several authors [1,3,10,12,13,14,15] proposed decidable extensions of the class of strongly
sequential TRSs. Since Comon'’s [1] and Jacquemard’s [10] work, all the corresponding de-
cidability proofs have been expressed using tree automata techniques: typically a property
is satisfied if and only if some associated automaton recognizes the empty language. A uni-
form framework for the study of call-by-need (sequentiality) is described in [3] where classes
of term rewrite systems are parameterized by approximation mappings. Nowadays the best
known approximation (easily definable) for which call-by-need is decidable is the growing
approximation studied in [13]. No real system is strong (equal to its strong approximation).
In return, many real TRSs are already growing (equal to their growing approximation).
For these systems call-by-need is decidable which makes the growing approximation very
valuable.

2 Preliminaries

We assume that the reader is familiar with the basics of term rewriting [11] and tree
automata [2]. Familiarity with the theory of call-by-need [1,3,5,6,9,10,13,14] is helpful.

A term rewrite system (TRS for short) R over a finite signature F (set of symbols with
fixed arity) consists of rewrite rules | — r between terms in 7 (F,V) that satisfy | ¢ V
and V(r) C V(1). Here V is a denumerable set of variables. If the second condition is not
imposed we find it useful to speak of extended TRSs (eTRSs). Such systems arise naturally
when we approximate TRSs, as explained in Section 2.2.

2.1 Call-by-need

Let Ro be the eTRS R U {® — o} over the extended signature Fo = F U {o}. We say that
redex A in C[A] € T(F) is R-needed if there is no term ¢ € NF(R) such that Cle] —% t.
Finally, we say that R is in CBN (Call-By-Need)if every reducible term in 7 (F) contains
a R-needed redex.

Theorem 1. Let R be an orthogonal TRS.

1. Every reducible term contains a needed redex.
2. Repeated contraction of needed redexes results in a normal form, whenever the term
under consideration has a normal form.
g

So, for orthogonal TRSs, the strategy that always selects a needed redex for contraction
is normalizing and optimal. Unfortunately, needed redexes are not computable in general.
Hence, in order to obtain a computable optimal strategy, we need to find (1) decidable
approximations of neededness and (2) (decidable) classes of rewrite systems which ensure
that every reducible term has a needed redex identified by (1).

2.2 Approximation mappings

Let R and S be €TRSs over the same signature. We say that § approximates R if —% C —%
and NF(R) = NF(S). An approximation mapping is a mapping « from TRSs to eTRSs with
the property that «(R) approximates R, for every TRS R. Given a TRS R, we say that R
is in CBN , (a-sequential) if a(R) is in CBN.

Next we define the approximation mappings s, nv, and gr. Let R be a TRS. The strong
approximation s(R) is obtained from R by replacing the right-hand side of every rewrite
rule by a variable that does not occur in the corresponding left-hand side. The non-variable
approximation nv(R) is obtained from R by replacing the variables in the right-hand sides
of the rewrite rules by pairwise distinct variables that do not occur in the corresponding
left-hand sides. The growing approximation gr(R) is obtained from R by renaming the
variables in the right-hand sides that occur at a depth greater than 1 in the corresponding
left-hand side. Given a TRS R and « € {s,nv, gr}, it is decidable whether «(R) is in CBN.
However the decision procedures are very complex (exponential for s, doubly exponential
for nv and gr [5]) so it is impossible to show by hand that a particular system is in CBN,
even for very small systems. However showing that a system is not in CBAN can be done
more easily by exhibiting a term with no needed redex. This latter property of a term can
be proved in polynomial time with regards to the size of the term plus the size of the TRS.

The following example is taken from [12].

Ezxample 1.

fgg
f(g
Ri=1 f(d

flg(a,z),a) =y f(g(e,a),a) =y f(g(e,a),a) =y
e e R A R L C e
gle,e) =Y gle,e) —e glee) —e
The next example (R2) comes from [14]
f(g(a,x),a) —C f(
g(a,z),a) —c
[(g(2),0) ¢ f(g(.2).b) — c
Example 2. Ro =< f(k(a),z) —c nv(Re) = { fk(a),z) — c
g(b,b) —h(b) g(b,b) — h(b)
gI‘(Rz) = RQ
The last example (R3) is an extension of Berry’s example.
f(x,a,b) — h(z) f(z,a,b) — h(z
b11.3) = o) Hos) o
fla,b,2) = h(z) f(a,b,a) — h(z)
Example 3. Rs =< hk(z)) — gz, z) ar(Ra) = { h(k(z)) — g(y,y)
g(a,a) —g(a2) gla,a) — gla.a)
gla,b) —a g(a,b) — a
g(b,a) —b (g(b,a) —b

Autowrite computes «(R) for any approximation « in {s,nv, gr}.
Theorem 2. The approximation mappings s, nv, and gr are regularity preserving. O

Nagaya and Toyama [13] proved the above result for the growing approximation; the
tree automaton that recognizes (—y,)[L] is defined as the limit of a finite saturation process.
This saturation process is similar to the ones defined in Comon [1] and Jacquemard [10],
but by working exclusively with deterministic tree automata, non-right-linear rewrite rules
can be handled.

3 Real problems solved by Autowrite

3.1 Convince someone that R € CBN for a given R

It is quite easy to convince someone that a TRS is not in CBN by exhibiting a term with no
R-needed redex. However convincing someone that a TRS is in CBN is not an easy matter;
any attempt generally ends up in a long and tedious proof which in addition will work only
for the particular TRS considered. Often, in papers about Call-By-Need (or Sequentiality)
the authors always prove that some R ¢ CBN but never that some R € CBN. Usually,
they just conjecture or say they think that the TRS is in CBN.

For TRSs of reasonable size, we can use Autowrite to convince the reader that a TRSs
is in CBN. Also, when looking for a TRS in CBN and having particular properties, we were
often surprised to learn from Autowrite that the TRSs was not in CBA contrary to our
intuition. With the term with no R-needed redex exposed by Autowrite we would be right
away convinced of our mistake.

Take for instance the example of Oyamaguchi who in [14] conjectured that the TRS R,
is nv-sequential. With Autowrite one can easily check that Ro € CBN Yy, which we think
implies that it is nv-sequential.

3.2 Properties related to signature extension

Let R be a left-linear growing eTRS. In [6,7] we have studied the question whether the
property that R € CBN is preserved after adding new function symbols. For that problem,
we need to specify the underlying signature in our notation. We write (R, G) instead of
just R to indicate which signature is used. We write NF(R, F) for the set of ground normal
forms of an eTRS R over a signature F. We denote by WN(R, F) the set of all ground
terms in 7 (F) that rewrite in R to a normal form in NF(R,F). Let F C G. We denote by
WN(R, G, F) the set of terms in 7 (F) that have a normal form with respect to (R,G). We
write WNe(R, G, F) for WN(Rae, e, Fe). An easy (but unpublished) result states that for
(R,F) e CBN,if (R,{FuU@}) € CBN (for some fresh constant @) then (R,G) € CBN for
any G such that F C G.

This why Autowrite provides the possibility of testing whether (R,G) € CBN with
g = Fu{aQ}.

A normal form is external if it is not an instance of a proper non variable subterm of a
left-handside of a rewrite rule in R. The set of all ground external normal forms of a TRS
R is denoted by ENF(R).

ENF(R) # () is a sufficient condition for R € CBN being preserved CBA under signature
extension.

When ENF(R) =), orthogonality is needed in all the sufficient conditions that we have
obtained.

A rewrite rule I — r is collapsing if r € V and so is an eTRS containing a collapsing
rule.

For orthogonal nv eTRSs, the condition that R is collapsing and WN(R,G,F) =
WN(R, F) is sufficient. Autowrite helped us find examples showing that both restrictions
where essential.

The following example shows the necessity of the collapsing condition:

Example 4. Let R4 be the following orthogonal TRS:

f(xz,a,b(x1,22)) — c(i) f(c(z),c(z1),z2) — i
f(z,a,c(x1)) — g(z) — b(z,i)
f(a,a,a) — h(a) — i
f(a,b(x,2z1),22) — h(b(a,z)) — a
f(a,c(z), z1) — h(b(b(z,z1), x2)) — b(i,i)
f(b(x,z1),22,a) — h(b(c(z),x1)) — i
f(b(x,z1),b(xe,x3),b(x4,25)) — h(c(z)) —i
f(b(z,z1), b(z2, 23), c(24)) — j(a,a) —i
f(b(x,z1),c(xa), b(zs,24)) — j(a,b(x,21)) — i
f(b(z, 1), c(22), c(x3)) — j(a,c(z)) —i
f(c(z),a,a) — i(b(z,21), 22) — i
f(c(z), b(x1,22),a) — ie(x), 1) — a
f(c(z),b(z1,x2),c(x3)) — i — i
f(c(x),b(z1,x2),b(xs,24)) —

over the signature F consisting of all symbols appearing in the rewrite rules and let G =

Fu{a}.
Autowrite is able to check that
e ENF(Ry) =10,

o (R4,f) € CBNHV,
e (R4,G) € CBN yy as shown by the term with no nv(R4), G)-needed redex j(f(A, A, A), @)
with A = h(g(@)),
o WN(nv(R4),G,F) = WN(uv(R4), F).
One can verify easily that j(f(4, A, A), @) has no nv(R), G)-needed redex:
A =h(g(@)) —ny h(b(a,i)) —nv a (8(@)) —ny h(b(b(a,a),i)) —nv b(i,i)

j(f(e, A, A), @) —yy j(f(e,a,b(i,i)), @) —py j(c(i), @) —py a € NF(R,G)
j(f(A,e,A),@Q) -, j(f(b(i,i),e,a), @) =y, j(a,@) € NF(R,G)
J(f(Av A, .)> @) —nv j(f(av b(i7 i)a .)7 @) —nv j(av @) S NF(Ra g)

The next example in this section shows the necessity of the restriction to a € {s,nv}.

Example 5. Let R5 be the following orthogonal eTRS:

f(z,a,b(x1),x2) — g(z2) g(a) —i
f(b(z),z1,a, 22) — g(2) g(b(z)) — i
f(a,b(z), 21, 22) — 8;(932) h(a) — i
f(a,a,a,z) — h(b(x)) — j(i, z)
f(b(z),b(x1), b(x2), 23) — j(z,a) — a
i— i j(z,b(z1)) — b(a)

over the signature F consisting of all symbols appearing in the rewrite rules. Note that the
growing approximation only modifies the rule j(x,b(z1)) — j(i,z) into j(z,b(z1)) — j(i,y).
Let G = Fu{Q}.

Autowrite is able to check that

)
e WN(gr(Rs),F) = WN(gr(Rs), G, F).

Note that R is not collapsing. This is not essential, since adding the single collapsing rule
k(z) — = to R does not affect any of the above properties.

For an nv eTRS R, we have the nice property that WN(R,G,F) = WN(R,F) =
WN.(R,G,F) = WN4(R, F). Autowrite helped us show that the restriction to nv is essential
for this implication.

Example 6. Let Rg be the following orthogonal TRS:

f(x,a) — a h(z,a,a) — i
f(a,b(z)) — i h(z,a,b(z1)) —i
f(b(x),b(x1)) — i h(z,b(z1),a) — i
g(a,a) —i h(z,b(x1), b(x2)) — b(g(z1, f(z, 22)))
g(b(z),a) — i i — b(i)
g(x,b(z1)) — a

over the signature F consisting of all symbols appearing in the rewrite rules and let G =
Fu{a}.

Autowrite is able to check

e ENF(Rg) =0,
b WN(gr(R6>a gaf) = WN(gr(RG)a‘F):
e WN,(gr(Re¢),g,F) # WNe(gr(Res), F) as shown by the term ¢ = h(e,i,i).

4 The inside of Autowrite

The most important object in Autowrite is the tree automaton. Since the first version of
Autowrite [4], much care has been devoted to improve the representation of automata.
Consequently, the performances have improved significantly.

Each state of an automaton is represented by a unique Common Lisp object. Compar-
ing two states is then very cheap: we just need to compare the references of the states.
An automaton is represented by its signature (a list of symbols), a list of references to its
states and its rules. A TRS is represented by its signature and its rules. The set of rules
(of an automaton or a TRSs) is represented by a hash-table which given a key associated
with a left-hand side of a rule gives the corresponding right-handside (or a list of corre-
sponding right-handsides if the automaton is not deterministic). Given a left-hand side
f(q1,-..,qn), the corresponding key consists of a list containing the root symbol f followed
by the references of the states q1, ..., qn.

During the construction of an automaton (for instance during the construction of the
Cr.) the rules of an automaton may be represented as a simple list of rules. But as soon
as the construction is completed, the list of rules is converted into a hash-table as described
above.

10

(22

In general we use as much as possible “’sharing” versus ”copying” data structures and
use hashtables instead of lists. When possible we use memoizing techniques to avoid recom-
puting several times identical calls. The later may explain differences of timing when the
same operations are performed in different order.

5 The outside of Autowrite

5.1 Automata operations performed by Autowrite

Checking properties of an automaton Here are the different decision problems about
an automaton that can be solved with Autowrite.

Given an automaton A: decide whether L(.A) is empty.
Given two automata A and B: decide whether L(A) C L(B).
Given two automata A and B: decide whether L(A) = L(B).

Given two automata A and B: decide whether L(.A) N L(B) is empty.

For this latter operation the intersection automaton is not computed, rather we incre-
mentally compute its accessible states and stop as soon as a final state is found.

When a property is not satisfied Autowrite exhibits a ground term exposing the failure.

Building new automata Here are the different automata transformations or construc-
tions handled by Autowrite.

e Given an automaton A: compute Det(.A), the determinized version of A.

e Given an automaton A: compute A€ recognizing L(.A)¢ the complement of L(.A) in the
whole set of ground terms.

e Given an automaton A: compute Red(A), the reduced version of A i.e. such that every
state is accessible.

e Given two automata A and B: compute AN B.

e Given two automata A and B: compute A U B.

e Given a set of linear terms £: compute an automaton A, such that
L(Az) ={o(t) | t € £ and o is a ground substitution }.

5.2 Building automata related to a left-linear eTRSs

Let R be a left-linear eTRS. Autowrite can build the following automata:

Build an automaton Ayg(g) such that L(Anrr)) = NF(R).
Build an automaton Agnr(r) such that L(Agnrer)) = ENF(R).

The two following automata can be constructed only if R also growing:

Given a tree automaton A: build a deterministic (Toyama and Nagaya’s algorithm) or

non-deterministic (Jaquemard’s algorithm) automaton Cg 4 (as described in [13]) such

that L(Cr.4) = (=)[L(A)].
e Build an automaton Dg such that L(Dg) = () is equivalent to R € CBN [5].

11

For Cr 4, both Jacquemard’s algorithm for linear-growing systems and Toyama and Na-
gaya’s for left-linear-growing systems have been implemented. For Dy, we have implemented
the algorithm presented in [5]. In fact these three algorithms have been adapted in order
to directly compute automata with only accessible states. This complicates the code but
reduces considerably the size of the construction.

The main idea is to compute the automaton incrementally. We start start building the
rules having a constant left-hand side. This gives the first set of accessible states. Then we
compute the rules whose left-handsides contain the current accessible states which may give
new accessible states. We stop when no new accessible state is created.

5.3 General properties of eTRS
These are easy properties but may be useful for checking big TRSs.

Check whether a TRS is left-linear
Check whether a TRS is overlapping
Check whether a TRS is orthogonal
Check whether a TRS is collapsing

5.4 Properties of left-linear eTRSs

Let R be a left-linear eTRS. The first set of properties concern only the left-hand sides of
R.

e Decide whether the set of normal forms is empty.

e Decide whether the set of external normal forms is empty.
We will see in section 3.2 that non-emptiness of ENF(R) is a sufficient condition for
preserving the property that R € CBN when the signature is extended.

Much more interesting problems can be solved when we consider left-linear growing
eTRSs:

e Given a tree automaton A and a term ¢, decide whether t € (=%)[L(A)].
This is done by computing Cr 4 (see section 5.2) and check whether ¢ is recognized by
CR, A-
Note that this solves the accessibility problem (given two terms t, s, does t —% s) as a
single term s forms a regular language recognizable by a tree automaton.

e Decide whether R € CBN.
The method consists of building the automaton D (see section 5.2) and then check
whether L(Dg) = 0. If so Autowrite concludes that R € CBN, otherwise it exhibits a
ground term of L(Dg) which is a term with no R-needed redex. Note that to build D,
Autowrite must previously compute Cr, Ane(r) -

o Decide whether R is arbitrary i.e. whether there exists a ground term ¢ € 7 (F) such
that t —% - e (this means that there exists a term that may reduce to any other term).
That latter property is relevant for the problem of signature extension (see section 3.2).

Concerning checking that R € CBN, one cannot hope to use Autowrite for big TRSs
because the size of the constructed automaton Dx is in (’)(22HRH) as shown in [5].

12

6 Experimental results

In the following table we present a few results with various approximations of the above
TRSs. We present the number of states (st) and rules (rl) of the automata Cq(z) and Dy(g)
built to decide whether R € CBN,. If the TRS is not in CBN,, we give the witness
term with no «(R)-needed redex found by Autowrite. The last three columns concern the
computation of the non-deterministic automaton C, () with Jacquemard’s algorithm which
is applicable only in the linear case. Due practical reasons, the following times were obtained
on different machines.

R a | Cur) Toyama Dor (R,F) € CBN Co(r) Jacquemard
st rl| Time| st rl| Time st rl Time

Ri,F|s |17| 584| 4.24s| 32 727 0.47s| f(g(g(e,e),g(e,€)),g(e,e)) 12| 342| 14.79s
nv|21| 888| 1m9s| 45| 4055| 4.17s Yes 12| 332 14.39s

gr (29| 1688| 5m12|174| 60557|8m56s Yes 12| 200 8.63s
Ra, Fls |16] 548 18s| 32| 687| 0.4s f(g(h(b), h(b)), h(b)) 11] 380 9.12s
nv|11l| 268 5s| 17 615 0.26s Yes 11| 179 1.84s
Rs, Fls | 7| 409| 24.44s| 11 162| 0.12s| f(g(b,a),g(b,a),g(b,a)) 6| 213 5.76s
v O] 831 Tm31s| 20| 594 0.46| f(F(b,b,a),f(b,b,a), f(b, b,a)) | 6] 162| 4.065

gr| 6| 267 &8.15s| 17| 5238| 5.21s Yes NA| NA NA
Ra, Fls |14| 3181|58mlls| 12 24| 0.12s f(i,i,i) 11(1329 2m3s
nv|18| 6537| 58m2s| 85(628832|40m6s Yes 11| 249 5.7s

R4,G |nv|26]19010] 8h53m|115]353013| 26mj(f(h(g(@), h(g(@), h(g(@)), @)| 13| 434] 15.07s
Rs,Fls | 5| 668| 23.65s| 8 28| 0.08s f(i,i,i,a) 4| 286| 13.53s
nv| 5| 688 48.53s| 19|130741| 3m3s Yes 4| 94 1.25s

Rs,G [nv| 6] 1354| 4mbs| 25|160463|3m44s| f(h(b(a)),h(b(a)),h(b(a)),@) | 5| 260 7.99s
Re, Fls 5| 183 2s| 8 650 0.4s Yes 41 125 1.99s

Here we report the time taken by tests WN(R,G,F) = WN(R, F) and WN4(R,G, F) =
WN, (R, F) assuming that the correponding C,(g) automata have already been constructed.
The time corresponds then merely to checking both inclusions.

R |a WN(R,G,F) =WN(R,F)| TimeWNq(R,G,F) = WNe(R,F)| Time
Rs|gr Yes 0.88s Yes 0.67s
Re|nv Yes 36.33s Yes 36.84s

gr Yes 8.28s h(e,i,i) 8.48s

7 Comparison with other systems

We are aware of two other distributed tools implementing tree automata: Timbuk [8] and
RX [16]. Timbuk requires the installation of ocaml and RX requires the installation of
ghc while Autowrite comes self-contained. We were able able to use Timbuk (easier to
install than RX). Timbuk was initially designed for computing over-approximations of the
set of descendants (—7%)[L] for a regular language L and a TRS R and then, use it to
prove unreachability. Autowrite can be used to check reachability (whether some term
t € (—%)[L]) but only for left-linear growing systems. Timbuk can handle some non-growing
or non-linear cases. However, concerning efficiency of tree automata operations, Autowrite
seems much faster: we have tried the determinization of the automaton C, ;) computed
by Jacquemard’s algorithm which runs in 2 seconds with Autowrite and took about 3 hours
with Timbuk. The lattest version of Autowrite is able to load Timbuk specifications defining
TRSs, sets of terms and automata.

13

8

Practical information and perspectives

The Autowrite project has a web page:

http://dept-info.labri.u-bordeaux.fr/~idurand/autowrite

JFrom that page one can download the graphical version of Autowrite. The file is rather big
because it contains a big part of Common Lisp and McCLIM. But the advantage is that
Autowrite is self-contained and requires no other software. The Autowrite sources contain
about 6000 lines of Common Lisp (including the graphical interface). On the Web page one
can find installation directives, an on-line User’s Guide and useful links. The example of an
Autowrite session should be useful for a new user. The code can still be improved for better
performances. We plan to add the possibility of minimizing a tree automaton and to work
on any interesting suggestion that users might make.

References

1. H. Comon. Sequentiality, monadic second-order logic and tree automata. Information and Computation,
157:25-51, 2000.

2. H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, and M. Tommasi. Tree automata techniques
and applications, 1998. Draft, available from http://www.grappa.univ-1ille3.fr/tata/

3. I. Durand and A. Middeldorp. Decidable call by need computations in term rewriting (extended ab-
stract). In Proc. 14th CADE, volume 1249 of LNAI, pages 4-18, 1997.

4. Iréne Durand. Autowrite: A tool for checking properties of term rewriting systems. In Proceedings of
the 13th International Conference on Rewriting Techniques and Applications, volume 2378 of Lecture
Notes in Computer Science, pages 371-375, Copenhagen, 2002. Springer-Verlag.

5. Iréne Durand and Aart Middeldorp. On the complexity of deciding call-by-need. Technical Report
119698, LaBRI, 1998.

6. Iréne Durand and Aart Middeldorp. On the modularity of deciding call-by-need. In Foundations of
Software Science and Computation Structures, volume 2030 of Lecture Notes in Computer Science, pages
199-213, Genova, 2001. Springer-Verlag.

7. Iréne Durand and Aart Middeldorp. Decidable call-by-need computations in term rewriting. Submitted
to Information and Computation, 2003.

8. Thomas Genét and Valérie Viet Triem Tong. Reachability analysis of term rewriting systems with
timbuk. In Proc. 8th LPAI, volume 2250 of LNAI, pages 691-702. Springer-Verlag, 2001.

9. G. Huet and J.-J. Lévy. Computations in orthogonal rewriting systems, i and ii. In Computational Logic,
Essays in Honor of Alan Robinson, pages 396—443. The MIT Press, 1991. Original version: Report 359,
Inria, 1979.

10. F. Jacquemard. Decidable approximations of term rewriting systems. In Proc. 7th RTA, volume 1103
of LNCS, pages 362—-376, 1996.

11. J.W. Klop. Term rewriting systems. In Handbook of Logic in Computer Science, Vol. 2, pages 1-116.
Oxford University Press, 1992.

12. J.W. Klop and A. Middeldorp. Sequentiality in orthogonal term rewriting systems. Journal of Symbolic
Computation, 12:161-195, 1991.

13. T. Nagaya and Y. Toyama. Decidability for left-linear growing term rewriting systems. Information
and Computation, 178(2):499-514, 2002.

14. M. Oyamaguchi. NV-sequentiality: A decidable condition for call-by-need computations in term rewrit-
ing systems. SIAM Journal on Computation, 22:114-135, 1993.

15. Y. Toyama. Strong sequentiality of left-linear overlapping term rewriting systems. In Proc. 7th LICS,
pages 274-284, 1992.

16. J. Waldmann. Rx: an interpreter for rational tree languages.

http://www.informatik.uni-leipzig.de/~joe/rx/, 1998.

14

Integrating Decision Procedures in Reflective
Rewriting-Based Theorem Provers*

Manuel Clavel, Miguel Palomino, and Juan Santa-Cruz

Departamento de Sistemas Informaticos y Programacién
Universidad Complutense de Madrid, Spain
{clavel,miguelpt, juansc}@sip.ucm.es

Abstract We propose a design for the integration of decision procedures in reflective rewriting-based equa-
tional theorem provers. Rewriting-based equational theorem provers use term rewriting as their basic proof
engine; they are particularly well suited for proving properties of equational specifications. A reflective
rewriting-based theorem prover is itself an executable equational specification, which has reflective access to
the rewriting engine responsible of its execution to efficiently accomplish rewriting-based equational proofs.
This reflective access means that the built-in rewriting engine can be called with different rewriting com-
mands. This opens up the possibility of interpolating calls to appropriate decision procedures in the midst of
a rewriting-based proof step —typically to solve a condition in the application of a conditional equation. To
illustrate our proposal and show its feasibility, we explain how our reflective design ideas can be used to inte-
grate a decision procedure for Presburger arithmetic in the ITP tool, a reflective rewriting-based equational
theorem prover, written entirely in Maude, for proving properties of Maude equational specification.

1 Introduction

Many authors have stressed the importance of integrating decision procedures, that is, al-
gorithms that for particular theories can automatically decide whether a given formula
is valid or not, in the proof engines of (semi-)automated theorem provers. As Boyer and
Moore wrote [3]: “It is generally agreed that when practical theorem provers are finally
available they will contain both heuristic components and many decision procedures.” De-
cision procedures are indeed at the core of many industrial-strength verification systems
such as ACL2 [16], PVS [22], STeP [18], or Z/Eves [23]. The crucial role of decision proce-
dures motivates the development of ICS [10], an efficient decision procedure for a fragment
of first-order logic, that can be used as a standalone application and may also be included
as a library in any application that requires embedded deduction.

Rewriting-based theorem provers [12,19,11,15] use term rewriting [1] as their basic proof
engine, and they are particularly useful for proving properties of equational specifications.
As is well known, when a finite equational specification is Church-Rosser and terminating,
term rewriting can be used as an efficient procedure for deciding equalities between terms:
two terms are provably equal if and only if their canonical forms, which are computed by
using the equations as simplifications rules, are syntactically identical. There are, however,
many practical equational specifications that contain function symbols that are not equa-
tionally defined. Consider, for example, those specifications that use first-order arithmetic:
typically, they do not contain the equational definitions of the arithmetic function symbols
and relations. This omission poses no problem when evaluating functional expressions not
containing indeterminate values, since practical executable specification languages [7,12,9]
provide internal links to built-in implementations of the arithmetic functions and relations.
The problem arises, however, when proving properties.! In general, these proofs require solv-

* Research supported by Spanish MCYT Projects MELODIAS TIC2002-01167 and MIDAS TIC2003-01000.
! The inequality function symbol _=/=_, that is provided as a built-in function in [7,12], gives rise to similar
complications, as discussed in detail in [13, Sec.2.1.1].

ing arithmetic formulas containing indeterminate values. In those situations, the built-in
implementations of the arithmetic functions and relations are useless, and the lack of equa-
tions explicitly defining them prevents us from applying term rewriting.? In some cases,
however, we can overcome the difficulty in a general, non-ad hoc form by calling appropri-
ate decision procedures. This is the case, for example, when the formula to be solved falls
within the class of Presburger linear arithmetic formulas.

In summary, decision procedures are also important for practical rewriting-based the-
orem provers, and they must be integrated with their basic rewriting engines in such a
way that calls to the appropriate decision procedure can be interpolated in the midst of
rewriting-based proof steps. The design and implementation of the RRL [15] reflects indeed
the relevance of decision procedures in rewriting-based theorem provers, and the experi-
ments reported in [14] show that “the use of the procedure for Presburger arithmetic has
made the proofs compact and relatively easier to automate and understand in contrast to
proofs generated without using Presburger arithmetic.” In this paper we propose a novel
reflective design for the integration of decision procedures in rewriting-based equational
theorem provers. Although our proposal can be formulated in a general form using the ax-
iomatic definitions of reflective logics and reflective programming languages [5], we rather
illustrate it here by explaining the integration of a decision procedure for Presburger arith-
metic in the ITP tool.

The ITP tool [4] is an experimental rewriting-based theorem prover for proving proper-
ties of equational specifications; it accepts equational specifications presented as functional
modules of the Maude system [7]. The equational logic on which Maude functional modules
are based is an extension of order-sorted equational logic called membership equational
logic [21]. Thus functional modules support multiple sorts, subsort relations, operator over-
loading, and assertions of membership in a sort. In addition, operators can be declared with
any combination of the following equational attributes: associativity, commutativity, idem-
potency, and identity.? In the presence of equational attributes, equational simplification
using the other equations in the module does not take place at the purely syntactic level,
but is understood modulo those equational attributes. The current Maude implementation
can execute syntactic rewriting with typical speeds from half a million to several million
rewrites per second. Similarly, associative and associative-commutative equational rewriting
with term patterns used in practice can be performed at the typical rate of several hundred
thousand rewrites per second.

A key feature of the ITP is its reflective design. The tool is written entirely in Maude
and is in fact an executable specification of the formal inference system that it implements.
Maude supports reflective computations through a predefined module called META-LEVEL,
which includes different built-in functions providing direct access to the Maude rewriting
engine itself. The ITP tool extends the module META-LEVEL with equationally defined func-
tions defining the effect of the different proof commands, and uses the built-in functions

2 Notice also that, as pointed out in [13], “in fact, there is no set of equations that can allow the automatic
verification of all properties of integer expressions which contain indeterminate values [. . .]; in other words,
first order arithmetic is ‘undecidable’ [20].”

3 The one restriction is that the idempotency attribute cannot be used together with the associativity
attribute, since the combination of these two attributes is not currently supported by the Maude imple-
mentation.

16

provided by META-LEVEL to efficiently accomplish rewriting-based equational proofs.* This
direct access to the Maude rewriting engine can justify in itself the reflective design of the
ITP. But the reflective capabilities of Maude provide also the possibility of defining rewriting
commands different from the Maude’s default rewriting command, and of applying them
to specific terms in the midst of a rewriting computation. There is in fact great freedom
for defining different rewriting commands inside Maude, with ease and competitive perfor-
mance, since they will typically use the built-in functions in the module META-LEVEL as the
basic components of their definitions [5,6]. In particular, it is possible to define a rewriting
command that calls the appropriate decision procedures, in the midst of a rewriting-based
proof step, to solve, for example, a condition in a conditional equation. This capability is
the base for the integration of decision procedures in the ITP basic rewriting proof engine.

Organisation The paper is organised as follows. In Section 2 we introduce the ITP tool, its
default rewriting command (which is directly based on Maude’s default rewriting command)
and its limitations. In Section 3 we describe the implementation of a different, more gran-
ular rewriting command. In Section 4 we explain how a decision procedure for Presburger
arithmetic, written in Maude, can be integrated with the rewriting command introduced in
Section 3. This extended rewriting command makes appropriate calls to the decision proce-
dure when the condition of a conditional equation falls within the class of Presburger linear
arithmetic formulas. Finally, in Section 5, we conclude with a description of the current
state of the ITP tool, and of our plans for further extending the tool with other decision
procedures.

2 The ITP tool and its default rewriting command

The ITP tool [4] is an experimental interactive theorem prover, written in Maude, for
proving properties of Maude [6,7] functional modules, which are equational theories in
membership equational logic [21]. The fact that membership equational logic is a reflective
logic [8], and that Maude efficiently supports reflective membership equational logic com-
putations is systematically exploited in the tool. Maude supports reflective computations
through its predefined META-LEVEL module. In this module, Maude functional modules can
be metarepresented as terms of a certain sort, which can then be efficiently manipulated
and transformed by appropriate built-in functions. In particular, the module META-LEVEL
includes a built-in function metaReduce that can be used to reduce a term in a functional
module to canonical form, and a built-in function metaXmatch that can be used to try to
match two terms in a functional module. The function metaReduce takes the metarepre-
sentations of a module M and a term ¢, and it returns the metarepresentation of the fully
reduced form of ¢, using the equations in M, together with the metarepresentation of its
corresponding sort. The reduction strategy used by metaReduce coincides with that of the
reduce command in Maude. The function metaXmatch takes the metarepresentations of a
module M and two terms, ¢; and to (and four more arguments that we can safely ignore
here), and tries to match ¢; with any subterm of ¢o in the module M. If successful, it re-
turns the representations of a substitution o and a context C' such that C[o(t1)] = t2, where
we use = to denote equality modulo the equational attributes declared in the module for

4 A typical metalevel computation only pays the cost (linear in the size of the term) of changing the

representation from the metalevel to the object level and back only at the beginning and at the end of
the computation [7].

17

the operators involved; otherwise, the result is noMatch A full description of the module
META-LEVEL can be found in [7, Chapter 10].

The ITP tool extends the module META-LEVEL with sorts for representing both the I'TP
goals and the ITP database of modules about which those goals have to be proved. In ad-
dition, it contains equationally defined functions specifying the effects of the different proof
commands, like commands for carrying out inductive proofs, proofs based on case analysis,
or proofs by rewriting. The basic ITP proof command is the rwr command that rewrites
both sides of an equality to canonical form, using the equations contained in the module
associated to the goal as simplification rules. As expected, the function that implements the
rwr command directly calls the built-in function metaReduce to efficiently accomplish its
task. And this, of course, may be sufficient when the equations in the module associated to
the goal are Church-Rosser and terminating, and all the functions declared in that module
are equally defined. There are, however, many practical equational specifications that do
not satisfy such conditions. Consider, for example, the following specification in Maude of
a sorting algorithm for lists of integers; the specification of the length function is included
here for the sake of the example below.

fmod INS-SORT is

protecting INT .

sorts List

op nil : -> List [ctor]

op _:_ : Int List -> List [ctor]

op ins : Int List -> List .

op sort : List -> List .

op sorted : List -> Bool .

op length : List -> Int

vars N M : Int . var L : List

--- ins

eq ins(N, nil) = N : nil .

ceq ins(N, M : L) =N : M : L
if N <= M = true .

ceq ins(N, M : L) = M : ins(N, L)

if N > M = true .
--- sort
eq sort(nil) = nil

eq sort(N : L) = ins(N, sort(L))

--- length

eq length(nil) = 0 .

eq length(N : L) = 1 + length(L)
endfm

The module INS-SORT imports, through its protecting declaration, the predefined
module INT that defines the integers with the expected arithmetic functions and relations;
as usual, the latter are defined as Boolean functions. The module INT does not contain, how-
ever, the equational specification of the arithmetic functions but rather it provides internal
links to built-in implementations of those functions. The module INS-SORT also imports,
by default, the predefined module BOOL that defines the Boolean values. In this situation,

18

the following property can easily be proved using Skolemization and term rewriting:
V{N}(sort(N:nil) = N:nil) (1)

since, for N* a new (Skolem) constant of sort Int, the canonical form of sort(N*:nil) is syn-
tactically identical to N*:nil. Consider, however, the following property about INS-SORT:

V{N, M}(length(ins(/N, M :nil)) =2 (2)
Again, by Skolemization, it will be sufficient to prove that
length(ins(N*,M*:nil)) = 2 (3)

for N* and M* new (Skolem) constants of sort Int. Given the conditional specification
of ins, term rewriting will be useless at this point since no equations can be applied,
and it is necessary to split the goal, using a Boolean-case analysis principle, into two
subgoals that become associated to two different extensions of INS-SORT: one in which
we add to INS-SORT the equation N* <= M* = true, and another in which the equa-
tion that we add is N*¥ <= M* = false. In the first case, the proof is easily completed
by applying term rewriting. However, in the second case, term rewriting will still remain
useless since, in order to apply the second equation that specifies ins, we must prove
first that N*x > Mx = true. But this cannot be proved simply by term rewriting, even
when the module associated to this subgoal contains the equation N* <= Mx = false,
since INS-SORT does not contain any equation specifying >. Of course, for this particu-
lar case, the problem has two easy solutions: either we add to INS-SORT the equation
N > M = true if N <= M = false, or we replace the second equation specifying ins by
the conditional equation ins(N, M : L) =M : ins(N, L) if N <= M = false. But both
solutions are manifestly ad-hoc.® A more general solution consists in integrating the appro-
priate decision procedure in the function implementing the rwr command. And this can be
easily accomplished in a reflective rewriting-based theorem prover, as we show in the next
two sections.

3 A different, non-default rewriting command for the ITP

In Section 2 we explained the implementation of the ITP default rewriting command rwr:
how it uses the built-in function metaReduce, provided in the module META-LEVEL, to effi-
ciently accomplish its task; and how its applicability is limited by the fact that metaReduce
reduces terms in a module to canonical form using exclusively Maude’s reduce command.
In this section we show how the built-in function metaXmatch, also provided in the module
META-LEVEL, allows us to implement, with ease and efficiency, a different, more granular
rewriting command, nrwr, which does not call Maude’s reduce command and includes,
in particular, the implementation of the process of solving conditions when a conditional

® Solutions of this sort can be found, however, in the literature. In the otherwise excellent textbook [13], the
authors propose an extension of the OBJ’s built-in representation of the integers with an equality predicate
and with some equations that are useful for manipulating inequalities. In particular, these equations are
useful as lemmas in the correctness proofs given in the book. But the authors warn the reader that they
are not strong enough to allow all properties of integers to be proved by reduction. In general, they say,
if a property of the integers is needed for a correctness proof, then an appropriate equation will need to
be added as a lemma for the proof.

19

equation is applied to a term. In Section 4 we then explain how the implementation of nrwr
can be easily extended to a command xrwr in order to integrate decision procedures in the
rewriting process, to solve, in particular, linear arithmetic conditions in the application of a
conditional equation. A detailed explanation of how to define in Maude, using its reflective
capabilities, different rewriting commands can be found in [7, Chapter 10].

Like all ITP commands, the nrwr rewriting command is implemented in the ITP tool
by equationally defining a function in an extension of the module META-LEVEL. We call red
the function that implements the nrwr command. Like metaReduce, red takes the metarep-
resentations of a module and a term as arguments, and returns the metarepresentation of
the reduced term; also as metaReduce, equations are applied in red only from left to right.
We use the symbol = for definitional equality.

red(M,t) = redAuz(M,t, getEqs(M))

The function getFqs extracts from the metarepresentation of module M its set of equations;
we omit here its definition. The behaviour of the auxiliary function redAuzx is simple. For
each equation in the module it tries to match its left-hand side with any subterm of the
term being reduced: if there is no match, it discards the equation; otherwise it reduces the
term accordingly (after solving the condition if it is a conditional equation) and restarts
the process again from the beginning. Its implementation is immediate using the built-in
function metaXmatch.
redAux(M,t,0) = t
red(M,Clo(r)]) ift = Clo(l)]
dAuz(M,t,{l =r} U Eq) £ ’ .
redAua(M. ¢, {l =1} 9) { redAuz(M, t, Eq) otherwise

red(M,Clo(r)]) if t = Clo(l)] and
redAuz(M,t,{l = r if Cond} U Eq) £ solveCond(M, o (Cond))
redAuz(M,t, Eq) otherwise

The function solveCond tries to solve the equations in the condition by just reducing both
sides as much as possible using red.

solveCond(M,) = true
solveCond(M, {l = r} U Eq) & {solveCond(M, Eq) if red(M,1) = red(M,r)

false otherwise

Note that, as for the case of metaReduce, the function red assumes that the equations
in the module are Church-Rosser and terminating, and therefore that they can be applied
in arbitrary order and to arbitrary redexes. Of course, lack of confluence would result in
incompleteness (but not unsoundness) of the nrwr command; and, if the equations were not
terminating then nrwr would not terminate in some cases either.

4 A rewriting command with integrated decision procedures for the
ITP

We explain in this section the implementation in the ITP tool of the xrwr command that

extends nrwr by integrating a decision procedure for Presburger arithmetic in the process
of reducing a term. The technique used in the implementation of xrwr also applies to

20

the implementation of similar commands that integrate other decision procedures.® The
general technique is based on the fact that any decision procedure is a computable function,
and, therefore, by the metatheorem of Bergstra and Tucker [2], it can be equationally
specified by a finite set of Church-Rosser and terminating equations. To implement in
the ITP tool a rewriting command that integrates a certain decision procedure in the
rewriting process, all we have to do is to modify the function nrwr in such a way that the
function implementing the given decision procedure is called at the appropriate times on
the appropriate expressions. The function redPlus below is an example of this; but before
introducing this function we briefly present the decision procedure that is thus integrated
in the rewriting process.

In [24], Shostak describes a decision procedure for quantifier-free Presburger arithmetic.
Presburger expressions are those that can be built up from integers, integer variables, and
addition. (Arbitrary multiplication is not allowed, but it is convenient to use multiplication
by constants as an abbreviation for repeated addition.) Linear inequalities are constructed
by combining Presburger expressions with the usual arithmetic relations (<, <, >, >, =) and
the propositional logic connectives. The procedure to check validity of a formula ¢ consists
in expanding its negation into disjunctive normal form and expressing each disjunction as
a conjunction of linear inequalities of the form A < B. Then, ¢ is valid if and only if its
negation is not satisfiable, which is checked by looking for a solution in integers for each of
the disjunctions with the help of an integer programming algorithm. This is an NP-complete
problem and there is a certain tradeoff between using complete algorithms (in the sense of
always terminating with a correct solution) or efficient but incomplete ones. Our design
decision has been to use an efficient and terminating algorithm introduced in [24] that,
however, yields no result in some uncommon situations.

The xrwr command is implemented in the I'TP tool by an equationally defined function
redPlus that, following the general technique described above, simply modifies the function
red by introducing a new layer that corresponds to the decision procedure. It first checks
whether the term is amenable to being dealt with (if it is a linear inequality in our case)
and depending on the answer it calls a different auxiliary function.

»a [redPlusAuzl(M,t) if isLinIneq?(t)

redPlus(M. t) = { redPlusAuz2(M,t, getEqs(M)) otherwise

The function isLinlneq? decides if a term corresponds to the representation of a linear
inequality. To understand the definition of redPlusAuxl below think of the term ¢ as being,
for example, the Boolean expression N* <= Mx. We start by checking if the expression
represented by ¢ holds in M. For that, we use a function getLinlInegs that refines getEqs
with the help of isLinlneq? and extracts from the metarepresentation of a module only
those equations that involve linear inequalities. Then, if we let ¢ stand for the formula
getLinIneqs(M) — t = true, we make use of the function isSatisfiable?, that implements
the decision procedure for quantifier-free Presburger arithmetic, to check the satisfiability
of the negation of . If this negation is not satisfiable then ¢ is valid and ¢ is provably equal
to true in M, and thus can be reduced to true. If not, we try to see if it is provably equal
to false by checking the satisfiability of the negation of getLinlneqs(M) — t = false. Of

S In fact, the current implementation of the xrwr command in the ITP tool integrates, using the technique
described here, a decision procedure introduced in [25] for an extension of quantifier-free Presburger arith-
metic that permits arbitrary uninterpreted function symbols; this theory includes many of the formulas
that one tends to encounter in program verification.

21

course, because of the incompleteness of the decision procedure used to check satisfiability,
it could actually be the case that t is provably equal to true or false, but we cannot decide
it. In this uncommon situation, we call the redPlusAuz2 function.

redPlusAuz1(M,t) =

true if not(isSatisfiable?(—(getLinIneqs(M)—t=true)))
false if not(isSatisfiable?(—(getLinIneqs(M) —t= false)))
redPlusAux2(M, t, getEqs(M)) otherwise

The function redPlusAuz2 is called on terms that are not linear inequalities, or that are
linear inequalities but the (incomplete) decision procedure has not succeeded in deciding
them. Its definition is completely analogous to redAux, except for the fact that we use now

redPlus and solveCondPlus instead of red and solveCond.
redPlusAuz2(M,t, () = t
_ a [redPlus(M,Clo(r)]) ift = Clo(l)]
redPlusAus2(M, ¢, {l =} U Eq) = { redPlusAuz2(M, t, Eq) otherwise

red PlusAuxz2(M, t,{l = r if Cond}U Eq) £

redPlus(M,C[o(r)]) if t = Clo(1)] and solveCondPlus(M, o(Cond))
redPlusAuz2(M, t, Eq) otherwise

Finally, solveCondPlus deviates from solveCond in that, for equations whose terms are
Presburger expressions, it also calls the decision procedure to check their validity. The
function isPresExp? recognises those terms that represent Presburger expressions; we also
omit here its definition.

solveCondPlus(M,) = true
solveCondPlus(M,{l = r} U Eq) &

solveCondPlus(M, Eq) if (isPresEzp?(l) and isPresEzp?(r) and
isSatisfiable?(l = r)) or
redPlus(M,1) = redPlus(M, r)
false otherwise

We end this section with a high-level description of how the rewriting command im-
plemented by the function redPlus solves the difficulty we faced in proving (3) in Sec-
tion 2. Let us denote by INS-SORT+ the module INS-SORT extended with the equation
eq Nx <= M*x = false. Recall that the problem was that the additional information pro-
vided by this equation could not be used to reduce the term ins(N*,M*:nil). Now, when
we apply redPlus to the metarepresentations of INS-SORT+ and ins(N*,M*:nil), since
ing(N*,M*:nil) is not a linear inequality, the function redPlusAuz2 is called. Eventually,
the equation ins(N,M:L) = M:ins(N,L) if N > M = true will be tried, and the function
solveCondPlus will then be invoked to discharge the condition N*x > Mx = true. At this
point, since true is not a Presburger expression, redPlus is invoked to reduce both Nx > Mx
and true. Here is when the decision procedure comes into action: red Plus detects that N* >
M# is a linear inequality and calls red PlusAux1. This function extracts the linear inequalities
in INS-SORT+ and uses the decision procedure to check if they imply N* > M*x = true. Since
this is actually the case, redPlusAuxl reduces N¥ > M* to true. At this point, the condition
N* > Mx = true is discharged and ins(N*,M*:nil) is reduced to M*:ins(N*:nil). The
function redPlus will then eventually reduce length(M*:ins(N*:nil)) to 2, as required,
using the equations in INS-SORT+ as simplification rules.

22

5 Conclusions and future work

In this work we have shown how the reflective design of a rewriting-based theorem prover
like the ITP can be easily extended with decision procedures. The smoothness with which
we have been able to integrate in the ITP tool an extension of the decision procedure
described in Section 4 (which can be applied to the more general case of quantifier-free
Presburger arithmetic with uninterpreted function symbols [25]) is encouraging. In this
latest version of the ITP we have proved, as basic examples, the correctness of three different
sorting functions, specifying respectively the insertion, merge, and quicksort algorithms.
The correctness proofs for the merge and quicksort algorithms proceed by induction on the
length of the list and make heavy use of the integrated decision procedure.

As a follow-up of this work we plan to add other decision procedures to our tool. As
we have already pointed out, their integration will follow exactly the same steps as those
described here and thus should pose no special difficulty. An important task ahead is to
combine these decision procedures to be able to tackle expressions that involve diverse
semantic constructs that belong, not just to one, but to several of them. In this regard,
the recent generalisation of the Nelson-Oppen combination method to order-sorted theories
[26] and the recent studies clarifying the relation between Nelson-Oppen’s and Shostak’s
procedures [17] seem particularly relevant. Finally, we also plan to compare in more detail
our reflective design for the integration of decision procedures in the ITP with the non-
reflective one used in RRL. This comparison should be possible and interesting since both
tools pursue similar goals and share a similar logical foundation.

Acknowledgements

We would like to thank José Meseguer for many interesting discussions on the subject of
reflective rewriting-based theorem provers. We also thank José Meseguer, Peter Olveczky,
and the anonymous referees for their detailed and helpful comments on earlier versions of
this paper.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, August 1999.

2. J. Bergstra and J. Tucker. Characterization of computable data types by means of a finite equational
specification. In J. W. de Bakker and J. van Leeuwen, editors, Automata Languages and Programming,
Seventh Colloquium, volume 81 of Lecture Notes in Computer Science, pages 76-90. Springer-Verlag,
1980.

3. R. S. Boyer and J. S. Moore. Integrating decision procedures into heuristic theorem provers: A case
study for arithmetics. Machine Intelligence, 11:83-124, 1988.

4. M. Clavel. The ITP tool’s home page. March 2004. The site contains the latest version of the ITP tool,
the documentation currently available, and several examples of proof scripts of different complexity.
http://geminis.sip.ucm.es/"clavel/itp.

5. M. Clavel. Reflection in Rewriting Logic: Metalogical Foundations and Metaprogramming Applications.
CSLI Publications, 2000.

6. M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J. F. Quesada. Maude:
Specification and programming in rewriting logic. Theoretical Computer Science, 2002.

7. M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Talcott. Maude Manual
(Version 2.1). Manual distributed as documentation of the Maude system. http://maude.cs.uiuc.edu,
2004.

23

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.
21.

22.

23.

24.

25.

26.

M. Clavel, J. Meseguer, and M. Palomino. Reflection in membership equational logic, many-sorted
equational logic, Horn logic with equality, and rewriting logic. In F. Gadducci and U. Montanari,
editors, Proc. Fourth International Workshop on Rewriting Logic and its Applications, volume 71 of
Electronic Notes in Theoretical Computer Science, pages 63-78. Elsevier, 2002.

R. Diaconescu and K. Futatsugi. CafeOBJ Report. The Language, Proof Techniques, and Methodologies
for Object-Oriented Algebraic Specification, volume 6 of AMAST Series in Computing. World Scientific,
1998.

J.-C. Filliatre, S. Owre, H. Ruef}; and N. Shankar. ICS: integrated canonizer and solver. In G. Berry,
H. Comon, and A. Finkel, editors, Computer Aided Verification: 13th International Conference, CAV
2001, Paris, France, July 18-22, 2001, Proceedings, volume 2102 of Lecture Notes in Computer Science.
Springer-Verlag, 2001.

J. Goguen, C. Kirchner, H. Kirchner, A. Mégrelis, J. Meseguer, and T. Winkler. An introduction to
OBJ3. In S. Kaplan and J.-P. Jouannaud, editors, Conditional Term Rewriting Systems, 1st Interna-
tional Workshop Orsay, France, July 8-10, 1987, Proceedings, volume 308 of Lecture Notes in Computer
Science, pages 2568—-263. Springer-Verlag, 1988.

J. Goguen, A. Stevens, H. Hilberdink, and K. Hobley. 20BJ: A metalogical framework theorem prover
based on equational logic. Philosophical Transactions of the Royal Society of London, 339:69-86, 1992.
J. A. Goguen and G. Malcolm. Algebraic Semantics of Imperative Programs. The MIT Press, 1996.

D. Kapur and X. Nie. Reasoning about numbers in Tecton. In Z. W. Ras and M. Zemankova, editors,
Proc. of 8th International Symposium on Methodologies for Intelligent Systems (ISMI1S’94), volume 869
of Lecture Notes in Computer Science, pages 57—70. Springer-Verlag, 1994.

D. Kapur and H. Zhang. An overview of rewrite rule laboratory (RRL). Journal of Computer and
Mathematics with Applications, 29(2):91-114, 1995.

M. Kauffmann and J. S. Moore. An industrial strength theorem prover for a logic based on common
lisp. IEEE Transactions on Software Engineering, 23(4):202-213, April 1997.

S. Krsti¢ and S. Conchon. Canonization for disjoint union of theories. In F. Baader, editor, Automated
Deduction — CADE-19: 19th International Conference on Automated Deduction, Miami Beach, FL,
USA, July 28 — August 2, 2003, Proceedings, volume 2741 of Lecture Notes in Computer Science, pages
197-211. Springer-Verlag, 2003.

Z. Manna and the STeP group. STeP: Deductive-algorithmic verification of reactive and real-time
systems. In R. Alur and T. A. Henzinger, editors, Computer Aided Verification (CAV 96), volume 1102
of Incs, pages 415-418. Springer-Verlag, July/August 1996.

U. Martin and J. M. Wing, editors. First International Workshop on Larch. Springer-Verlag, 1992.

E. Mendelson. Introduction to Mathematical Logic. Van Nostrand, 2nd edition edition, 1979.

J. Meseguer. Membership algebra as a logical framework for equational specification. In F. Parisi-
Presicce, editor, Recent Trends in Algebraic Development Techniques, 12th International Workshop,
WADT’97, Tarquinia, Italy, June 3-7, 1997, Selected Papers, volume 1376 of Lecture Notes in Computer
Science, pages 18-61. Springer-Verlag, 1998.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In D. Kapur, editor, 11th
International Conference on Automated Deduction (CADE), volume 607 of Lecture Notes in Computer
Science, pages 748-752. Springer-Verlag, 1992.

M. Saaltink. The Z/EVES system. In ZUM’97: The Formal Specification Notation, 10th International
Conference on Z Users, volume 1212 of Incs, pages 72-85. Springer-Verlag, April 1997.

R. E. Shostak. On the SUP-INF method for proving Presburger formulas. Journal of the Association
for Computing Machinery, 24:529-543, 1977.

R. E. Shostak. A practical decision procedure for arithmetic with function symbols. Journal of the
Association for Computing Machinery, 26:351-360, 1979.

C. Tinelli and C. Zarba. Combining decision procedures for theories in sorted logics. Technical Report
04-01, Department of Computer Science, The University of lowa, Feb. 2004.

24

Some Undecidable Approximations of TRSs

Jeroen Ketema

Department of Computer Science
Faculty of Sciences, Vrije Universiteit Amsterdam
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Abstract In this paper we study the decidability of reachability, normalisation, and neededness in n-shallow
and n-growing TRSs. In an n-growing TRS, a variable that occurs on both the left-hand and right-hand
side of a rewrite must be at depth n on the left-hand side an at a depth greater than n on the right-hand
side. In an n-shallow TRS, a variable that occurs on both the left-hand and right-hand side of a rewrite rule
must be at depth n on both sides.

The concepts n-growing and n-shallow are generalisations of the concepts growing and shallow, as
introduced respectively by Jacquemard and Comon. For both shallow and growing TRSs reachability, nor-
malisation, and neededness are decidable. However, as we show, these results do not generalise to n-growing
and n-shallow TRSs. Consequently, a needed reduction strategy cannot be effectively employed in n-growing
or n-shallow TRS.

1 Introduction

As is well-known, given an arbitrary term rewriting system (TRS), the following questions
are undecidable.

e Reachability: is a term reachable from another term [4]?
e Normalisation: does a term have a normal form [1]?
e Neededness: does a term have a needed redex [4]7

However, for some classes of TRSs these properties are decidable. These classes are often
used as approximations. That is, let R and & be TRSs over the same signature, then S is
an approximation of R if -7, C—%5 and NFr = NFs. Here, —7 and —% denote the rewrite
relations of R and &, and NFi and NFgs denote the sets of normal forms of R and S.

Two remarks are in order with respect to classes for which reachability, normalisation,
and neededness are decidable. First, in most of these classes the shapes of the rewrite rules
are restricted. See, for example, [4,2,5,9]. Second, given the decidability of neededness a
needed reduction strategy can effectively be employed. See, for example, [4,3,2,5].

In this paper we explore the boundaries of the decidability of reachability, normalisa-
tion, and neededness. We do this by introducing n-growing and n-shallow TRSs. These
TRSs are generalisations of the growing and shallow TRSs as introduced respectively by
Jacquemard [5] and Comon [2]. Although reachability, normalisation, and neededness are
decidable for growing and shallow TRSs we show that these properties are undecidable for
our generalisations.

The n-growing and n-shallow TRSs are also closely related to four other classes of
TRSs for which reachability, normalisation, and neededness are undecidable [5,6,7]. We
show that n-growing and n-shallow TRSs are different from those classes of TRSs except
in one instance.

We proceed as follows. In Sect. 2 we give some preliminary definitions. Then, in Sect. 3
we define two variants of Post’s Correspondence Problem (PCP). We use these variants in
Sect. 4 and Sect. 5 to show that reachability, normalisation, and neededness are undecidable
for n-growing and n-shallow TRSs. In Sect. 6 we compare the n-growing and n-shallow TRSs

to the other four classes of TRSs for which reachability, normalisation, and neededness are
undecidable. In the final section, Sect. 7, we give some directions for further research.

2 Preliminaries

Throughout this paper we assume I’ is an arbitrary alphabet. By I'* and I'" we denote the
set of finite strings and the set finite non-empty strings over I'. Moreover, by € we denote
the empty string, and if s € I'*, then |s| denotes the length of s.

If s,t € I'*, then s -t denotes the concatenation of s and ¢t. The empty string € is the
neutral element for concatenation. If a € I" and n € N, then a® = € and "' = a - a™.

By Ter(X, X) we denote the set of terms over the signature X' and the set of variables
X. The set X, denotes the subset of X' whose elements have arity n. If t € Ter(X, X), then
Var(t) denotes the set that contains the variables that occur in ¢ We call ¢ linear if each
variable occurs at most once in t.

We confuse signatures consisting only of unary function symbols and alphabets. Hence,
given a unary function symbol f and an n € N we have fO(z) = x and f"*!(z) = f(f"(z)).

We denote the set of positions of a term ¢ € Ter(X, X) by Pos(t) C N*. The depth of a
subterm at p € Pos(t) is |p|. When ¢t is linear, each = € Var(t) has a unique depth. In that
case, di(z) denotes the depth of z in .

By R = (X, R) we denote a term rewriting system (TRS) with the signature X and
the set of rewrite rules R. The elements of R are denoted | — r. As usual in the study
of approximations we only require | ¢ X. We do not require not Var(r) C Var(l). The
transitive reflexive closure of — is denoted by —*. The rule [— r is called linear if [and r
are linear.

Let R = (X, R) be a TRS and s,t € Ter(X, X). The term ¢ is reachable from s if s —* ¢.
Moreover, s normalises if s —* t and if ¢t is a normal form. A redex in s is needed if a
descendant of the redex is contracted in every reduction from s to a normal form. A needed
reduction strategy contracts in every term an arbitrary needed redex.

3 Variants of Post’s Correspondence Problem

In this section we introduce two variants of Post’s Correspondence Problem (PCP). In the
definition of the variants we use the following notation.

Definition 1. Let s € I't. Given an n € N, define s by

o sl =" if s =qa with a € I', and
o sl =gn.tllifs=q .t withae'and t e I't.

0 n+1

Note that this is not exponentiation. That is defined as s” = € and s = s-s". Assuming
I' = {a,b}, we have (ab)!? = aabb and (ab)? = abab.
We now define three kinds of pairs. We use them in the definition of PCP and the two

PCP variants.

Definition 2. Let u,v € I't and n a natural number. Then, (u,v) is called a PCP pair,
(ul™, v is called an n-PCP pair, and (ul™ - el*?) o[. eln]) is called a padded n-PCP pair
if &k = max{|ul, |v|} — |u|, I = max{|u]|, |v|} — |v|, and e & T".

26

The intuition behind a padded n-PCP pair is that it is an n-PCP pair in which the
shortest string is padded with e symbols. This gives both strings in the pair the same
length. We have for any padded n-PCP pair (u” - ¥, v™ - €/™) that

nlful + k) = [al" - el)] = Jol)) — o] + 1)

and that
((ul) el fe =], (o) el fe i o]) = b, ol
We now define PCP and the two PCP variants.

Question 1 (PCP). Let P be a finite set of PCP pairs. Does there exist an m > 1 such that
UL eve Uy =V + .. Uy With (ug,v;) € Pforalll <i<m?

Question 2 (n-PCP). Let P be a finite set of n-PCP pairs. Does there exist an m > 1 such
that uy ... upy =v1 ... Uy with (u;,v;) € P for all 1 <i < m?

Question 3 (Padded n-PCP). Let e ¢ I" and let P be a finite set of padded n-PCP pairs.
Does there exist an m > 1 such that (u; - ... upy)[e := € = (v - ... vp)e = € with
(uj,v;) € Pforall 1 <i<m?

The three questions can be transformed into each other, as there exists for each kind of
pair a related pair of each of the other kinds. For example, assuming again I = {a, b},
we have for the PCP pair (a,ab) that (a™, (ab)") is a related n-PCP pair and that
((ae)l™, (ab)) is related padded n-PCP pair. This leads to the following theorem.

Theorem 1. PCP, n-PCP, and padded n-PCP are reducible to each other forn > 1.

Proof. Using the previously described relations between the pairs, this follows directly from
the definitions of PCP, n-PCP and padded n-PCP. 0O

By the previous theorem and the undecidability of PCP [8], we have the following.

Corollary 1. The n-PCP and padded n-PCP questions are undecidable for n > 1.

For padded n-PCP note that if (uy - ... um)[e := €] = (v1 - ... vy)[e := €], then the
number of e occurrences must be equal in uy ... Uy, and vy - ... - vy,. If not, the lengths
of (ug ... - um)le:=¢€ and (vy - ... vy)[e := ¢ are different which contradicts equality.

Using the previous fact and assuming a string rewrite system (SRS) with for all a € I
and e & I" the rewrite rules a-e — e-a and e-a — a - e, we can rephrase padded n-PCP.

Question 4 (Padded n-PCP). Let A = I' U {e} and let P be a finite set of padded n-
PCP pairs. Does there exist an m > 1 and an s € A" such that uq - ... - u, —* s and

V] Uy — s with (ug,v;) € P forall 1 <i<m?

4 Undecidable n-Growing Term Rewriting Systems

In this section we describe our first class of TRSs for which reachability, normalisation, and
neededness are undecidable. The class is defined as follows.

Definition 3. Let [— r be a rewrite rule. The rule is n-growing if it is linear and if for
all x € Var(l) N Var(r) it holds that d;(z) = n and d,(x) > n. A TRS is n-growing if all its
rewrite rules are n-growing.

27

Observe that in n-growing TRSs we restrict the shapes of the rewrite rules. Moreover,
observe that n-growing rewrite rules and TRSs are closely related to the following rewrite
rules and TRSs, as defined by Jacquemard [5].

Definition 4. Let [— r be a rewrite rule. The rule is growing if it is linear and if for all
x € Var(l) N Var(r) it holds that d;(z) = 1. A TRS is growing if all its rewrite rules are
growing.

Obviously, for n = 1 the n-growing TRSs form a sub-class of the growing TRSs. For
n > 1 the n-growing TRSs do not form a sub-class. We have, for example, the n-growing
rewrite rule

fr(@) — [().

For n > 1 this rewrite rule is not growing, as d (g (z) =n > 1.
The growing TRSs do not form a sub-class of the n-growing TRSs for any n. We have,
for example, the growing rewrite rule

flx) = .

This rewrite rule is not n-growing, as d,(z) = 0.

Using tree automata techniques, Jacquemard [2] proves that reachability and normali-
sation are decidable for growing TRSs. Durand and Middeldorp [3] prove that neededness
is decidable for growing TRSs. As each 1-growing TRS is growing, we also have decidability
of reachability, normalisation, and neededness for 1-growing TRSs. However, as we show
next, these results do not generalise to n-growing TRSs with n > 1.

Theorem 2. Let n > 1. Reachability is undecidable for n + 1-growing TRSSs.

Proof. We reduce n-PCP to reachability in an n + 1-growing TRS. Suppose we have a finite
set P of n-PCP pairs. Define the signature X' = I' W {c,d, f, g, h}, where & denotes the
disjoint union. The arities are as follows

e c and d are constants,
e g, h and the elements of I" have arity 1, and
e f has arity 2.

Also define for all (u,v) € P and a € I' the following rewrite rules

[\

ot

(=] w
= L I D = -

/‘\/\/&/‘\/‘\/‘\

As is easy to see, we have a finite number of n-growing rewrite rules. Hence, the rewrite
rules form an n-growing TRS. By n > 1, we have for the TRS that d is reachable from c if
and only if n-PCP has a solution for P.

28

To see that d is reachable from c if n-PCP has a solution for P, suppose that uy-... -t =
V1 ... Uy is & solution. We can now construct the reduction sequence

¢ =) f(g" (um(d)), g" (vm(d)))
iy (0" (@), 0" (01 - v ()
—(3) h”+1(f(u1 el um(d),vl et ’Um(d)))

Asui ... Uy =v1-... Upy, we can, for some k, extend the reduction sequence to
c—* W (f(uy ... um(d), vy - .. vm(d)))
=7y D (f(d,d)

—%, f(dd)
—(6) d

Hence, d is reachable from c.

To see that n-PCP has a solution for P if d is reachable from ¢, note that the only way
to reduce ¢ to d is to first perform an (1)-step and a number of (2)-steps, then to perform a
(3)-step and a number of (4)-steps, and to finally perform a (5)-step and a number of (6)-
steps. Also note that the reduction sequence only ends in d if the (1)-step and the (2)-steps
give us a term f(g"(uy-... - um(d)),g"(v1-...-vn(d))) with ug -... Uy =v1 ... Uy. That
is, as n-PCP has a solution for P.

Thus, n-PCP is reducible to a reachability problem in an n+ 1-growing TRS. As n-PCP
is undecidable for n > 1, so is reachability for n 4 1-growing TRSs with n > 1. O

Observe that if we assume n = 0 in the previous proof, the rewrite rule

f(a"(x),a"(y)) — W (f(z,y))

collapses to

flzy) = W (f(z,y)) .

As a consequence, d is no longer reachable form c¢. Something like this was to be expected,
as reachability is decidable for 1-growing TRSs.
We now extend the above result to normalisation and neededness.

Theorem 3. Let n > 1. Normalisation is undecidable for n + 1-growing TRSs.

Proof. We reduce n-PCP to normalisation in an n + 1-growing TRS employing the proof
showing that n-PCP is reducible to reachability.
Note that adding the n + 1-growing rewrite rule

hn+1($) N hn+1(hn+1($)) (7)

to the TRS from the proof of Theorem 2 does not change the fact that d is reachable from
¢ if and only if n-PCP has a solution for P. However, by adding the rule, if d is reachable
from ¢, the term d becomes the only normal form of ¢, else ¢ does not have a normal form.
By this fact and the fact that d is reachable from c if and only if n-PCP has a solution for
P, we have that ¢ has a normal form if and only if n-PCP has a solution for P.

Thus, n-PCP is reducible to normalisation in an n 4+ 1-growing TRS. As n-PCP is
undecidable for n > 1, so is normalisation for n 4 1-growing TRSs with n > 1. O

29

Theorem 4. Let n > 1. Neededness is undecidable for n 4+ 1-growing TRSs.

Proof. We reduce n-PCP to neededness in an n + 1-growing TRS employing the proof
showing that n-PCP is reducible to normalisation.

By the proof of Theorem 3 only d can be a normal form of c. Hence, the only redex in
¢ is needed if and only if d actually is a normal form of ¢. By this fact and the fact that ¢
normalises if and only if n-PCP has a solution for P, we have that ¢ has a needed redex if
and only if n-PCP has a solution for P.

Thus, n-PCP is reducible to neededness in an n + 1-growing TRS. As n-PCP is unde-
cidable for m > 1, so is neededness for n 4+ 1-growing TRSs with n > 1. O

As a consequence of the previous theorem we have that a needed reduction strategy
cannot be effectively employed in an n + 1-growing TRS with n > 1.

5 Undecidable n-Shallow Term Rewriting Systems

In this section we describe our second class of TRSs for which reachability, normalisation,
and neededness are undecidable. The class is defined as follows.

Definition 5. Let [— 7 be a rewrite rule. The rule is n-shallow if it is linear and if for all
x € Var(l) N Var(r) it holds that d;(z) = d,(x) = n. A TRS is n-shallow if all its rewrite
rules are n-shallow.

Observe that, like n-growing TRSs, n-shallow TRSs have restrictions on the shapes of
their rewrite rules. The n-shallow TRSs form neither a sub-class nor a super-class of the
n-growing TRSs. Consider, for example, the n-shallow rewrite rule

[(@) — f(x).

This rewrite rule is not n-growing, as dn () (z) = dgn(y)(z). We also have the n-growing
rewrite rule

fr(z) — [().

This rewrite rule is not n-shallow, as d (g (z) < dpni1(g)(2).
The n-shallow rewrite rules and TRSs are closely related to the following rewrite rules
and TRSs, as defined by Comon [2].

Definition 6. Let [— r be a rewrite rule. The rule is shallow if it is linear and if for all
x € Var(l)NVar(r) it holds that d;(z) = 1 and d,(xz) < 1. A TRS is shallow if all its rewrite
rules are shallow.

Obviously, for n = 1 the n-shallow TRSs form a sub-class of the shallow TRSs. For
n > 1 the n-shallow TRSs do not form a sub-class. For example, consider again the n-
shallow rewrite rule

[() — ().

For n > 1 this rewrite rule is not shallow, as d gn () (%) = dfn(y)(v) =n > 1.

30

The shallow TRSs do not form a sub-class of the n-shallow TRSs for any n. This follows
by the same example that shows that the growing TRSs do not form a sub-class of the
n-growing TRSs for any n.

Using tree automata techniques, Comon [2] proves that reachability and normalisation
are decidable for shallow TRSs. Durand and Middeldorp [3] prove that neededness is de-
cidable for shallow TRSs. As each 1-shallow TRS is growing, we also have decidability of
reachability, normalisation, and neededness for 1-shallow TRSs. However, as we show next,
these results do not generalise to n-shallow TRSs with n > 1.

In the proofs below, we denote [a, b] with a,b € A =I"U{e} and e ¢ I" a unary function
symbol. We also use the following definition.

Definition 7. Let u,v € AT with |u| = |[v|. For a,b € A and v/,v" € A*, define [u,v](z)

o [u,v](z) = [a,b](z) if u=a and v = b, and
o [u,v](x) = [a,b]([v/,v'](x)) ifu=a-u and v =0

Theorem 5. Let n > 1. Reachability is undecidable for n + 1-shallow TR.SS.

Proof. We reduce padded n 4+ 1-PCP to reachability in an n + 1-shallow TRS. Suppose we
have a finite set P of padded n + 1-PCP pairs and an e ¢ I'. Let A = I' U {e}. Define the
signature X' = {[a,b] | a,b € A} W {c, d}, with each [a,b] a unary function symbol and ¢, d
constants. Also define for all (u,v) € P and a € A the following rewrite rules

¢ — [u,v](c) (1)

a,a](c) —d (2)

[a,a](d) — d 3)

Moreover, define for all u,u',v,v" € A" with ule := €] = u'[e := €], v[e := €] = V'[e := €],
and |u| = |u'| = |[v] = |v/] = n+ 1 the following rewrite rule

[u, v)(z) — [, v'](2) (4)

This last rewrite rule can be considered as a transitive application to the strings u and v
of the rewrite rules given just before Question 4.

As is easy to see, we have a finite number of n-shallow rewrite rules. Hence, the rewrite
rules form an n + 1-shallow TRS. By n > 1, we have for the TRS that d is reachable from
¢ if and only if padded n + 1-PCP has a solution for P.

To see that d is reachable from c if padded n-PCP has a solution for P, suppose that
for some s € AT we have uy - ... Uy —* sand v1 - ... v, —* s. That is, padded n-PCP
has a solution for P. We can construct the following reduction sequence

¢ =) [u1,v1](c)

sk
=) [Ug « e U, U1 - .. U (€)
Asuy-...-upm = sand vy -... v, —F s, we can, for some k, extend the reduction sequence
to
c—" Uy Up, v U]

—ty [5.5)(0)
_>(2) P

—) @

31

Hence, d is reachable from c.

To see that n-PCP has a solution for P if d is reachable from ¢, note that the only way
to reduce ¢ to d is to first perform a number of (1)-steps, then to perform a (2)-step, and to
finally perform a number of (3)-steps and to interleave all these steps with (4)-steps. Also
note that the reduction sequence only ends in d if the (1)-steps together with a number of
(4)-steps give us a term [s, s](c) for some uy ... upy —* sand vy - ... vy, —* s. That is,
as padded n-PCP has a solution for P.

Thus, padded n+ 1-PCP is reducible to a reachability problem in an n+ 1-shallow TRS.
As padded n + 1-PCP is undecidable for n > 1, so is reachability for n + 1-shallow TRSs
withn >1. 0O

Observe that if we assume n = 0 in the previous proof, the last rewrite rule collapses to
[a, b](x) — [a, b](x)

with a,b € A. As a consequence, d is no longer reachable from ¢. Something like this was
to be expected, as reachability is decidable for 1-shallow TRSs.
Note that by the TRS specified in the previous proof an even stronger property holds.

Theorem 6. Let n > 1. Reachability is undecidable for n+ 1-shallow TRSs in which every
rewrite rule has at most one variable which occurs both at the left-hand and right-hand side
of the rewrite rule.

We now extend the above result to normalisation and neededness.
Theorem 7. Let n > 1. Normalisation is undecidable for n + 1-shallow TRSs.

Proof. We reduce padded n 4+ 1-PCP to normalisation in an n + 1-shallow TRS employing
the proof showing that n-PCP is reducible to reachability.
Note that adding for all u,v € AT with |u| = |v| < n+ 1 the n + 1-shallow rewrite rule

[u, v}(d) = [u, v](d) ()

to the TRS from the proof of Theorem 5 does not change the fact that d is reachable from
¢ if and only if padded n-PCP has a solution for P. However, by adding the rule, if d is
reachable for ¢, the term d becomes the only normal form of ¢, else ¢ does not have a normal
form. By this fact and the fact that d is reachable from c if and only if padded n + 1-PCP
has a solution for P, we have that ¢ has a normal form if and only if padded n + 1-PCP
has a solution for P.

Thus, padded n + 1-PCP is reducible to normalisation in an n + 1-shallow TRS. As
padded n + 1-PCP is undecidable for n > 1, so is normalisation for n 4 1-shallow TRSs
withn >1. O

Theorem 8. Let n > 1. Neededness is undecidable for n + 1-shallow TRSs.

Proof. We reduce padded n + 1-PCP to neededness in an n + 1-shallow TRS. We employ
the proof showing that padded n + 1-PCP is reducible to normalisation.

By the proof of Theorem 7 only d can be a normal form of ¢. Hence, the only redex in
¢ is needed if and only if d actually is a normal form of c¢. By this fact and the fact that
¢ normalises if and only if padded n + 1-PCP has a solution for P, we have that ¢ has a
needed redex if and only if padded n + 1-PCP has a solution for P.

32

Thus, padded n+ 1-PCP is reducible to neededness in an n+ 1-shallow TRS. As padded
n + 1-PCP is undecidable for n > 1, so is neededness for n + 1-shallow TRSs with n > 1.
O

As a consequence of the previous theorem we have that the needed reduction strategy
cannot be effectively employed in an n + 1-shallow TRS with n > 1.

6 Related Work

In this section, we compare n-growing and n-shallow TRSs to four other classes of TRSs
for which reachability, normalisation, and neededness are undecidable [5,6,7]. We use the
following five rewrite rules in the comparison.

fx,x) — g(x) (1)
f(f(x) = (2)
flg(x)) — ¢ 3)
frz) — (@) (4)
[(x) — f"(x) (5)

Note that (1) and (2) are neither n-growing nor n-shallow, that (3) is n-growing and n-
shallow, and that (4) and (5) are respectively n-growing and n-shallow.

The first class of TRSs, defined by Jacquemard [5], requires for all [— r and = €
Var(l) N Var(r) that d;(z) < 1. This definition is equal to the definition of growing, except
that rewrite rules no longer need to be linear. Hence, 1-growing and 1-shallow TRSs form
sub-classes. For n > 1 the n-growing and n-shallow TRSs do not form sub-classes by (4)
and (5). Moreover, for all n the n-growing and n-shallow TRSs do not form super-classes
by (1), which is not n-growing or n-shallow as the left-hand side is not linear.

The second class of TRSs, again defined by Jacquemard [5], requires for all [— r and
x € Var(l) N Var(r) that either d;(z) < 1 or d,(x) < 1 and that | — r is linear. Again,
this definition is equal to the definition of growing, except that in this case d,.(z) < 1 is
allowed. Consequently, 1-growing and 1-shallow TRSs again form sub-classes. For n > 1 the
n-growing and n-shallow TRSs do not form sub-classes by (4) and (5). Moreover, for all n
the n-growing and n-shallow TRSs do not form super-classes by (2), which is not n-growing
or n-shallow as dg(x) = 0.

The third class of TRSs, also defined by Jacquemard [6], requires for all [— r that [
and r are of the shape f(t1,...,t;) with f € Y UX and with ¢; either a variable or a ground
term for all 1 <4 < k. For all n the n-growing and n-shallow TRSs do not form sub-classes
by (4). Moreover, for all n the n-growing and n-shallow TRSs do not form super-classes by
(1), which is not n-growing or n-shallow as the left-hand side is not linear.

The fourth class, defined by Jacquemard, Meyer, and Weidenbach [7], requires the
rewrite rules to be of the following shapes.

fg(z)) — h(k(x))
flz) =t
t— f(x)

33

with f,g,h,k € X1 and t a ground term. For all n the classes of n-growing and n-shallow
TRSs do not form sub-classes by (3). Moreover, for all n # 2 the n-growing and n-shallow
TRSs do not form super-classes by f(g(x)) — h(k(z)). For n = 2 the n-growing do not
form super-classes again by f(g(x)) — h(k(z)), but the n-shallow TRSs do obviously form a
super-class. Hence, Jacquemard, Meyer, and Weidenbach already proved that reachability,
normalisation, and neededness are undecidable for 2-shallow TRSs.

7 Further Directions

At least two questions remain. First of all, are reachability, normalisation, and needednes
undecidable for TRSs in which for each rewrite rule I — r we have for all z € Var(l)NVar(r)
that d;(z) = n and d,(z) < n? Second, are reachability, normalisation, and neededness also
undecidable for n-shallow and n-growing in case we require the TRSs to be orthogonal? It
is highly likely that this is the case. However, our proofs are no longer applicable, as they
make heavy use TRSs which are not orthogonal.

Acknowledgements. 1 would like to thank Jan Willem Klop, Aart Middeldorp, Femke
van Raamsdonk, and Roel de Vrijer and the anonymous referees for their helpful comments
and remarks.

References

[y

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

2. H. Comon. Sequentiality, monadic second-order logic and tree automata. Information and Computation,
157(1-2):25-51, 2000.

3. I. Durand and A. Middeldorp. Decidable call by need computations in term rewriting. In W. McCune,
editor, Proc. of the 14th Int. Conf. on Automated Deduction (CADE-14), volume 1249 of LNCS, pages
4-18. Springer-Verlag, 1997.

4. G. Huet and J.-J. Lévy. Computations in orthogonal rewriting systems. In J.-L. Lassez and G. Plotkin,
editors, Computational Logic, pages 395-443. MIT Press, 1991.

5. F. Jacquemard. Decidable approximations of term rewriting systems. In H. Ganzinger, editor, Proc. of
the 7th Int. Conf. on Rewriting Techniques and Applications (RTA ’96), volume 1103 of LNCS, pages
362-376. Springer-Verlag, 1996.

6. F. Jacquemard. Reachability and confluence are undecidable for flat term rewriting systems. Information
Processing Letters, 87(5):265-270, 2003.

7. F. Jacquemard, C. Meyer, and C. Weidenbach. Unification in extensions of shallow equational theories.
Technical Report MPI-I-98-2-002, Max-Planck-Institut fiir Informatik, 1998.

8. E. L. Post. A variant of a recursively unsolvable problem. Bulletin of the American Mathematical Society,
52:264-268, 1946.

9. H. Seki, T. Takai, Y. Fujinaka, and Y. Kaji. Layered transducing term rewriting system and its recog-

nizability preserving property. In S. Tison, editor, Proc. of the 13th Int. Conf. on Rewriting Techniques

and Applications (RTA 2002), volume 2378 of LNCS, pages 98-113. Springer-Verlag, 2002.

34

Normalization by Evaluation

Olivier Danvy

University of Aarhus
Denmark
danvy@brics.dk

Invariant-Driven Strategies for Maude*

Francisco Duran, Manuel Roldan and Antonio Vallecillo

DLCC, Universidad de Mélaga, Campus de Teatinos, Malaga, Spain
{duran,mrc,av}@lcc.uma.es

Abstract We propose generic invariant-driven strategies that control the execution of systems by guarantee-
ing that the given invariants are satisfied. Our strategies are generic in the sense that they are parameterized
by the system whose execution they control, by the logic in which the invariants are expressed, and by the
invariants themselves. We illustrate the use of the strategies in the case of invariants expressed in proposi-
tional logic. However, the good properties of Maude as a logical and semantic framework, in which many
different logics and formalisms can be expressed and executed allow us to use other logics as parameter of
our strategies.

1 Introduction

To deal with nonterminating and nonconfluent systems, we need good ways of controlling
the rewriting inference process. In this line, different languages offer different mechanisms,
including approaches based on metaprogramming, like Maude [2], or on strategy languages,
like ELAN [1]. However, although the separation of logic and control greatly simplifies such
a task, these mechanisms are sometimes hard to use, specially for beginners, and usually
compromise fundamental properties like extensibility, reusability, and maintainability.

Formalisms like Z and UML suggest an interesting alternative, since they allow to de-
fine invariants or constraints as part of the system specifications. Although executing or
simulating Z specifications may be hard, we can still find tools like Possum [8] or Jaza [11],
which can do a reasonable simulation of such specifications. We find something somehow
similar in UML, where, by specifying OCL constraints on our specifications, they can be
made executable [12].

The execution or simulation of specifications with constraining invariants is typically
based on integrating somehow the invariants into the system code. However, such an in-
tegration is clearly unsatisfactory: the invariants get lost amidst the code, and become
difficult to locate, trace, and maintain. Moreover, the programs and the invariants to be
satisfied on them are usually expressed in different formalisms, and live at different levels
of abstraction: invariants are defined on programs. Therefore, it is interesting to have some
way of expressing them separately, thus avoiding the mixing of invariants and code.

Maude does not provide direct support for expressing execution invariants. However, it
does provide reflective capabilities and support to control the execution process, being also
an excellent tool in which to create executable environments for various logics and models
of computation [3]. Thus, it turns out to be a very good candidate for giving support to
different types of invariants, which may be expressed in different formalisms.

In this paper we propose generic invariant-driven strategies to control the execution of
systems by guaranteeing that the given invariants are always satisfied. Our strategies are
generic in the sense that they are parameterized by the system whose execution they control,
by the logic in which the invariants are expressed, and by the invariants themselves. The
good properties of Maude as a logical and semantic framework [7], in which many different

* Partially supported by projects TIC 2001-2705-C03-02 and 2002-04309-C02-02.

logics and formalisms can be expressed and executed allows us to say that other logics and
formalisms may be used as parameters of our strategies. We will use in this paper the case
of propositional logic, although we have also experimented with future time linear temporal
logic.

The paper is structured as follows. Section 2 serves as a brief introduction to rewriting
logic and Maude. Section 3 introduces the definition of strategies in Maude, and serves as a
basis for the introduction of invariant-guided strategies in Section 4. Section 5 describes as
an example the case of invariants expressed using propositional calculus. Finally, Section 6
draws some conclusions.

2 Rewriting Logic and Maude

Maude [2] is a high-level language and a high-performance interpreter and compiler in the
OBJ [4] algebraic specification family that supports membership equational logic [10] and
rewriting logic [9] specification and programming of systems.

Membership equational logic is a Horn logic whose atomic sentences are equalities t = ¢/
and membership assertions of the form ¢ : S, stating that a term ¢ has sort S. Such a logic
extends order-sorted equational logic, and supports sorts, subsort relations, subsort poly-
morphic overloading of operators, and the definition of partial functions with equationally
defined domains.

Rewriting logic is a logic of change that can naturally deal with state and with highly
nondeterministic concurrent computations. In rewriting logic, the state space of a dis-
tributed system is specified as an algebraic data type in terms of an equational specification
(X, E), where X' is a signature of sorts (types) and operations, and F is a set of (condi-
tional) equational axioms. The dynamics of a system in rewriting logic is then specified by
rewrite rules of the form ¢ — t/, where ¢t and ¢’ are X-terms. These rules describe the local,
concurrent transitions possible in the system, i.e. when a part of the system state fits the
pattern ¢ then it can change to a new local state fitting pattern ¢’. Rules may be conditional,
in which case the guards act as blocking pre-conditions, in the sense that a conditional rule
can only be fired if the condition is satisfied.

In Maude, object-oriented systems are specified by object-oriented modules in which
classes and subclasses are declared. A class is declared with the syntax

class C' | a1:51, ..., an:Sy,

where C' is the name of the class, a; are attribute identifiers, and .5; are the sorts of the
corresponding attributes. Objects of a class C are then record-like structures of the form

O :Clai:vy, ..., vy >,

where O is the name of the object, and v; are the current values of its attributes. Objects
can interact in a number of different ways, including message passing. Messages are declared
in Maude in msg clauses, in which the syntax and arguments of the messages are defined.

In an object-oriented system, a state, which is called a configuration, has the structure
of a multiset made up of objects and messages that evolves by rewriting using rules that
describe the effects of the communication events of objects and messages. The general form
of such rewrite rules is

37

crl [r] :
<01 : Ci | attsy > ... < O : Cp | atts, >
M, ... M,
=> < Oy : CXI | atts% > ... <Oy ka | atts% >
<Q1: Cf | atts{ > ... < Qp : CJ | attsy >
My ... M,
if Cond .

where r is the rule label, M;...M,, and M{Mé are messages, O1...0, and Q1...Q),, are
object identifiers, C1...Cy, Cj,...C] and CY...C}/ are classes, i1...i}, is a subset of 1...n, and
Cond is a Boolean condition (the rule’s guard). The result of applying such a rule is that:
(a) messages M;...M,, disappear, i.e., they are consumed; (b) the state, and possibly the
classes of objects O, ...0;, may change; (c) all the other objects O; vanish; (d) new objects
Q1...Qp are created; and (e) new messages M{Mé are created, i.e., they are sent. Rule
labels and guards are optional.

For instance, the Maude module DINING-PHILOSOPHERS below specifies the well known
problem of the hungry philosophers. The problem assumes five philosophers sitting around
a table, on which five plates and five chopsticks are laid out. A philosopher can do two
things, either think, or eat. When he thinks, a philosopher does not need the chopsticks; on
the other hand, when thinking, he ends up being hungry. To eat, he needs the two chopsticks
which are disposed on each side of his plate. Once he has finished eating, the philosopher
releases the chopsticks and starts thinking, and then will be hungry again, etc.

Philosophers are modeled using a class with two attributes. The attribute state rep-
resents the state of the philosopher—which can be thinking, hungry, or eating—and
the attribute sticks represents the number of chopsticks he holds. Moreover, a message
chopstick(/N) has been defined, indicating that the chopstick NV is free. Philosophers and
chopsticks are named with numbers from one to five, in such a way that the chopsticks
besides the philosopher ¢ are ¢ and ¢ 4+ 1, or ¢ and 1 if ¢ is 5. Note the subsort declaration
Nat < 0id making a natural number a valid object identifier.

The system behavior is defined by four rules, each one representing a local transition of
the system. For example, the rule labeled as grab may be fired when a philosopher object
I is hungry and it receives a message indicating that the chopstick J is free, being the
chopstick J one of the chopsticks I can grab. As a result, the message is consumed, and
the number of chopsticks grabbed by the philosopher is increased. The syntax for rules and
conditional rules is, respectively, r1 [l : t =>¢ and 1 [] : t =>t' if ¢, with [a rule label, ¢
and t’ terms, and ¢ a rule condition.

(omod DINING-PHILOSOPHERS is

protecting NAT .

subsort Nat < 0id . *** Object identifiers are numbers!

sort Status .
ops thinking hungry eating : -> Status [ctor] .

class Philosopher | state : Status, sticks : Nat .
msg chopstick : Nat -> Msg .

vars I J K : Nat .

op _can‘use_ : Nat Nat -> Bool .
eq I can use J = (I == 7J) or (s(I) ==J) or (I == 5 and J == 1) .

38

rl [hungry] :
< I : Philosopher | state : thinking >
=> < I : Philosopher | state : hungry > .
crl [grab] :
chopstick(J)
< I : Philosopher | state : hungry, sticks : K >
=> < I : Philosopher | sticks : K + 1 >
if I can use J .
rl [eat] :
< I : Philosopher | state : hungry, sticks : 2 >
=> < I : Philosopher | state : eating > .
rl [full]
< I : Philosopher | state : eating >
=> < I : Philosopher | state : thinking, sticks : 0 >
chopstick(I)
chopstick(s(I)) .
endom)

In Maude, those attributes of an object that are not relevant for an axiom do not need
to be mentioned. Attributes not appearing in the right-hand side of a rule will maintain
their previous values unmodified.

3 Execution strategies in Maude

System modules and object-oriented modules in Maude do not need to be Church-Rosser
and terminating, therefore the system state may evolve in different directions depending on
the order in which we apply the rules describing such a system. Maude provides two built-in
strategies: The rewrite command follows a top-down lazy rule-fair strategy, and the frewrite
command follows a position-fair bottom-up strategy. Although enough in many cases, the
rewriting inference process could not terminate or go in many undesired directions. Thanks
to the reflective capabilities that Maude provides, we can define our own strategies, which
in fact are defined using statements in a normal module.

Maude provides key metalevel functionality for metaprogramming and for writing exe-
cution strategies. In general, strategies are defined in extensions of the predefined module
META-LEVEL by using predefined functions in it, like metaReduce, metaApply, metaXapply,
etc. as building blocks. META-LEVEL also provides sorts Term and Module, so that the rep-
resentations of a term T and of a module M are, respectively, a term T of sort Term and a
term M of sort Module. Constants (resp. variables) are metarepresented as quoted identi-
fiers that contain the name of the constant (resp. variable) and its type separated by a dot
(resp. colon), e.g., >true.Bool (resp. ’B:Bool). Then, a term is constructed in the usual
way, by applying an operator symbol to a comma-separated list of terms. For example, the
term S |= True of sort Bool in the module PL-SATISFACTION below is metarepresented as
the term ’_|=_[’S:State, ’True.Formula] of sort Term.

Of particular interest for our current purposes are the partial functions metaReduce and
metaXapply.1

op metaReduce : Module Term "> Term .
op metaXapply : Module Term Qid > Term .

1 'We have simplified the form of these functions for presentation purposes, since we do not need here their
complete functionality. See [2] for the actual descriptions.

39

metaReduce takes a module M and a term 7', and returns the metarepresentation of the
normal form of 7" in M, that is, the result of reducing 7' as much as possible using the
equations in M. metaXapply takes as arguments a module M, a term 7', and a rule label
L, and returns the metarepresentation of the term resulting from applying the rule with
label L in M on the term T

To illustrate the general approach, and as a first step towards our final goal, let us
suppose that we are interested in a strategy that rewrites a given term by applying on it all
the rules in a given module, in any order. The strategy should just try to apply the rules
one by one on the current term until it gets rewritten. Once a rule can be applied on it, the
term resulting from such an application becomes the current term, and we start again. If
none of the rules can be applied on a term, then it is returned as the result of the rewriting
process. Such a strategy can be specified as follows:

op rew : Module Term -> Term .
op rewAux : Module Term ContStruct -> Term .

eq rew(M, T) = rewAux(M, T, cont(M)) .
eq rewAux(M, T, C) = T if final(C) .
ceq rewAux(M, T, C)
= if T’ :: Term
then rewAux(M, T’, reset(C))
else rewAux(M, T, C’)
fi
if C’ := next(C) /\ T’ := metaXapply(M, T, getLabel(C’)) .

The operation rew takes two arguments: the (metarepresentation of) the module de-
scribing the system whose execution we wish to control, and the term representing the
initial state of the system. rewAux takes three arguments: the module describing the sys-
tem, the term being rewritten, and a continuation structure with the labels of the rules in
the module, which allows us to iterate on the labels in some order. The strategy gives as
result a term which cannot be further rewritten.

In the equations defining rew we assume a function cont that takes a module and
returns a continuation structure for it, a structure which contains the module’s rule labels
and keeps control on the last label requested. We also assume the following functions on the
sort ContStruct of continuation structures: £inal, which returns a Boolean value indicating
whether there are more labels in the structure; reset, which initializes the structure, that
is, it returns the structure with the next label set to be the first one; next, which returns
the structure with the next label set to be the next one; and getLabel, which returns the
next label in the sequence. Note that we do not assume a concrete structure; depending
on the particular structure used, and on the definition of these operations, the order in
which the labels are considered may be different, which provides extra adaptability for our
strategy.

Note the use of the metaXapply function. A rewriting step T Loris accomplished
only if the rule labeled L is applicable on the term 7T, being 7’ the term returned by
metaXapply (M, T, L).Themembership assertion “I” :: Term” is used to check whether
the result of the application of the rule is of sort Term or not. Note that in case the rule
cannot be applied, metaXapply returns an error term in a supersort of Term.

40

4 Using invariants to guide the system execution

Basically, an invariant is a property that a specification or program always requires to be
true. Instead of using an external monitor to verify a given system specification against
an invariant, we propose using invariants as part of our specifications, making it internal.
We suggest exploiting the possibility of defining execution strategies to drive the system
execution in such a way that we can guarantee that every obtained state complies with
the invariant, thus avoiding the execution of actions conducting the system to states not
satisfying the invariant. If we want to define a strategy which guarantees the invariant, we
may use a variant of the strategy in Section 3: We just need to check that the invariant is
satisfied by the initial state and by every candidate to new state in a rewriting step.

To implement this new strategy we assume a satisfaction Boolean predicate _|=_ such
that, given a state of the system S and an invariant I, then S |= I evaluates to true or
false depending on whether the state S satisfies the invariant I or not. The new strategy
requires two additional parameters: (the metarepresentation of) the invariant predicate,
and (the metarepresentation of) the module defining the satisfaction relation in the logic
used for expressing such an invariant. The new strategy can be written as follows:

op rewInv : Module Module Term Term “> Term .
op rewInvAux : Module Module Term Term ContStruct -> Term .

ceq rewInv(M, M’, T, I)
= rewInvAux(M, M’, T, I, cont(M))
if metaReduce(M’, ’_|=_[T, I]) = ’true.Bool .
ceq rewInvAux(M, M, T, I, C) = T if final(C) .
ceq rewInvAux(M, M’, T, I, C)
= if T’ :: Term
and-then metaReduce(M’, ’_|=_[T’, I]) == ’true.Bool
then rewInvAux(M, M’, T’, I, reset(C))
else rewInvAux(M, M’, T, I, next(C))
fi
if L := getLabel(next(C)) /\ T’ := metaXapply(M, T, L) .

Now the auxiliary function is invoked if the initial state satisfies the invariant. Notice
that the operator rewInv is declared using ~>, meaning that if not reduced, it will return an
error term of sort [Term], which represents the kind of the sort Term and all sorts related to
it. A kind is semantically interpreted as the set containing all the well-formed expressions in
the sorts determining it, and also error expressions. Moreover, the strategy takes a rewriting
step only if the term can be rewritten using a particular rule and it yields to a next state
which satisfies the invariant. An invariant I is checked by evaluating the expression T’

|= I, for a given candidate transition T' L', 7. Note however that the rewriting process
takes place at the metalevel, and we use metaReduce for evaluating the satisfaction of the
property.

Notice also that the rules describing the system can be written independently from the
invariants applied to them, and the module specifying the system is independent of the logic
in which the invariants are expressed, thus providing the right kind of independence and
modularity between the system actions and the system invariants. In fact, the strategy is
parameterized by the system to be executed (M), the invariant to be preserved (I) and the
module defining the satisfaction relation (M’). This allows using different logics to express
the invariant without affecting the strategy or the system to execute.

41

5 Defining logics for driving the system execution: Propositional
calculus

The logic in which the invariants are expressed is independent of the system to be executed.
This would allow us to use one logic or another to express our invariants depending on our
needs. We illustrate our approach with propositional logic.

If we want to use a specific logic to express the invariant predicates we need to define the
syntax of such a logic and a satisfaction relation for it. Given a set of atomic propositions,
which corresponds to the sort Proposition, we define the formulae of the propositional
calculus in the following module PROPOSITIONAL-CALCULUS.

(fmod PROPOSITIONAL-CALCULUS is
sort Proposition Formula .
subsort Proposition < Formula .

ops True False : -> Formula .

op _and_ : Formula Formula -> Formula [assoc comm prec 55]
op _or_ : Formula Formula -> Formula [assoc comm prec 59]
op _xor_ : Formula Formula -> Formula [assoc comm prec 57]
op not_ : Formula -> Formula [prec 53]

op _implies_ : Formula Formula -> Formula [prec 61]

op _iff_ : Formula Formula -> Formula [assoc prec 63]

vars A B C : Formula .

eq True and A = A .

eq False and A = False .

eq A and A = A .

eq False xor A = A .

eq A xor A = False .

eq A and (B xor C) = A and B xor A and C .

eq not A = A xor True .

eq A or B = A and B xor A xor B .

eq A implies B = not(A xor A and B)

eq A iff B = A xor B xor True .
endfm)

The module PROPOSITIONAL-CALCULUS introduces the sort Formula of well-formed propo-
sitional formulae, with two designated formulae, namely True and False, with the obvious
meaning. The sort Proposition, corresponding to the set of atomic propositions, is de-
clared as subsort of Formula. Proposition is by the moment left unspecified; we shall see
below how such atomic propositions are defined for a given system module. Then, the usual
operators are declared. These declarations follow quite closely the definition of Boolean
values in Maude and OBJ3 [4], which are based on the decision procedure proposed by
Hsiang [6]. This procedure reduces valid propositional formulae to the constant True, and
all the others to some canonical form which consists of an exclusive or of conjunctions.

The following module PL-SATISFACTION defines a satisfaction relation for propositional
formulae.

(fmod PL-SATISFACTION is
protecting PROPOSITIONAL-CALCULUS
sorts State Formula .
op _|=_ : State Formula -> Bool .

42

var S : State .
vars F F’ : Formula .

eq S |= (F and F’) = (S |=F) and (S |=F’) .
eq S |= (F xor F’) = (8 |=F) xor (S |=F’) .
eq S |=not F =not S |=F .

eq S |= True = true .
eq S |= False = false .
endfm)
As said above, the satisfaction relation _|=_ is a Boolean predicate such that, given a

state (the sort State will be defined for each particular problem) and a formula, evaluates
to true or false depending on whether the given state satisfies such a formula or not.
Notice that _|=_ takes a propositional formula as second argument and returns a Boolean
value, being Bool a predefined sort in Maude.

If we want to use propositional calculus to define invariant predicates for a given prob-
lem, we need to define the atomic propositions of interest for such a problem. For example,
we could define an invariant predicate for guiding the execution of our philosophers example
in such a way that we avoid deadlock situations.

The system would go into deadlock if we reach a state where each philosopher has
one chopstick. We define what a State is—in this example, a Configuration—and the
proposition fork (P, N), which holds if the philosopher P has N chopsticks, in the following
module:

(omod DINING-PHILOSOPHERS-PL-PREDS is
protecting DINING-PHILOSOPHERS .
including PL-SATISFACTION .
subsort Configuration < State .
op forks : 0id Nat -> Proposition .

vars I N M : Nat .
var C : Configuration .

eq < I : Philosopher | sticks : N > C |= forks(I, M)
=N ==
endom)

Once we have defined the atomic proposition forks, it may be used to define the in-
tended invariant for guiding the execution. Thus, the invariant to avoid deadlock states
may be expressed as follows:

not (forks(1, 1) and forks(2, 1) and forks(3, 1) and forks(4, 1) and forks(5, 1))
Let us denote £ and M the metarepresentations of a term ¢ and a module M . We

can rewrite an initial state for the DINING-PHILOSOPHERS system, given by a constant
initial-state, with the strategy rewInv with the previous invariant as follows.

red rewInv(DINING-PHILOSOPHERS,
DINING-PHILOSOPHERS-PL-PREDS,
initial-state,
not (forks(1, 1) and forks(2, 1) and
forks(3, 1) and forks(4, 1) and forks(5, 1))) .

With this command, we execute the system by allowing the nondeterministic application
of the rules in the module, but with the guarantee that the invariant is satisfied by all the
states in the trace.

43

6 Concluding Remarks

We have proposed generic invariant-driven strategies, which control the execution of systems
by guaranteeing that the given invariants are satisfied. Our strategies are generic in the sense
that they are parameterized by the system whose execution they control, by the logic in
which the invariants are expressed, and by the invariants themselves. This parameterization,
together with the level of modularization of the approach, allows improving quality factors
such as extensibility, understandability, usability, or maintainability. We have illustrated
its use with invariants expressed in propositional calculus. However, the good properties
of Maude as a logical and semantic framework [7], in which many different logics and
formalisms can be expressed and executed, allow us to use other logics as parameters of our
strategies.

The strategy rewInv given in Section 4, although valid for logics like propositional
logic, has to be slightly modified in the case of logics like temporal logics. We have already
experimented with future time linear temporal logic (LTL for short). In this case, the
satisfaction of LTL formulae cannot be decided considering particular states, but we need
to look at complete traces. For example, consider the invariant restriction [JP (P always
holds). This invariant requires any future state to maintain the property P, and obviously
this cannot be guaranteed just considering the actual state. Our approach to deal with
temporal logic is based on the one proposed by Havelund and Rosu in [5] for monitoring
Java programs, based on the progressive transformation of the invariant restrictions when
the system state evolves, possibly obtaining a new invariant when the system state changes.

References

1. P. Borovansky, H. Cirstea, H. Dubois, C. Kirchner, H. Kirchner, P.-E. Moreau, C. Ringeissen, and
M. Vittek. ELAN v 3.3 user manual. Technical report, INRIA Lorraine & LORIA, 1998.

2. M. Clavel, F. Durén, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Talcott. Maude manual.
Available in http://maude.cs.uiuc.edu., 2004.

3. M. Clavel, F. Duran, S. Eker, J. Meseguer, and M.-O. Stehr. Maude as a formal meta-tool. In J. Wing,
J. Woodcock, and J. Davies, eds., FM’99 (Vol. II), LNCS 1709:1684-1704. Springer, 1999.

4. J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Introducing OBJ. In J. Goguen
and G. Malcolm, editors, Software Engineering with OBJ: Algebraic Specification in Action. Kluwer,
2000.

5. K. Havelund and G. Rosu. Rewriting-based techniques for runtime verification. To appear in Journal
of Automated Software Engineering.

6. J. Hsiang. Refutational theorem proving using term rewriting systems. Artificial Intelligence, (25):255-
300, 1985.

7. N. Marti-Oliet and J. Meseguer. Rewriting logic as a logical and semantic framework. vol. 9, pp. 1-87.
Kluwer, 2002.

8. T. McComb and G. Smith. Animation of Object-Z specifications using a Z animator. In Procs. SEFM’03,
2003.

9. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer
Science, 96:73-155, 1992.

10. J. Meseguer. Membership algebra as a logical framework for equational specification. In F. Parisi-
Presicce (ed.), Recent Trends in Algebraic Development Techniques, LNCS 1376:18-61. Springer, 1998.

11. M. Utting. The Jaza animator. http://www.cs.waikato.ac.nz/ marku/jaza/.

12. J. Warmer and A. Kleppe. The Object Constraint Language: Getting Your Models Ready for MDA.
Addison-Wesley, 2003.

44

Data Structures for Fast Normalization and Strategies*

Rakesh Verma and James Thigpen

Computer Science Department, University of Houston, TX 77204-3010 USA. rmverma@cs.uh.edu

Abstract Much of the time in normalization is spent in traversing the term with the goal of finding a
match with a rule. In this paper, we present the DS-list and DS-forest - new data structures for speeding up
normalization. The DS-forest can also be used to allow the efficient and smooth integration of many popular
strategies for rewriting. We present results showing that the DS-list and a preliminary implementation of
DS-forest outperform the best strategy of Laboratory for Rapid Rewriting (LRR) presented in 1999. We also
present results for two other strategies that we recently implemented in LRR.

1 Introduction

Fast rewriting is needed for equational programming, rewrite based formal verification meth-
ods, and symbolic computing systems. In any implementation of rewriting techniques effi-
ciency is a critical issue [5]. Much of the time in normalizing a term is spent in traversing
the term to find the next match. In this paper, we present the DS-list and DS-forest, new
data structures for speeding up normalization and efficiently, naturally implementing many
different strategies for rewriting. We first present the DS-list structure and then a more
sophisticated DS-forest structure. Results on eight benchmarks show that these structures
outperform the best strategy of LRR [9] presented in 1999. We also present results for two
other strategies that we recently implemented in LRR. DS-forest is the overall winner.

2 The Data Structures

Previously [8], we presented an optimization designed to reduce the needless traversal of the
expression called “dont-reduce signatures”, which has been implemented in LRR 1.2. The
new data structures proposed are expected to yield even greater benefits. We present the
DS-list and DS-forest as separate structures here for convenience, although the structures
can be built on top of the expression tree or graph itself analogous to a threaded list/tree
structure. The advantage of building them on the expression is that there is no need to
maintain correspondence between the nodes in the DS-list/DS-forest and the expression.

The DS-list and DS-forest cut down on the needless traversal of the expression graph by
keeping track of the subexpressions that have a defined symbol at the root. The DS-forest
also allows for efficient implementation of the leftmost/rightmost innermost/outermost
strategies. A defined symbol is a symbol that appears as the top symbol of some left-
hand side in the rewrite system. The rest of the symbols are called constructors. Note that
“built-in” symbols such as arithmetic and relational operators, etc., are not included in the
list of defined symbols. This happens naturally since no rules can be given for built-in’s.

DS-list. The DS-list is a circular doubly-linked list that contains pointers to subterms
of the current term being reduced that have defined symbols at the top. As the given term
is parsed, the DS-list is initialized to contain pointers to subterms with defined symbols at
the root occurring in the given term.

* Research supported in part by NSF grant CCF 0306475

A pointer to the current node in the list is always maintained. During reduction, this
pointer is advanced from the current node to the next, attempting to match the subexpres-
sion pointed to by the node. Upon finding a match, the list is updated to contain nodes
pointing to any new resulting subexpressions with defined symbols at the top. After this
the reduction procedure continues traveling around the DS-list, checking for matches. Re-
duction is complete when the DS-list size is 0 or when a complete traversal around the list
is made without any matches.

DS-forest. The DS-forest is a collection of DS-trees with the roots of the trees linked
in a doubly linked list. Each DS-tree is a rooted tree in which each node has 2 data fields,
viz., expr and dist, and 5 pointer fields for pointers to its: parent, leftmost child, rightmost
child, left sibling and right sibling. The expr field stores a pointer to a subexpression with
a defined symbol at its root. Initially, the parent of node n in the DS-tree is the closest
ancestor of n labeled by a defined symbol in the given expression. After some successful
matches the parent of node n in the DS-tree is the closest ancestor of n labeled by a defined
symbol in the resulting expression. If the parent pointer is not null, then the node also
contains, in the dist data field, the distance to the parent in the current expression to be
normalized. The children of each node are linked into a doubly linked list for easy insertions
and deletions. The DS-forest is initialized when the expression to be normalized is parsed.

Updating the DS-forest. For updates to the data structure on successful matches a
template of a DS-forest is constructed for each rhs, which tracks the defined symbols and
their distance in the rhs. The root nodes of the template are linked into a doubly linked list.
This template has special nodes called “holes” corresponding to the variables in the rhs.
In the template the dist field is initialized for each defined symbol relative to the closest
ancestor (if any) in the rhs. If there is no such ancestor it is set to 0. On a successful match
the forest must be updated to remove the nodes corresponding to defined symbols in the
template (non-variable) part of the left-hand side and a copy of the rhs template must be
inserted into the DS-forest with appropriate field values. This means that the dist field of
root nodes and the holes in the template must be updated. The parent pointer of the roots
node in the template being inserted is set to the parent pointer of the node in the DS-forest
corresponding to the subexpression that matched the lhs. Special care must be taken to
handle the correspondence between the DS-forest and the expression to be normalised.

Variables in the rules give rise to two issues. First, if a variable has more occurrences
in the rhs than in the lhs, then duplication of the substitution part of DS-forest must be
done in order to maintain the tree structure. Hence, a DS collection based on DAG’s as
the basic unit may be more efficient in this case. If DAG’s are chosen, then the parent
and dist fields are not unique - details of how to resolve these issues are left for a full
version of this paper. For rewrite engines that share common subexpressions completely
(such as Smaran), no duplication is necessary. The second issue is that the top-most defined
symbols in the substitution part of each variable in the lhs are needed to update the DS-
tree correctly (when the variable matches a subexpression whose top part is labeled with
constructors). This may require a potentially time-consuming traversal of the substitution
part of a variable and could reduce the advantage of the DS-tree structure somewhat.
However, the dont-reduce optimization we had introduced earlier in [8] can cut down this
traversal time partially because it allows us to ignore the maximal subexpressions that
contain only constructors in the substitution.

Matching with the DS-forest. The search for a match begins at a node, n, in the
DS-forest and continues in the expression to be normalised using the expr field of the node

46

to the expression. If the match fails, one of the children (or a parent) of node n at which
the match failed is selected for initiating another match attempt. The child (or parent) is
selected based on the reduction strategy being implemented. If the match succeeds, then
the update procedure is called and following that the next node for a match attempt is
selected based on the reduction strategy.

3 Implementing Strategies with the DS-forest

Implementing the leftmost/rightmost outermost/innermost strategies is straightforward
with the DS-forest, if pointers are kept to the leaf nodes in the forest as well (for in-
nermost strategies). The leftsibling field is used for leftmost and the rightsibling field is
used for rightmost strategies.

For outermost strategies, matching attempts are initiated starting from roots and pro-
ceed to leaves in the DS-forest until the first match is found, say at node n. After a match,
if the rules are all left-linear, then match attempts proceed to the closest ancestor of n
such that the sum of the dist fields of the node from n to that ancestor does not exceed
the maximum height of any lhs, say m. If there is no such ancestor, then match attempts
proceed downwards, otherwise a match attempt is initiated at the ancestor of n. The idea
is to take advantage of the fact that a left-linear rule that did not match earlier at a node
higher than m levels up in the expression tree will still not match after a successful match
at a node that is deeper than its height. In programming applications, the rules are usually
left-linear so this backtracking method is expected to outperform routinely backtracking to
root nodes. For innermost strategies, normalization proceeds from leaves towards roots. On
unsuccessful match attempts, the procedure continues upwards. On a successful match the
procedure initiates subsequent matches at the lowest defined symbols in the rhs instance
(this idea can be improved somewhat but we omit the optimizations here for lack of space).

4 Experimental Results

We have implemented the DS-list and a preliminary version of DS-forest (dist fields are
ignored) structure in LRR 1.2. A linux version of LRR 1.2 and some examples can be down-
loaded from http://www.cs.uh.edu/"rmverma/linux_lrr . LRR consists of a term graph
interpreter TGR, and a term graph rewriter that tables or stores the history of its re-
ductions, called Smaran, based on the congruence closure normalization algorithm. This
algorithm treats rules as equations, hence it keeps equivalence classes of terms. Terms are
represented implicitly via signatures and there is at most one special signature in each class
called the unreduced signature of the class (for details, please see [7,1]).

Version 1.2 of LRR provides: (i) the original reduction strategies for Smaran and TGR
described in [9], which we call the Smaran strategy and TGR strategy respectively, (ii) an
efficient version of leftmost-outermost for left-linear rules for TGR and leftmost-outer for
Smaran, (iii) a combination of aspects of Smaran strategy and the leftmost-outer strategy,
for Smaran, (iv) DS-list and DS-forest strategies (currently available for Smaran).

Briefly, as explained in [9], the Smaran strategy on a successful match immediately
tries to reduce the right-hand side instance or its subexpressions. If it failed to reduce any
subexpression of the rhs instance, the program would backtrack all the way to the root of
the current expression to be reduced.

47

In the combination strategy implemented for Smaran, the action on a successful match
is to repeatedly try and reduce the rhs instance but not its subexpressions. On failure to
reduce the rhs instance, the program backtracks to the subexpression which is exactly m
levels above the rhs instance. Here m = min(max{height(l) | | — r € R}, level of rhs
instance) and R denotes the rewrite system. This means that we backtrack either to the
root of the current expression or to a subexpression whose distance from the rhs instance is
no more than the maximum height of any lhs, whichever is closer. Because Smaran has full
sharing of common subexpressions, failure to match inside the backtracked subexpression
means that we must backtrack to the root eventually in all “smarter” outer strategies.

The leftmost-outermost in LRR 1.2 is a pure strategy, i.e., it does not try to reduce
the rhs instance after a successful match and immediately backtracks to the node m levels
up, where m is as given above (backtracking must go eventually to the root). This strategy
correctly implements leftmost-outermost for left-linear rules in TGR (but it is not necessarily
outermost for Smaran). For nonleftlinear rules the correct strategy must backtrack all the
way to the root and this will be provided as an option in the future.

Performance Results. For lack of space, we present only summary of results to illus-
trate the level of efficiency achieved by the LRR 1.2. LRR is implemented in C and runs on
Solaris/Linux. Timings are on a 600 MHz Pentium 3 Redhat 7.3 linux kernel 2.4.18 system
with 256 MB of RAM using the gce compiler (v. 2.96) with optimization level 3. Tables 1-2
summarize results for eight benchmarks (one difference is that in Fibonacci benchmark the
term fib(20) is used for TGR instead of fib(60) for Smaran) that are also at the URL given
above. The reductions columns show that tabling is indeed useful for some benchmarks
including CTL model checking, quicksort, etc. The timings in seconds exclude initialization
time of .55-.60 seconds and parsing times ranging from 0.57 to 1.38 seconds approx. for
Smaran and initialization time of 0 and parsing time ranging from 0.06 to 0.74 seconds for
TGR. Tables 1-2 show the different strategies available in LRR 1.2. Note that since two
strategies are currently only available in the Smaran component, Table 1 does not show
timings for TGR. The reductions columns show successful tabled reductions for Smaran and
successful untabled reductions for TGR. The number of matching attempts is not shown.

Strategy |Tot. Time Smaran (s)|Total Reductions (Smaran)

DS-Tist 34.89 2,359,411

DS-tree 26.85 2,362,638
Combination 30.76 2,362,872

Table 1. Summary Results for 8 Benchmarks

Strategy |Tot. time TGR (s)|Tot. Red’s (TGR)|Tot. time Smaran (s)|Tot. Red’s (Smaran)
Original 114.07 2,467,832 162.7 2,362,174
leftmostouter 49.87 2,467,832 29.9 2,362,872

Table 2. Summary Results for 8 Benchmarks

Comparison with other systems. We are aware of the difficulties of comparing soft-
ware systems using experimental results, which can be sensitive to the choice of benchmarks,
architectures, different focus, etc. A major problem is that most systems do not even sup-
port tabling and our focus has been more on optimizing the tabled version. Nevertheless,
with the ELAN interpreter (version 3.6e) and the Maude 2.0 system [4] we ran three out of
eight benchmarks (Dfa, Qsort and Rev). The total normalization time was ELAN — 839.58

48

seconds (Rev — created a list of 15000 elements and reversed it instead of 30000 in Tables
1-2), and for Maude — 180.4 (Qsort — only 2500 elements instead of 5000 in Tables 1-2).

5 Discussion and Future Work

We presented DS-list and DS-forest - new data structures for speeding up normalization and
efficiently, naturally implementing many reduction strategies. The DS-list beats the best
earlier strategy [9] and is competitive with the new strategies. A preliminary implementation
of DS-forest in the tabling component of LRR outperforms all other strategies. Hence, we

plan to do a full implementation of the DS-forest data structure.
Acknowledgements. We thank K.B. Ramesh and S. Kolli for initial work on Smaran, S. Senanayake for
work on LRR, and Z. Liang for the CTL model checking program.

References

1. L. Bachmair, C. R. Ramakrishnan, I. V. Ramakrishnan, and A. Tiwari. Normalization via rewrite
closures. Lecture Notes in Computer Science, 1631:190-204, 1999.

2. P. Borovansky et al. ELAN user manual, September 2002. ELAN Version 3.6.

3. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

4. M. Clavel, F. Durén, S. Eker, et al. The Maude 2.0 system. Proc. Rewriting Techniques and Applications
(RTA 2003), LNCS 2706, pages 76-87. Springer-Verlag, June 2003.

5. M. Hermann, C. Kirchner, and H. Kirchner. Implementations of term rewriting systems. Computer
Journal, 34(1):20-33, 1991.

6. M. van den Brand, J. Heering, P. Klint, et al. Compiling rewrite systems: The asf+sdf compiler. ACM
Transactions on Programming Languages and Systems, 24:334-368, 2002.

7. Rakesh M. Verma. A theory of using history for equational systems with applications. Journal of the
ACM, 42(5):984-1020, 1995. Also in the 32nd IEEE FOCS Symposium, 1991.

8. Rakesh M. Verma. Static analysis techniques for equational logic programming. In Proc. (elec.) of 1st
ACM SIGPLAN Workshop on Rule-based Programming, 2000.

9. Rakesh M. Verma and Shalitha A. Senanayake. LR?: A laboratory for rapid term graph rewriting. In
Proc. Conf. on Rewriting Techniques & Applications, pages 252-255, 1999.

49

Strategies in Programming Languages Today

The role of strategies in the realistic modeling, analysis, opti-
mization, and application of existing programming languages.

Round table: Salvador Lucas moderator

Participants: Francisco Durdn, Claude Kirchner, Ralf Lammel.

Our abstract models, definitions, and analysis techniques are basically developed for full rewriting with
TRSs and they do not easily apply to real programs using

- strategy languages (or a fixed strategy),

- conditional TRSs,

- type/sort information,

- higher-order functions,

- polymorphism,

- data structures,

- built-in symbols,

- ACI symbols,

- shared information (graphs instead of terms),
- modules,

In this setting, we should ask whether we have the appropriate

- notion of strategy?

- definition and methods for analyzing termination of programs?

- definition and methods for analyzing determinism, unicity of NFs, ... ?
- approach for analyzing complexity and measuring efficiency?

- strategy languages?

Maude’s Internal Strategies

Francisco Duran

DLCC, Universidad de Mélaga, Campus de Teatinos, Malaga, Spain
duran@lcc.uma.es

Abstract Maude is a reflective language supporting both rewriting logic and membership equational logic.
Reflection is systematically exploited in Maude, endowing the language with powerful metaprogramming
capabilities, including declarative strategies to guide the deduction process.

1 Introduction

Maude [3,4] is a high-level language and high-performance system supporting both equational and rewriting
logic computation for a wide range of applications. Rewriting logic [13] is a logic of change that can naturally
deal with state and with highly nondeterministic concurrent computations. In rewriting logic, the state space
of a distributed system is specified as an algebraic data type in terms of an equational specification (X, E),
where X' is a signature of sorts (types) and operations, and E is a set of (conditional) equational axioms.
In Maude, the underlying equational logic is membership equational logic [14], a Horn logic whose atomic
sentences are equalities t = ' and membership assertions of the form ¢ : s, stating that a term ¢t has sort s.

Maude’s functional and system modules are, respectively, membership equational theories and rewrite
theories. The equations in functional modules, considered as rules in the left to right direction, are assumed
to be Church-Rosser and terminating. Therefore, canonical forms are reached by canonical simplification
regardless of the order of application. Although the (equational) reductions in Maude are basically innermost
(or eager), Maude is able to exhibit an outermost (or lazy) behavior on particular operator arguments by
using strategy annotations [10].

A rewrite theory is a pair (T, R), with 7" a membership equational theory, and R a collection of (labelled
and possibly conditional) rewrite rules involving terms in the signature of T'. Rewriting in (7', R) happens
modulo the equational axioms in T.> The rules in R need not be Church-Rosser and need not be terminating,
opening up in this way a whole world of new applications. This generality needs some control when the
specifications become executable, because the user needs to make sure that the rewriting process does not
go in undesired directions.

In those cases in which we just want to test for executability, or consider the evolution of the system
with no specific interest in a concrete execution path, Maude provides two built-in strategies: The rewrite
command follows a top-down lazy rule-fair strategy, and the frewrite command follows a position-fair bottom-
up strategy. Maude also provides a search command, for those cases in which we are interested in exploring
all possible execution paths from the starting term for states satisfying some property. The search command
does a breadth-first exploration of the tree of possible rewrites.

In general however we may be interested in other forms of execution, and the choice of appropriate
strategies is crucial for executing rewrite theories. In the Maude system, this need for providing strategies
for controlling the rewriting process has been satisfied by developing strategies at the metalevel. Strategies
are defined in extensions of the predefined module META-LEVEL by using predefined functions in it, like
metaReduce, metaApply, metaXapply, etc. as building blocks. It is in this way possible to define at the
metalevel a whole variety of internal strategy languages [2,5], that is, the strategy language is defined inside
the same rewriting logic framework, instead of being defined as an add-on extralogical feature.

2 Reflection and the META-LEVEL module

Informally, a reflective logic is a logic in which important aspects of its metatheory can be represented at
the object level in a consistent way, so that the object-level representation correctly simulates the relevant
metatheoretic aspects. In particular, rewriting logic is reflective [2], and Maude’s language design and im-
plementation make systematic use of the fact that rewriting logic is reflective. The predefined functional
module META-LEVEL efficiently implements key functionality of the universal theory U.

! Maude supports rewriting modulo all combinations of associativity, commutativity, and identity.

META-LEVEL has sorts Term and Module, so that the representations of a term ¢ and of a module R are,
respectively, a term f of sort Term and a term R of sort Module. The module META-LEVEL also provides key
metalevel functions for rewriting and evaluating terms at the metalevel, namely, metaApply, metaXapply,
metaRewrite, metaReduce, etc. For example, the function metaReduce takes as arguments the representation
of a module R and the representation of a term ¢ in that module, and returns the representation of the fully
reduced form of the term ¢ using the equations in R, together with its corresponding sort or kind:

op metaReduce : Module Term -> ResultPair [special ...]
op {_,_} : Term Type -> ResultPair [ctor]

The operation metaXapply applies a rule on a term in any possible position. The first four arguments
are the metarepresentation of a module R, the metarepresentation of a term t in R, a label | of some rules
in R, and a set of assignments (possibly empty) defining a partial substitution o for the variables in those
rules. The last natural number enumerates the solutions, since there can be different such rewrites with
different substitutions and at different positions. The other two numeric arguments indicate the minimum
and maximum depth in the term where the application of the rule can take place.

op metaXapply : Module Term Qid Substitution Nat Bound Nat
~> Result4Tuple? [special ...]

op {_,_,_,_} : Term Type Substitution Context
-> Result4Tuple [ctor]

metaXapply returns a tuple of sort Result4Tuple consisting of a term, with the corresponding sort or kind,
a substitution, and the context inside the given term where the rewriting has taken place.

3 Internal Strategies

There is great freedom for defining many different types of strategies, or even many different strategy
languages inside Maude. This can be done in a completely user-definable way, so that users are not limited
by a fixed and closed particular strategy language.

Rewriting logic has very good properties as a logical and semantic framework, in which many other
logics and many semantic formalisms can be naturally represented [11,15]. In Maude, the meta-theory of
rewriting logic is accessible to the user in a clear and principled way, giving to Maude very good properties
as a logical and semantic framework, in which many different logics and formalisms can be expressed and
executed. In fact, some of the most interesting applications of Maude are metalanguage applications, in
which Maude is used to create executable environments for different logics, theorem provers, languages, and
models of computation.

Reflection allows a complete control of the rewriting of a given term using the rewrite rules in a theory.
This expressive power has been used in different applications. For example, in Real Time Maude [17] modules
there is a distinction between eager and lazy rules, and only rewriting paths that satisfy the requirement
that lazy rules are only applied when no eager rule can be applied make sense for this kind of modules;
a object-fair strategy was used in Mobile Maude [6] a long time before such an strategy was available in
Maude (such an internal strategy was in fact a prototype specification of the frewrite object-fair strategy
currently available in Maude); Durdn, Escobar and Lucas have proposed in [7] an extension of Full Maude
which includes commands that compute (constructor) normal forms of initial expressions even when the
use of strategy annotations together with the built-in computation strategy of Maude is not able to obtain
them; the same authors have proposed in [8] another extension furnishing Maude with the ability of dealing
with on-demand strategy annotations; Braga [1] extended Full Maude to support rewrites in the conditions
of rules some time before it was available in Maude to be able to represent Action Semantics [16]; Pita and
Marti-Oliet proposed in [18] the use of a meta-object to control the execution of a set of rules, which had
to be applied following a specific order; etc.

Although very powerful, there are many applications in which simpler strategies are enough, for which
it would be desirable to provide ways of avoiding the conceptual complexity of going to the metalevel. In this
line, Marti-Oliet, Meseguer, and Verdejo have proposed in [12] an object-level basic strategy language for
Maude very close to the ELAN strategies, and Duran, Roldan and Vallecillo have proposed generic invariant-
driven strategies that control the execution of systems by guaranteeing that the given invariants are satisfied
[9]. Both proposals has been implemented in Maude (the first one as an extension of Full Maude), which
shows the expressiveness of the reflective capabilities of Maude for defining strategies.

The Maude system, its documentation, a collection of examples and case studies, and a list of related
papers are available (free of charge) at http://maude.cs.uiuc.edu.

52

References

1.

10.

11.

12.

13.

14.

15.

16.
17.

18.

C. O. Braga. Rewriting Logic as a Semantic Framework forModular Structural Operational Semantics.
PhD thesis, Departamento de Informatica, Pontificia Universidade Catdlica de Rio de Janeiro, Brasil,
2001.

M. Clavel. Reflection in General Logics and in Rewriting Logic with Applications to the Maude Language.
PhD thesis, Universidad de Navarra, 1998.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J. Quesada. Maude: Speci-
fication and programming in rewriting logic. Theoretical Computer Science, 285:187-243, 2002.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Talcott. Maude 2.0
manual. Available in http://maude.cs.uiuc.edu., June 2003.

M. Clavel and J. Meseguer. Reflection in conditional rewriting logic. Theoretical Computer Science,
285, 2002.

F. Durédn, S. Eker, P. Lincoln, and J. Meseguer. Principles of Mobile Maude. In Proceedings of Joint
Symposium ASA/MA 2000, volume 1882 of Lecture Notes in Computer Science. Springer, 2000.

F. Durédn, S. Escobar, and S. Lucas. New evaluation commands for maude within full maude. In
Proceedings of 5th International Workshop on Rewriting Logic and its Applications (WRLA’04), 2004.
F. Durén, S. Escobar, and S. Lucas. On-demand evaluation for maude. In Proceedings of RULE’04,
2004.

F. Durdn, M. Roldén, and A. Vallecillo. Invariant-driven strategies for maude. In Proceedings of WRS’04,
2004.

S. Eker. Term rewriting with operator evaluation strategy. In C. Kirchner and H. Kirchner, edi-
tors, Proceedings of 2nd International Workshop on Rewriting Logic and its Applications (WRLA’98),
volume 15 of FElectronic Notes in Theoretical Computer Science. Elsevier, 1998. Available at http:
//wuw.elsevier.nl/locate/entcs/volumel5.html.

N. Marti-Oliet and J. Meseguer. Rewriting logic as a logical and semantic framework. volume 9, pages
1-87. Kluwer Academic Publishers, second edition, 2002.

N. Marti-Oliet, J. Meseguer, and A. Verdejo. Towards a strategy language for Maude. In N. Marti-Oliet,
editor, Proceedings of 5th International Workshop on Rewriting Logic and its Applications (WRLA’04).
J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer
Science, 96:73-155, 1992.

J. Meseguer. Membership algebra as a logical framework for equational specification. In F. Parisi-
Presicce, editor, Recent Trends in Algebraic Development Techniques, volume 1376 of Lecture Notes in
Computer Science, pages 18-61. Springer, 1998.

J. Meseguer. Research directions in rewriting logic. In U. Berger and H. Schwichtenberg, editors,
Computational Logic. Springer, 1999.

P. Mosses. Action Semantics. Cambridge University Press, 1992.

P. C. Olveczky and J. Meseguer. Specification of real-time and hybrid systems in rewriting logic.
Theoretical Computer Science, 285, 2002.

I. Pita and N. Marti-Oliet. A Maude specification of an object-oriented model for telecommunication
networks. Theoretical Computer Science, 285, 2002.

53

Programmable rewriting strategies in Haskell
— White Paper —*

Ralf Lammel >2

! Vrije Universiteit Amsterdam
2 Centrum voor Wiskunde en Informatica
ralf@cwi.nl

Abstract Programmable rewriting strategies provide a valuable tool for implementing traversal function-
ality in grammar-driven (or schema-driven) tools. The working Haskell programmer has access to pro-
grammable rewriting strategies via two similar options: (i) the Strafunski bundle for generic functional
programming and language processing, and (ii) the “Scrap Your Boilerplate” approach to generic functional
programming. Basic rewrite steps are encoded as simple functions on datatypes. Rewriting strategies are
polymorphic functions composed from appropriate basic strategy combinators.

We will briefly review programmable rewriting strategies in Haskell. We will address the following questions:

e What are the merits of Haskellish strategies?
e What is the relation between strategic programming and generic programming?
e What are the challenges for future work on functional strategies?

Acknowledgements.

The Strafunski project [1,27,19,25,26,28] is joint work with Joost Visser.
The “Scrap Your Boilerplate” approach [2,22,23] is joint work with Simon Peyton Jones.

1 Strategic programming

Our use of the term ‘strategy’ originates from the work on programmable rewriting strategies for term
rewriting & la Stratego [30,40,38]. Strategic programmers can separate basic rewrite steps from the overall
scheme of traversal and evaluation. These schemes are programmable by themselves! There are one-layer
traversal primitives that facilitate the definition of whatever recursion pattern for traversal. There are
further, perhaps less surprising, basic combinators for controlling the evaluation in terms of the order of
steps, the choices to be made, the fixpoints to be computed, and others. An extended exposition of what we
call ‘strategic programming’ can be found in [24].

Related forms of programmable strategies permeate computer science. For instance, evaluation strategies
without any traversal control are useful on their own in rewriting [7,4]. In theorem proving, one uses a sort of
strategies as proof tactics and tacticals [33]. In parallel functional programming, one uses a sort of strategies
to synthesise parallel programs [36].

2 Functional strategies in Strafunsk:

The Strafunski project [1,27,19,25,26,28] incarnated programmable rewriting strategies for functional pro-
gramming, namely for Haskell. Strategies are essentially polymorphic functions on datatypes (or ‘term
types’). The basic rewrite steps are readily written down as monomorphic functions on datatypes. For
instance, the following rewrite step encodes some sort of constant elimination for arithmetic expressions:

const_elim :: Expr -> Maybe Expr
const_elim ((Const 0) ‘Plus‘ x) = Just x
const_elim Nothing

* This white paper served as an invited position paper for the 4th International Workshop on Reduction
Strategies in Rewriting and Programming (WRS 2004), June 2, 2004, Aachen, Germany. The paper was
presented at the WRS 2004 round table “Strategies in programming languages today” .

In concrete syntax, and without Haskellish noise, this reads as “0 + x -> x”. In the example, we wrap the
result of the rewrite step in the Maybe monad, which allows us to observe success vs. failure of a rewrite
step. We can use arbitrarily stacked monads (rather than just Maybe) in rewrite steps and strategies. This
allows us to deal with state, environment, nondeterminism, backtracking, and so on.

In Strafunski, there are two (monadic) types of strategies:

e TP — type-preserving strategies: domain and co-domain coincide.
e TU — type-unifying strategies: all datatypes are mapped to one result type.

Strafunski’s strategy library supports a small set of predefined strategy combinators:

e idTP — the identity function.

e failTP — the always failing strategy.

e adhocTP — update strategy in one type.

e seqTP — sequential composition.

e choiceTP — left-biased choice.

e allTP — apply a strategy to all immediate subterms.
e oneTP — apply a strategy to one immediate subterm.
e Similar operators are offered for TU.

Rewrite steps can be turned into functional strategies using the adhocTP combinator.
The strategy (idTP ‘adhocTP¢ const_elim) will succeed for all types other than Expr.
The strategy (£ailTP ‘adhocTP‘ const_elim) will fail for all types other than Expr.

We can now define all kinds of reusable evaluation and traversal schemes, e.g.:

-- Exhaustive application of a strategy
repeatTP :: MonadPlus m => TP m -> TP m
repeatTP s = (s ‘seqTP‘ (repeatTP s)) ‘choiceTP‘ idTP

-- Full type-preserving traversal in top-down order.
full_tdTP :: Monad m => TP m -> TP m
full_tdTP s = s ‘seqTP‘ (allTP (full_tdTP s))

-- Type-preserving traversal stopping at successful branches.
stop_tdTP :: MonadPlus m => TP m -> TP m
stop_tdTP s = s ‘choiceTP¢ (allTP (stop_tdIP s))

-- One-hit type-preserving traversal in bottom-up order.

once_buTP :: MonadPlus m => TP m -> TP m
once_buTP s = (oneTP (once_buTP s)) ‘choiceTP‘ s

The essence of “The essence of strategic programming” [24]
As an illustrative use case, the strategy
once_buTP (idTP ‘adhocTP‘ const_elim)
attempts a single constant elimination when given a term. Applying this strategy exhaustively (cf. the
evaluation strategy repeatTP), amounts to (naive) innermost normalisation. This use case demonstrates the

overall tenor of strategic programming;:

Separate problem-specific rewrite steps (i.e., const_elim) from the overall, possibly reusable scheme
for traversal and evaluation (i.e., once_buTP). Both parts are put together by mere parameter pass-
ing, or by function composition. The schemes for traversal and evaluation are fully programmable
by the virtue of one-layer traversal primitives (i.e., allTP and oneTP).

55

3 What are the merits of Haskellish strategies?

Applied setup

Haskellish strategies were born in an applied programming context. That is, we have designed them in an
attempt to make functional programming fit for the implementation of program analyses and transforma-
tions — as relevant in the context of language implementation, software reverse engineering, re-engineering,
and others. For instance, Strafunski’s functional strategies readily deal with huge systems of algebraic
datatypes as opposed to making assumptions such as use of single datatypes [15] or functorial encodings [35].
Also, functional strategies are versatile in terms of the recursion schemes that can be accommodated — when
compared to programming with merely generalised folds [31]. Furthermore, functional strategies are con-
veniently customisable, whereas customisation is considered as a subordinated issue in other setups, which
offer fully generic functions such as generic maps [14,13]. Customisation is crucial for strategic programming
because traversal strategies involve type-specific cases on a regular basis.

Functional strategies have been used in various ways, e.g.:

State-of-the-art Haskell refactoring tools [29].

Language extension for Fortran [9].

Java refactoring [27] (a subset of Java to be precise).
Simple software metrics for Java [28].

Reverse engineering for Cobol [28] (call-graph extraction).
A framework for language-parametric refactoring [20].

Language economy

Functional strategies are easily supported in Haskell. There are different implementational models [27,19,26].
No proper language extension is needed. Class instances of a simple structure are sufficient to support
the basic strategy combinators. The derivation of these instances is automated. Most strategic idioms are
readily provided by Haskell. That is, rewrite steps are just functions defined by pattern matching. Functional
strategies are nothing but Haskell functions. Monads [41] fit nicely with the effects that one encounters during
strategic programming. The Maybe monad models the potential of failure. The list monad (and friends) is
used to deal with nondeterminism and backtracking, alike for the state and the environment monad. Haskell
has a strong record in implementing combinator libraries for programming domains, e.g., for parsing, pretty
printing, XML processing, graphical user interfaces, and data structures. Strafunski’s strategies come just
as another combinator library. Strategic programming in Haskell means that debugging, compilation, type
checking, type inference, etc. come for free.

Strongly typed, first-class strategies

Strategy combinators are higher-order functions, which carry interesting types. So Haskell, again, is the right
choice. Firstly, the type of a strategy combinator clarifies if it is type-preserving (“TP”) or type-unifying
(“TU”). Secondly, the chosen Monad instance in the type points out effects including potential of failure.
Thirdly, the type indicates possible arguments that need to be passed in addition to the term, on which
traversal is performed. While the influential system Stratego is largely untyped (but it could be typed [21]),
Haskellish strategies are typed in all beauty of polymorphism and higher-order functions. This is taken to a
limit in “The Sketch of a Polymorphic Symphony” [19], where we define ‘the mother of traversal’, which is
a highly parametric traversal scheme.

We adopt an example from [20] to illustrates the virtue of typed, higher-order strategies. The following
function signature types a strategy extract for a language-parametric program transformation. That is, the
strategy models the extraction refactoring for whatever abstraction form — be it a method declaration, a
function declaration, or others:

extract :: Abstraction abstr name tpe apply
=> TU [(name,tpe)] Identity -- Recognise declarations
-> TU [name] Identity -- Recognise using references
-> (apply -> Maybe apply) -- Recognise focused fragment
-> ([abstr] -> [abstr]) -- Mark host for new abstraction

56

-> ([abstr] -> Maybe [abstr]) -- Remove marking for host

-> ([(name,tpe)] -> apply -> Bool) -- Side conditions on fragment
-> name -- Name for new abstraction
-> prog -- Input program

-> Maybe prog -- Output program

The above Haskell type clearly identifies 4 type parameters for syntactical categories prog (programs),
abstr (abstraction form), name (name of parameters and abstractions), and tpe (type of parameters) with
a relationship Abstraction on them for the sake of making the function extract parametric with regard to
the relevant abstraction form.

Using an untyped extract is beyond a Haskell programmer’s imagination. How would one possibly under-
stand and correctly use an untyped function with 8 value arguments; 6 of the 8 of a higher-order type; 2 out
of the 6 of a strategically polymorphic type?

4 Isn’t strategic programming just generic programming?

In Strafunski, strategy types are opaque. Strafunski’s strategy library really provides an abstract datatype
for strategies. This allows for different models of strategies. Some models have been described in the lit-
erature [27,19,26]. Some strategic improvements could be accommodated by new models without changing
Strafunski’s API. The opaque status also encourages a point-free style (or combinator style) of strategic
programming. We can clearly see that Strafunski’s strategy types are opaque because there are even basic
combinators for strategy application, which resemble function application:

applyTP :: (Monad m, Term t) => TP m -> t ->m t
applyTP s t = ... -- opaque implementation omitted

However, strategy types are not inherently opaque, and in the “Scrap Your Boilerplate” approach to generic
programming [2,22,23] they indeed aren’t. In this approach, generic traversal schemes and all that are
just straight polymorphic functions, possibly of a rank-2 type (as supported by the GHC implementation of
Haskell, but also elsewhere). The “Scrap Your Boilerplate” approach is based on two Haskell classes Typeable
and Data (the former being a superclass of the latter) for a handful of generic function combinators. (The
GHC implementation of Haskell derives these classes automatically.) Strafunski’s strategy library can be
reconstructed in this framework [26] by basically using just two of its combinators: cast for type-safe cast
and gfoldl for one-layer traversal.

Strategies types become very non-opaque, concise and versatile now:

type GenericM m = forall a. Data a => a -> m a -- corresponds to TP m
type GenericT = forall a. Data a => a -> a -- non-monadic variation on TP m
type GenericQ r = forall a. Data a => a -> r -- the type-unifying scheme for ‘queries’

In Strafunski, we did not favour variations like GenericT because this would have implied a proliferation of
combinators for the various opaque types. To illustrate the use of these forall types, we reconstruct the
traversal scheme stop_tdTP:

stop_tdTP :: GenericM Maybe -> GenericT

stop_tdTP s x = case s x of
Nothing -> gmapT (stop_tdTP s) x
Just x’ -> x’

We have used here gmapT :: GenericT -> GenericT, which is the non-monadic variation on allTP [22].
The type of stop_tdTP says that this combinator takes a polymorphic function and returns one. We use the
type aliases for readability; we could as well inline the forall types. As an exercise in versatility, we have
reconstructed a more specifically typed scheme stop_tdTP. The original scheme involved the opaque type
TP m, where m could be instantiated later to any instance of MonadPlus. The reconstructed scheme fixes the
monad for the argument type to Maybe, which allows us to guarantee success of the composed strategy (cf.
the non-monadic result type GenericT).

o7

Once we get used to forming generic function types, we will not limit ourselves to strategy types. That is,
while strategies are unary polymorphic functions on datatypes, there are other polymorphic type schemes of
interest. Generic functions do not need to be unary, neither do they need to be polymorphic in the argument
position. For instance:

type GenericEq = forall a b.

(Data a, Data b) => a -> b -> Bool -- generic equality
type GenericB = forall a. Data a => a -- build a term; no traversal!
type GenericR m = forall a. Data a => m a -- read a term using a monad

So while the Strafunski approach emphasised unary term traversal, the “Scrap Your Boilerplate” approach
to generic functional programming allows us to abstract over more than just unary term traversal. We can
abstract over multi-parameter traversal, over term generation, serialisation, and de-serialisation, zipping,
and others [23]. Especially the correspondence between term traversal and term building is a duality that
was uncovered some time ago by squiggolists: given a regular datatype (such as lists), or perhaps even
any datatype, one can fold a datum of the type (“traverse it”), and unfold it (“build it”) [31,3]. Other
generic programming approaches also serve this generality. For instance, generic programming extensions
like PolyP [14] or Generic Haskell [12,6] provide special forms of polytypic or generic function declarations
that use structural induction on the type structure as prime notion. In this context, the “Scrap Your
Boilerplate” approach is characterised as follows:

The approach blends well with normal Haskell programming.

The approach is lightweight. It is based on two simple Haskell type classes.

The approach does not require any compile-time code specialisation.

Generic functions operate directly on Haskell datatypes without a representation layer.
Generic functions are true first-class citizens, e.g., traversal schemes are higher-order.
Generic functions are easily customised by (nominal) type case.

5 Where to go from here?

Strategic programming is a young research field. Several challenges are readily waiting. The following list
is biased towards functional strategies, and relates to the current Strafunski and “Scrap Your Boilerplate”
implementations, but most challenges are relevant for programmable rewriting strategies in general.

Analysis opportunities

The functional strategist might want to take advantage of analyses that improve static guarantees or run-
time performance of his or her strategies. Some prime examples follow:

Termination Strategic traversal schemes are like recursion schemes: they are meant as disciplined replace-
ment for free-wheeling recursive programming. Nevertheless, the versatility of strategies makes it still
quite easy to encode diverging strategies. For instance, (repeatTP idTP) will diverge. The implied usage
pattern for fixpoint iteration with repeatTP is that the argument strategy should eventually fail.

Stupidity Just as there are ‘stupid casts’ in object-oriented programming (i.e., type casts that cannot
possibly succeed), so there are ‘stupid strategies’ in strategic programming. For instance, the strategy
(full tdTP (failTP ‘adhocTP‘ f)) is stupid because a full traversal is meant to have a chance of
succeeding for whatever type, but the given composition will undoubtedly fail for all types except for
the domain of f.

Shortcutting On the basis of the type-specific cases of a strategy it would be often feasible to shortcut
traversal leading to a more efficient traversal. For instance, the strategy (full_tdTP (idTP ‘adhocTP¢
£)) does not need to be pushed into a term any further if it is clear that subterms of f’s domain are
out of reach — on the basis of static type information. For such hopeless branches, the strategy can be
shortcut to idTP.

Composability Chains of strategies need to cooperate in the sense that a given strategy in the chain
should be enabled, or at least not disabled by earlier elements in the chain. (One could call this an
advanced form of stupidity perhaps, so it is not stupid!) Enabling and disabling can be understood in
terms of pre- and post-conditions for strategies, in which case work on program transformation might
be of use [18,34].

58

Expressiveness opportunities

The functional strategist might even ask for extra expressiveness, which, in an extreme case, requires Haskell
extensions. Alternatively, the extra-strategic expressiveness can also be accommodated by the virtue of a
more open Haskell system, or by preprocessing, or perhaps by appropriate combinator libraries. Some prime
examples follow:

Sexy types There is a potential need for designated types to declare, check, and infer success behaviour,
determinism, and some forms of pre- and post-conditions. Also, the effects involved in strategies (such
as failure, state, environment) were more conveniently used with an effect type system perhaps [10] — as
opposed to explicit monad transformers. A Haskell 20XX with a very open type system would be of use
here.

Object syntax The prime application domain of strategic programming is program analysis and transfor-
mation. Encoding rewrite steps in terms of abstract syntax is relatively inconvenient for real-world pro-
gramming languages. Haskell could support concrete syntax, just as rewriting technology like ASF+SDF [17,5]
does already for a long time. Stratego was also equipped with concrete object syntax [39].

Graphs Many program analyses and transformations favour graph-based intermediate representations.
Haskell’s laziness allows for cyclic data structures. Node identities have to be ‘managed’ carefully.
Constructing and transforming many-sorted graphs is difficult in Haskell. We are in need of a type-
ful approach that retains the convenience of pattern matching and building, and that provides us with
the illusion of destructive update.

Attribute grammars Strategies and attribute grammars are complementary in that the former are more
operational, whereas the latter are more declarative. Also, the former emphasise traversal, whereas
the latter emphasise attribute dependencies. Research on a possible marriage of strategies and attribute
grammars promises interesting insights. Alike strategies, attribute grammars are conveniently embedded
into Haskell [8].

Constraint programming Another unexplored combination of worlds is the integration of programmable
strategies and constraint programming, or residuation and narrowing — as available in a hybrid language
like Curry [11]. Constraints could provide a versatile means to make strategies less operational, more
declarative. Constraints could also provide means to narrow down the search space for strategies.

XML & XPath Next to language processing on the basis of syntaxes, strategies are thought to be useful
for XML document processing. Functional combinator libraries for XML processing do exist [42], but
they lack the typing strength of functional strategies. It should be possible to use strategies as a means
to provide the illusion of an XPath-like language for controlling fully typed XML transformations.

Strategy mining & refactoring to strategies

The modularity and conciseness of legacy Haskell programs could benefit from the strategic style of pro-
gramming. This calls for ‘strategy mining’. There exists related work on recovering recursion schemes like
folds in legacy code [37]. When developing and enhancing existing Haskell programs, strategic style has to
be installed or improved by means of refactoring. In fact, this is a form of ‘refactoring to patterns’ [16]
because the strategic style of programming can be viewed as a collection of design patterns for traversal
functionality [25]. In both cases, entangled traversal code is turned into strategically organised traversal
code.

6 Concluding remark

We have briefly reviewed Haskell-based support for programmable rewriting strategies. We have also briefly
discussed the link between rewriting strategies and generic programming. Finally, we have listed challenges
for future work on Haskellish rewriting strategies.

Please, stay tuned at [1,2].

59

References

1.

=~

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

The Strafunski web site: examples, downloads, browsable library, papers, background, 2000-2004. http:
//www.cs.vu.nl/Strafunski/.

The “Scrap your boilerplate” web site: examples, browsable library, papers, background, 2003—2004.
http://wuw.cs.vu.nl/boilerplate/.

L. Augusteijn. Sorting morphisms. In S.D. Swierstra, P.R. Henriques, and J.N. Oliveira, editors,
Advanced Functional Programming, 3rd International School, Braga, Portugal, September 12-19, 1998,
Revised Lectures, volume 1608 of LNC'S, pages 1-27. Springer-Verlag, 1999.

P. Borovansky, C. Kirchner, and H. Kirchner. Controlling Rewriting by Rewriting. In Meseguer [32].
M.G.J. van den Brand, Arie van Deursen, J. Heering, H.A. de Jong, M. de Jonge, T. Kuipers, P. Klint,
L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju, E. Visser, and J. Visser. The ASF+SDF Meta-
Environment: a Component-Based Language Development Environment. In R. Wilhelm, editor, Proc.
Compiler Construction (CC 2001), volume 2027 of LNCS, pages 365-370. Springer-Verlag, 2001.

D. Clarke, J. Jeuring, and A. Loh. The Generic Haskell User’s Guide, 2002. Version 1.23 — Beryl
release.

M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In Meseguer [32].

O. de Moor, K. Backhouse, and S.D. Swierstra. First Class Attribute Grammars. Informatica: An
International Journal of Computing and Informatics, 24(2):329-341, June 2000. Special Issue: Attribute
grammars and Their Applications.

M. Erwig and Z. Fu. Parametric Fortran — A Program Generator for Customized Generic Fortran
Extensions. In B. Jayaraman, editor, Proceedings Practical Aspects of Declarative Languages (PADL
2004), LNCS, Dallas, Texas, USA, 2004. Springer-Verlag. To appear.

A. Filinski. Representing layered monads. In Proceedings 26th ACM SIGPLAN-SIGACT Symposium
on Principles of programming languages, pages 175-188, San Antonio, Texas, USA, 1999. ACM Press.
M. Hanus. The Curry web site; Curry — A Truly Integrated Functional Logic Language, 2004. http:
//www.informatik.uni-kiel.de/"mh/curry/.

R. Hinze. A generic programming extension for Haskell. In Proceedings 3rd Haskell Workshop, Paris,
France, 1999. Technical report of Universiteit Utrecht, UU-CS-1999-28.

R. Hinze. A New Approach to Generic Functional Programming. In Proceedings 27th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’00), pages 119-132. ACM Press,
2000.

P. Jansson and J. Jeuring. PolyP - a polytypic programming language extension. In Proceedings 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’97), pages 470~
482, Paris, France, 1997. ACM Press.

P. Jansson and J. Jeuring. A framework for polytypic programming on terms, with an application to
rewriting. In J. Jeuring, editor, Proceedings Workshop on Generic Programming (WGP2000), Ponte de
Lima, Portugal, Technical report ICS Utrecht University, UU-CS-2000-19, 2000.

J. Kierievsky. Refactoring to Patterns. Addison Wesley, 2004. To appear.

P. Klint. A meta-environment for generating programming environments. ACM Transactions on Soft-
ware Engineering and Methodology, 2(2):176-201, 1993.

G. Kniesel and H. Koch. Static Composition of Refactorings. In R. Lammel, editor, Science in Computer
Programming; Special issue on program transformation. Elsevier Science, 2004. To appear.

R. Ladmmel. The Sketch of a Polymorphic Symphony. In B. Gramlich and S. Lucas, editors, Proceed-
ings 2nd International Workshop on Reduction Strategies in Rewriting and Programming (WRS 2002),
volume 70 of ENTCS. Elsevier Science, 2002. 21 pages.

R. Lammel. Towards Generic Refactoring. In Proceedings 3rd ACM SIGPLAN Workshop on Rule-Based
Programming RULE’02, Pittsburgh, PA, USA, October 2002. ACM Press. 14 pages.

R. Lammel. Typed Generic Traversal With Term Rewriting Strategies. Journal of Logic and Algebraic
Programming, 54:1-64, 2003. Also available as arXiv technical report cs.PL/0205018.

R. Lammel and S. Peyton Jones. Scrap your boilerplate: a practical design pattern for generic program-
ming. ACM SIGPLAN Notices, 38(3):26-37, March 2003. Proceedings ACM SIGPLAN Workshop on
Types in Language Design and Implementation (TLDI 2003).

R. Ldmmel and S. Peyton Jones. Scrap more boilerplate: reflection, zips, and generalised casts. Draft;
Submitted for publication; Available from [2], March 2004.

R. Lammel, E. Visser, and J. Visser. The Essence of Strategic Programming. Draft; Available at
http://www.cwi.nl/~ralf, 2002-2004.

R. Lammel and J. Visser. Design Patterns for Functional Strategic Programming. In Proceedings 3rd
ACM SIGPLAN Workshop on Rule-Based Programming RULE’02, Pittsburgh, USA, October 2002.
ACM Press. 14 pages.

60

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

R. Ldmmel and J. Visser. Strategic polymorphism requires just two combinators! Technical Report
¢s.PL/0212048, arXiv, December 2002.

R. Lammel and J. Visser. Typed Combinators for Generic Traversal. In S. Krishnamurthi and C.R.
Ramakrishnan, editors, Proceedings Practical Aspects of Declarative Languages (PADL 2002), volume
2257 of LNCS, pages 137-154, Portland, OR, USA, January 2002. Springer-Verlag.

R. Ldmmel and J. Visser. A Strafunski Application Letter. In V. Dahl and P. Wadler, editors, Proceedings
Practical Aspects of Declarative Languages (PADL 2003), volume 2562 of LNCS, pages 357-375, New
Orleans, LA, USA, January 2003. Springer-Verlag.

H. Li, C. Reinke, and S. Thompson. Tool support for refactoring functional programs. In Proceedings
ACM SIGPLAN Workshop on Haskell, pages 27-38, Uppsala, Sweden, 2003. ACM Press.

B. Luttik and E. Visser. Specification of Rewriting Strategies. In M.P.A. Sellink, editor, 2nd Inter-
national Workshop on the Theory and Practice of Algebraic Specifications (ASF+SDF’97), Electronic
Workshops in Computing. Springer-Verlag, November 1997.

E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Bananas, Lenses, Envelopes
and Barbed Wire. In J. Hughes, editor, Proceedings 5th ACM Conf. on Functional Programming Lan-
guages and Computer Architecture, FPCA’91, volume 523 of LNCS, pages 124-144. Springer-Verlag,
Cambridge, MA, USA, August 1991.

J. Meseguer, editor. Proceedings 1st International Workshop on Rewriting Logic and its Applications,
RWLW’96, (Asilomar, Pacific Grove, CA, USA), volume 4 of ENTCS, September 1996.

L.C. Paulson. A Higher-Order Implementation of Rewriting. Science of Computer Programming,
3(2):119-149, August 1983.

G. Sittampalam, O. de Moor, and K.F. Larsen. Incremental execution of transformation specifications.
In Proceedings 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL 2004), pages 26-38, Venice, Italy, 2004. ACM Press.

S.D. Swierstra, P.R.A. Alcocer, and J. Saraiva. Designing and implementing combinator languages.
In S.D. Swierstra, P.R. Henriques, and J.N. Oliveira, editors, Advanced Functional Programming, 3rd
International School, Braga, Portugal, September 12-19, 1998, Revised Lectures, volume 1608 of LNCS,
pages 150-206. Springer-Verlag, 1999.

P.W. Trinder, K. Hammond, H.-W. Loidl, and S.L. Peyton Jones. Algorithm + Strategy = Parallelism.
Journal of Functional Programming, 8(1):23-60, January 1998.

G. Villavicencio and J.N. Oliveira. Reverse Program Calculation Supported by Code Slicing. In P. Aiken,
E. Burd, and R. Koschke, editors, Proceedings Working Conference on Reverse Engineering (WCRE
2001), pages 35-48. IEEE Computer Society Press, October 2001.

E. Visser. Stratego: A Language for Program Transformation based on Rewriting Strategies. System
Description of Stratego 0.5. In A. Middeldorp, editor, Proceedings Rewriting Techniques and Applications
(RTA’01), volume 2051 of LNCS, pages 357-361. Springer-Verlag, May 2001.

E. Visser. Meta-Programming with Concrete Object Syntax. In D. Batory, C. Consel, and W. Taha,
editors, Generative Programming and Component Engineering (GPCE’02), volume 2487 of LNCS, pages
299-315, Pittsburgh, PA, USA, October 2002. Springer-Verlag.

E. Visser, Z. Benaissa, and A. Tolmach. Building Program Optimizers with Rewriting Strategies. In
Proceedings ACM SIGPLAN International Conference on Functional Programming (ICFP’98), pages
13-26, Baltimore, September 1998. ACM Press.

P. Wadler. The essence of functional programming. In ACM, editor, Conference record of the Nineteenth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Albuquerque,
New Mezico, January 19-22, 1992, pages 1-14. ACM Press, 1992.

M Wallace and C Runciman. Haskell and XML: Generic combinators or type-based translation. In
Proceedings ACM SIGPLAN International Conference on Functional Programming (ICFP’99), pages
148-159, Paris, France, September 1999. ACM Press.

61

Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports please con-
sult http://aib.informatik.rwth-aachen.de/ or send your request to: Informatik-Bibliothek,
RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email: biblio@informatik.rwth-aachen.de

95-11 * M. Staudt / K. von Thadden: Subsumption Checking in Knowledge
Bases

95-12 * G.V. Zemanek / HW. Nissen / H. Hubert / M. Jarke: Requirements
Analysis from Multiple Perspectives: Experiences with Conceptual Mod-
eling Technology

95-13 * M. Staudt / M. Jarke: Incremental Maintenance of Externally Material-
ized Views

95-14 * P. Peters / P. Szczurko / M. Jeusfeld: Business Process Oriented Infor-
mation Management: Conceptual Models at Work

95-15* S. Rams / M. Jarke: Proceedings of the Fifth Annual Workshop on
Information Technologies & Systems

95-16 * W. Hans / St. Winkler / F. Sdenz: Distributed Execution in Functional
Logic Programming

96-1 * Jahresbericht 1995

96-2 M. Hanus / Chr. Prehofer: Higher-Order Narrowing with Definitional
Trees

96-3 * W. Scheufele / G. Moerkotte: Optimal Ordering of Selections and Joins
in Acyclic Queries with Expensive Predicates

96-4 K. Pohl: PRO-ART: Enabling Requirements Pre-Traceability

96-5 K. Pohl: Requirements Engineering: An Overview

96-6 * M. Jarke / W. Marquardt: Design and Evaluation of Computer—Aided
Process Modelling Tools

96-7 O. Chitil: The ¢-Semantics: A Comprehensive Semantics for Functional
Programs

96-8 * S. Sripada: On Entropy and the Limitations of the Second Law of Ther-
modynamics

96-9 M. Hanus (Ed.): Proceedings of the Poster Session of ALP’96 — Fifth
International Conference on Algebraic and Logic Programming

96-10 R. Conradi / B. Westfechtel: Version Models for Software Configuration
Management

96-11 = C. Weise / D. Lenzkes: A Fast Decision Algorithm for Timed Refinement

96-12 * R. Domges / K. Pohl / M. Jarke / B. Lohmann / W. Marquardt: PRO-
ART/CE* — An Environment for Managing the Evolution of Chemical
Process Simulation Models

96-13 * K. Pohl / R. Klamma / K. Weidenhaupt / R. Démges / P. Haumer /
M. Jarke: A Framework for Process-Integrated Tools

96-14 * R. Gallersdorfer / K. Klabunde / A. Stolz / M. Effmajor: INDIA — Intel-
ligent Networks as a Data Intensive Application, Final Project Report,
June 1996

96-15 * H. Schimpe / M. Staudt: VAREX: An Environment for Validating and
Refining Rule Bases

96-16 * M. Jarke / M. Gebhardt, S. Jacobs, H. Nissen: Conflict Analysis Across
Heterogeneous Viewpoints: Formalization and Visualization

96-17 M. Jeusfeld / T. X. Bui: Decision Support Components on the Internet

96-18 M. Jeusfeld / M. Papazoglou: Information Brokering: Design, Search and
Transformation

96-19 * P. Peters / M. Jarke: Simulating the impact of information flows in
networked organizations

96-20 M. Jarke / P. Peters / M. Jeusfeld: Model-driven planning and design
of cooperative information systems

63

96-21 *

96-22 *
96-23 *
97-01
97-02
97-03
97-04
97-05 *
97-06
97-07
97-08
97-09
97-10
97-13
97-14
97-15

98-01 ~
98-02

98-03

98-04 *

98-05

98-07

98-08 *

98-09 ~

98-10 *

98-11 *

98-12 *

98-13

99-01 ~
99-02 *

99-03 *
99-04

G. de Michelis / E. Dubois / M. Jarke / F. Matthes / J. Mylopoulos
/ K. Pohl / J. Schmidt / C. Woo / E. Yu: Cooperative information
systems: a manifesto

S. Jacobs / M. Gebhardt, S. Kethers, W. Rzasa: Filling HTML forms
simultaneously: CoWeb architecture and functionality

M. Gebhardt / S. Jacobs: Conflict Management in Design
Jahresbericht 1996

J. Faassen: Using full parallel Boltzmann Machines for Optimization
A. Winter / A. Schiirr: Modules and Updatable Graph Views for PRO-
grammed Graph REwriting Systems

M. Mohnen / S. Tobies: Implementing Context Patterns in the Glasgow
Haskell Compiler

S. Gruner: Schemakorrespondenzaxiome unterstiitzen die paargramma-
tische Spezifikation inkrementeller Integrationswerkzeuge

M. Nicola / M. Jarke: Design and Evaluation of Wireless Health Care
Information Systems in Developing Countries

P. Hofstedt: Taskparallele Skelette fiir irregulér strukturierte Probleme
in deklarativen Sprachen

D. Blostein / A. Schiirr: Computing with Graphs and Graph Rewriting
C.-A. Krapp / B. Westfechtel: Feedback Handling in Dynamic Task Nets
M. Nicola / M. Jarke: Integrating Replication and Communication in
Performance Models of Distributed Databases

M. Mohnen: Optimising the Memory Management of Higher-Order
Functional Programs

R. Baumann: Client/Server Distribution in a Structure-Oriented Data-
base Management System

G. H. Botorog: High-Level Parallel Programming and the Efficient Im-
plementation of Numerical Algorithms

Jahresbericht 1997

S. Gruner/ M. Nagel / A. Schiirr: Fine-grained and Structure-oriented
Integration Tools are Needed for Product Development Processes

S. Gruner: Einige Anmerkungen zur graphgrammatischen Spezifikation
von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und
Schiirr

O. Kubitz: Mobile Robots in Dynamic Environments

M. Leucker / St. Tobies: Truth — A Verification Platform for Distributed
Systems

M. Arnold / M. Erdmann / M. Glinz / P. Haumer / R. Knoll / B.
Paech / K. Pohl / J. Ryser / R. Studer / K. Weidenhaupt: Survey on
the Scenario Use in Twelve Selected Industrial Projects

H. Aust: Sprachverstehen und Dialogmodellierung in natiirlichsprach-
lichen Informationssystemen

Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am
Beispiel intraoraler Radiographien

M. Nicola / M. Jarke: Performance Modeling of Distributed and Repli-
cated Databases

A. Schleicher / B. Westfechtel / D. Jager: Modeling Dynamic Software
Processes in UML

W. Appelt / M. Jarke: Interoperable Tools for Cooperation Support
using the World Wide Web

K. Indermark: Semantik rekursiver Funktionsdefinitionen mit Strikt-
heitsinformation

Jahresbericht 1998

F. Huch: Verifcation of Erlang Programs using Abstract Interpretation
and Model Checking — Extended Version

R. Gallersdorfer / M. Jarke / M. Nicola: The ADR Replication Manager
M. Alpuente / M. Hanus / S. Lucas / G. Vidal: Specialization of Func-
tional Logic Programs Based on Needed Narrowing

64

99-07

99-08

2000-01
2000-02
2000-04
2000-05
2000-06
2000-07
2000-08

2001-01
2001-02

2001-03
2001-04

2001-05

2001-06

2001-07

2001-08

2001-09

2001-10
2001-11

2002-01
2002-02

2002-03

2002-04

2002-05

2002-06

2002-07

2002-08
2002-09
2002-10
2002-11
2003-01
2003-02

2003-03

*

*

*

*

*

Th. Wilke: CTL+ is exponentially more succinct than CTL

O. Matz: Dot-Depth and Monadic Quantifier Alternation over Pictures
Jahresbericht 1999

Jens Voge / Marcin Jurdzinski: A Discrete Strategy Improvement Algo-
rithm for Solving Parity Games

Andreas Becks / Stefan Sklorz / Matthias Jarke: Exploring the Semantic
Structure of Technical Document Collections: A Cooperative Systems
Approach

Mareike Schoop: Cooperative Document Management

Mareike Schoop / Christoph Quix (eds.): Proceedings of the Fifth In-
ternational Workshop on the Language-Action Perspective on Commu-
nication Modelling

Markus Mohnen / Pieter Koopman (Eds.): Proceedings of the 12th In-
ternational Workshop of Functional Languages

Thomas Arts / Thomas Noll: Verifying Generic Erlang Client-Server
Implementations

Jahresbericht 2000

Benedikt Bollig / Martin Leucker: Deciding LTL over Mazurkiewicz
Traces

Thierry Cachat: The power of one-letter rational languages

Benedikt Bollig / Martin Leucker / Michael Weber: Local Parallel Model
Checking for the Alternation Free mu-Calculus

Benedikt Bollig / Martin Leucker / Thomas Noll: Regular MSC Lan-
guages

Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-
Order Logic

Martin Grohe / Stefan Wohrle: An Existential Locality Theorem
Mareike Schoop / James Taylor (eds.): Proceedings of the Sixth Interna-
tional Workshop on the Language-Action Perspective on Communication
Modelling

Thomas Arts / Jurgen Giesl: A collection of examples for termination of
term rewriting using dependency pairs

Achim Blumensath: Axiomatising Tree-interpretable Structures

Klaus Indermark / Thomas Noll (eds.): Kolloquium Programmier-
sprachen und Grundlagen der Programmierung

Jahresbericht 2001

Jirgen Giesl / Aart Middeldorp: Transformation Techniques for
Context-Sensitive Rewrite Systems

Benedikt Bollig / Martin Leucker / Thomas Noll: Generalised Regular
MSC Languages

Jirgen Giesl / Aart Middeldorp: Innermost Termination of Context-
Sensitive Rewriting

Horst Lichter / Thomas von der Maflen / Thomas Weiler: Modelling
Requirements and Architectures for Software Product Lines

Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party
Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic
Finite Automata

Jorg Dahmen: Invariant Image Object Recognition using Gaussian Mix-
ture Densities

Markus Mohnen: An Open Framework for Data-Flow Analysis in Java
Markus Mohnen: Interfaces with Default Implementations in Java
Martin Leucker: Logics for Mazurkiewicz traces

Jiirgen Giesl / Hans Zantema: Liveness in Rewriting

Jahresbericht 2002

Jirgen Giesl / René Thiemann: Size-Change Termination for Term
Rewriting

Jirgen Giesl / Deepak Kapur: Deciding Inductive Validity of Equations

65

2003-04

2003-05

2003-06

2003-07

2003-08

2004-02

2004-03

2004-04

2004-05

2004-06

2004-07

Jirgen Giesl / René Thiemann / Peter Schneider-Kamp / Stephan Falke:
Improving Dependency Pairs

Christof Loéding / Philipp Rohde: Solving the Sabotage Game is
PSPACE-hard

Franz Josef Och: Statistical Machine Translation: From Single-Word
Models to Alignment Templates

Horst Lichter / Thomas von der Maflen / Alexander Nyfen / Thomas
Weiler: Vergleich von Ansétzen zur Feature Modellierung bei der Soft-
wareproduktlinienentwicklung

Jiirgen Giesl / René Thiemann / Peter Schneider-Kamp / Stephan Falke:
Mechanizing Dependency Pairs

Benedikt Bollig / Martin Leucker: Message-Passing Automata are ex-
pressively equivalent to EMSO logic

Delia Kesner / Femke van Raamsdonk / Joe Wells (eds.): Proceedings
of the Second International Workshop on Higher-Order Rewriting (HOR
2004)

Slim Abdennadher / Christophe Ringeissen (eds.): Proceedings of the
Fifth International Workshop on Rule-Based Programming (RULE 2004)
Herbert Kuchen (ed.): Proceedings of the 13th International Workshop
on Functional and (Constraint) Logic Programming (WFLP 2004)
Sergio Antoy / Yoshihito Toyama (eds.): Proceedings of the 4th Interna-
tional Workshop on Reduction Strategies in Rewriting and Programming
(WRS 2004)

Michael Codish / Aart Middeldorp (eds.): Proceedings of the 7th Inter-
national Workshop on Termination (WST 2004)

* These reports are only available as a printed version.
Please contact biblio@informatik.rwth-aachen.de to obtain copies.

66

