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The Structure of the Intersection of Tolerance and

Cocomparability Graphs

George B. Mertzios∗ and Shmuel Zaks†

Abstract. Tolerance graphs have been extensively studied since their introduction, due to
their interesting structure and their numerous applications, as they generalize both interval and
permutation graphs in a natural way. It has been conjectured by Golumbic, Monma, and Trotter
in 1984 that the intersection of tolerance and cocomparability graphs coincides with bounded
tolerance graphs. Since cocomparability graphs can be efficiently recognized, a positive answer to
this conjecture in the general case would enable us to efficiently distinguish between tolerance and
bounded tolerance graphs, although it is NP-complete to recognize each of these classes of graphs
separately. The conjecture has been proved under some – rather strong – structural assumptions
on the input graph; in particular, it has been proved for complements of trees, and later extended
to complements of bipartite graphs, and these are the only known results so far. Furthermore, it
is known that the intersection of tolerance and cocomparability graphs is contained in the class of
trapezoid graphs. In this article we prove that the above conjecture is true for every graph G, whose
tolerance representation satisfies a slight assumption; note here that this assumption concerns
only the given tolerance representation R of G, rather than any structural property of G. This
assumption on the representation is guaranteed by a wide variety of graph classes; for example, our
results immediately imply the correctness of the conjecture for complements of triangle-free graphs
(which also implies the above-mentioned correctness for complements of bipartite graphs). Our
proofs are algorithmic, in the sense that, given a tolerance representation R of a graph G, we de-
scribe an algorithm to transform R into a bounded tolerance representation R∗ of G. Furthermore,
we conjecture that any minimal tolerance graph G that is not a bounded tolerance graph, has
a tolerance representation with exactly one unbounded vertex. Our results imply the non-trivial
result that, in order to prove the conjecture of Golumbic, Monma, and Trotter, it suffices to prove
our conjecture. In addition, there already exists evidence in the literature that our conjecture is true.

Keywords: Tolerance graphs, cocomparability graphs, 3-dimensional intersection model, trapezoid
graphs, parallelogram graphs.

1 Introduction

A simple undirected graph G = (V,E) on n vertices is called a tolerance graph if there exists a
collection I = {Iu | u ∈ V } of closed intervals on the real line and a set t = {tu | u ∈ V }
of positive numbers, such that for any two vertices u, v ∈ V , uv ∈ E if and only if
|Iu ∩ Iv| ≥ min{tu, tv}. The pair 〈I, t〉 is called a tolerance representation of G. A vertex u
of G is called a bounded vertex (in a certain tolerance representation 〈I, t〉 of G) if tu ≤ |Iu|;
otherwise, u is called an unbounded vertex of G. If G has a tolerance representation 〈I, t〉 where
all vertices are bounded, then G is called a bounded tolerance graph and 〈I, t〉 a bounded tolerance
representation of G.

Tolerance graphs find numerous applications in constrained-based temporal reasoning, data
transmission through networks to efficiently scheduling aircraft and crews, as well as contribut-
ing to genetic analysis and studies of the brain [12,13]. This class of graphs has been introduced
in 1982 [10] in order to generalize some of the well known applications of interval graphs. The
main motivation was in the context of resource allocation and scheduling problems, in which re-
sources, such as rooms and vehicles, can tolerate sharing among users [13]. Since then, tolerance
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graphs have attracted many research efforts [2,4,8,11–14,16,18–20], as they generalize in a nat-
ural way both interval graphs (when all tolerances are equal) and permutation graphs [10](when
ti = |Ii| for every i = 1, 2, . . . , n); see [13] for a detailed survey.

Given an undirected graph G = (V,E) and a vertex subset M ⊆ V , M is called a module
in G, if for every u, v ∈ M and every x ∈ V \M , x is either adjacent in G to both u and v or
to none of them. Note that ∅, V , and all singletons {v}, where v ∈ V , are trivial modules in G.
A comparability graph is a graph which can be transitively oriented. A cocomparability graph is
a graph whose complement is a comparability graph. A trapezoid (resp. parallelogram and per-
mutation) graph is the intersection graph of trapezoids (resp. parallelograms and line segments)
between two parallel lines L1 and L2 [9]. Such a representation with trapezoids (resp. parallelo-
grams and line segments) is called a trapezoid (resp. parallelogram and permutation) represen-
tation of this graph. A graph is bounded tolerance if and only if it is a parallelogram graph [2].
Permutation graphs are a strict subset of parallelogram graphs [3]. Furthermore, parallelogram
graphs are a strict subset of trapezoid graphs [23], and both are subsets of cocomparability
graphs [9, 13]. On the other hand, not every tolerance graph is a cocomparability graph [9, 13].

Cocomparability graphs have received considerable attention in the literature, mainly due
to their interesting structure that leads to efficient algorithms for several NP-hard problems,
see e.g. [5, 6, 13, 17]. Furthermore, the intersection of the class of cocomparability graphs with
other graph classes has interesting properties and coincides with other widely known graph
classes. For instance, their intersection with chordal graphs is the class of interval graphs [9],
while their intersection with comparability graphs is the class of permutation graphs [9, 22].
These structural characterizations find also direct algorithmic implications to the recognition
problem of interval and permutation graphs, respectively, since the class of cocomparability
graphs can be recognized efficiently [9, 24]. In this context, the following conjecture has been
made in 1984 [11]:

Conjecture 1 ([11]). The intersection of cocomparability graphs with tolerance graphs is exactly
the class of bounded tolerance graphs.

Note that the inclusion in one direction is immediate: every bounded tolerance graph is a
cocomparability graph [9,13], as well as a tolerance graph by definition. Conjecture 1 has been
proved for complements of trees [1], and later extended to complements of bipartite graphs [21],
and these are the only known results so far. Furthermore, it has been proved that the intersection
of tolerance and cocomparability graphs is contained in the class of trapezoid graphs [8]. Since
cocomparability graphs can be efficiently recognized [24], a positive answer to Conjecture 1
would enable us to efficiently distinguish between tolerance and bounded tolerance graphs,
although it is NP-complete to recognize each of these classes of graphs separately [19]. Only
little is known so far about the separation of tolerance and bounded tolerance graphs; a recent
work can be found in [7]. An intersection model for general tolerance graphs has been recently
presented in [18], given by 3D-parallelepipeds. This parallelepiped representation of tolerance
graphs generalizes the parallelogram representation of bounded tolerance graphs; the main idea
is to exploit the third dimension to capture the information given by unbounded tolerances.
Furthermore, this model has been proved to be a powerful tool for designing efficient algorithms
for general tolerance graphs [18].

Our contribution. In this article we prove that Conjecture 1 is true for every graph G, whose
parallelepiped representation R satisfies a slight assumption (to be defined later). This assump-
tion is guaranteed by a wide variety of graph classes; for example, our results immediately
imply correctness of the conjecture for complements of triangle-free graphs (which also implies
the above mentioned correctness for complements of trees [1] and complements of bipartite
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graphs [21]). Furthermore, we state a new conjecture regarding only the minimal separating
examples between tolerance and bounded tolerance graphs (cf. Conjecture 2 below). That is,
this conjecture does not concern any other class of graphs, such as cocomparability or trapezoid
graphs. There already exists evidence in the literature that this conjecture is true [13]. Our
results reduce Conjecture 1 to our conjecture; that is, the correctness of our conjecture implies
the correctness of Conjecture 1.

Specifically, for the sake of presentation, we state three conditions on the unbounded vertices
of G (in the parallelepiped representation R). Condition 1 is that R has exactly one unbounded
vertex. Condition 2 is that, for every unbounded vertex u of G (in R), there exists no unbounded
vertex v of G whose neighborhood is strictly included in the neighborhood of u. Note that
these two conditions concern only the parallelepiped representation R; furthermore, the second
condition is weaker than the first one. Then, Condition 3 concerns also the position of the
unbounded vertices in the trapezoid representation RT , and it is weaker than the other two.

Consider a graph G that is both tolerance and cocomparability, i.e. G has both a tolerance
representation R and a trapezoid representation RT . Assuming that this (weaker) Condition 3
holds for G, we algorithmically construct a parallelogram representation of G, thus proving
that G is a bounded tolerance graph. The proof of correctness relies on the fact that G can be
represented simultaneously by R and by RT . The main idea is to iteratively “eliminate” the un-
bounded vertices of R. That is, assuming that the input representation R has k ≥ 1 unbounded
vertices, we choose an unbounded vertex u in R and construct a parallelepiped representa-
tion R∗ of G with k − 1 unbounded vertices; specifically, R∗ has the same unbounded vertices
as R except for u (which becomes bounded in R∗). As a milestone in the above construction
of the representation R∗, we construct an induced subgraph G0 of G that includes u, with the
property that the vertex set of G0 \ {u} is a module in G \ {u}. The presented techniques are
new and provide geometrical insight for the graphs that are both tolerance and cocomparability.

In order to state our Conjecture 2, we define a graphG to be aminimally unbounded tolerance
graph, if G is tolerance but not bounded tolerance, while G becomes a bounded tolerance graph
if we remove any vertex of G.

Conjecture 2. Any minimally unbounded tolerance graph has a tolerance representation with
exactly one unbounded vertex.

In other words, Conjecture 2 states that any minimally unbounded tolerance graph G has
a tolerance representation (or equivalently, a parallelepiped representation) R that satisfies
Condition 1 (stated above). Our results imply the non-trivial result that, in order to prove
Conjecture 1, it suffices to prove Conjecture 2. In addition, there already exists evidence that
Conjecture 2 is true, as to the best of our knowledge it is true for all known examples of
minimally unbounded tolerance graphs in the literature (see e.g. [13]).

Organization of the paper. We first review in Section 2 some properties of tolerance and trape-
zoid graphs. Then we define the notion of a projection representation of a tolerance graph G,
which is an alternative way to think about a parallelepiped representation of G. Furthermore,
we introduce the right and left border properties of a vertex in a projection representation, which
are crucial for our analysis. In Section 3 we prove our main results, i.e. that if a graph G is
both a tolerance and a cocomparability graph, then G is also a bounded tolerance graph, if the
unbounded vertices in the given projection representation R of G satisfy a slight assumption.
Next we discuss how these results reduce Conjecture 1 to Conjecture 2. Finally, we discuss the
presented results and further research in Section 4.
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2 Definitions and basic properties

Notation. We consider in this article simple undirected graphs with no loops or multiple edges.
In a graph G = (V,E), the edge between vertices u and v is denoted by uv, and in this case u
and v are called adjacent in G. Given a vertex subset S ⊆ V , G[S] denotes the induced subgraph
of G on the vertices in S. Whenever it is clear from the context, we may not distinguish between
a vertex set S and the induced subgraph G[S] of G. In particular, if M is a module in G, we
may also say that the induced subgraph G[M ] is a module in G. Furthermore, we denote for
simplicity the induced subgraph G[V \ S] by G \ S. Denote by N(u) = {v ∈ V | uv ∈ E} the
set of neighbors of a vertex u in G, and N [u] = N(u) ∪ {u}. For a subset U of vertices of G,
denote N(U) =

⋃
u∈U N(u) \ U . For any k vertices u1, u2, . . . , uk of G, denote for simplicity

N [u1, u2, . . . , uk] = N [u1] ∪ N [u2] ∪ . . . ∪ N [uk], i.e. N [u1, u2, . . . , uk] = N({u1, u2, . . . , uk}) ∪
{u1, u2, . . . , uk}. For any two sets A and B, we will write A ⊆ B if A is included in B, and
A ⊂ B if A is strictly included in B.

Consider a trapezoid graph G = (V,E) and a trapezoid representation RT of G, where for
any vertex u ∈ V the trapezoid corresponding to u in RT is denoted by Tu. Since trapezoid
graphs are also cocomparability graphs [9], we can define the partial order (V,≪RT

), such
that u ≪RT

v, or equivalently Tu ≪RT
Tv , if and only if Tu lies completely to the left of Tv in

RT (and thus also uv /∈ E). Note that there are several trapezoid representations of a particular
trapezoid graph G. Given one such representation RT , we can obtain another one R′

T by vertical
axis flipping of RT , i.e. R

′
T is the mirror image of RT along an imaginary line perpendicular to

L1 and L2.
Let us now briefly review the parallelepiped representation model of tolerance graphs [18].

Consider a tolerance graph G = (V,E) and let VB and VU denote the set of bounded and
unbounded vertices of G (for a certain tolerance representation), respectively. Consider now
two parallel lines L1 and L2 in the plane. For every vertex u ∈ V , consider a parallelogram
P u with two of its lines on L1 and L2, respectively, and φu be the (common) slope of the
other two lines of P u with L1 and L2. For every unbounded vertex u ∈ VU , the parallelogram
P u is trivial, i.e. a line. In the model of [18], every bounded vertex u ∈ VB corresponds to
the parallelepiped Pu = {(x, y, z) | (x, y) ∈ P u, 0 ≤ z ≤ φu} in the 3-dimensional space, while
every unbounded vertex u ∈ VU corresponds to the line Pu = {(x, y, z) | (x, y) ∈ P u, z = φu}.
The resulting set {Pu | u ∈ V } of parallelepipeds in the 3-dimensional space constitutes the
parallelepiped representation of G. In this model, two vertices u, v are adjacent if and only if
Pu ∩ Pv 6= ∅. That is, R is an intersection model for G. For more details we refer to [18].

An example of a tolerance graph G is given in Figure 1(a) (in this example, G is the
induced path P4 = (z, u, v, w) with four vertices). Furthermore, a parallelepiped representation
R is illustrated in Figure 1(b). In particular, vertex w is unbounded in the parallelepiped
representation R, while the vertices z, u, v are bounded in R. In the following, let VB and
VU denote the sets of bounded and unbounded vertices of a tolerance graph G (for a certain
parallelepiped representation), respectively.

Definition 1 ([18]). An unbounded vertex v ∈ VU of a tolerance graph G is called inevitable
(in a certain parallelepiped representation R), if making v a bounded vertex in R, i.e. if replacing
Pv with {(x, y, z) | (x, y) ∈ Pv, 0 ≤ z ≤ φv}, creates a new edge in G.

Definition 2 ([18]). A parallelepiped representation R of a tolerance graph G is called canon-
ical if every unbounded vertex in R is inevitable.

For example, the parallelepiped representation of Figure 1(b) is canonical, since w is the
only unbounded vertex and it is inevitable. A canonical representation of a tolerance graph G
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always exists, and can be computed in O(n log n) time, given a parallelepiped representation
of G, where n is the number of vertices of G [18].

u

v

w

z

G :

(a)

L1

L2

φv

φw

φu

Pv
Pw

Pz

φz

Pu

R :

φv

a

(b)

L1

L2

P z P v
Pw Pu

R
′
:

φv

L(v) R(v)

l(v) r(v)a

(c)

Fig. 1. (a) A tolerance graph G (the induced path P4 = (z, u, v, w) with four vertices), (b) a parallelepiped
representation R of G, and (c) the corresponding projection representation R′ of G.

Given a parallelepiped representation R of the tolerance graph G, we define now an alter-
native representation, as follows. Let P u be the projection of Pu to the plane z = 0 for every
u ∈ V . Then, for two bounded vertices u and v, uv ∈ E if and only if P u ∩ P v 6= ∅. Further-
more, for a bounded vertex v and an unbounded vertex u, uv ∈ E if and only if P u ∩ P v 6= ∅
and φv > φu. Moreover, two unbounded vertices u and v of G are never adjacent (even in the
case where P u intersects P v). In the following, we will call such a representation a projection
representation of a tolerance graph. Note that P u is a parallelogram (resp. a line segment) if
u is bounded (resp. unbounded). The projection representation that corresponds to the paral-
lelepiped representation of Figure 1(b) is presented in Figure 1(c). In the sequel, we will say
that a vertex u is adjacent to a vertex v in a projection representation R, if u is adjacent to
v in the tolerance graph GR induced by R. Furthermore, given a tolerance graph G, we will
call a projection representation R of G a canonical representation of G, if R is the projection
representation that is implied by a canonical parallelepiped representation of G. In the example
of Figure 1, the projection representation R′ is canonical, since the parallelepiped representation
R is canonical as well.

Let R be a projection representation of a tolerance graph G = (V,E). For every paral-
lelogram P u in R, where u ∈ V , we define by l(u) and r(u) (resp. L(u) and R(u)) the lower
(resp. upper) left and right endpoint of P u, respectively (cf. the parallelogram P v in Figure 1(c)).
Note that l(u) = r(u) and L(u) = R(u) for every unbounded vertex u. Furthermore, we denote
by φu the (common) slope of the lines of P u in R that do not lie on L1 or on L2 (cf. the
parallelepiped Pv in Figure 1(b) and the parallelogram P v in Figure 1(c)). We assume through-
out the paper w.l.o.g. that all endpoints and all slopes of the parallelograms in a projection
representation are distinct [13, 15, 18]. For simplicity of the presentation, we will denote in the
following P u just by Pu in any projection representation. Throughout the paper, given a projec-
tion representation R, we will often need to transform R to another projection representation
R′ by moving endpoints of some parallelograms of R. After such a transformation, we say that
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the endpoint a on L ∈ {L1, L2} lies in R′ immediately before (resp. immediately after) the end-
point b on L, if there is no other endpoint between a and b in R′, and additionally if a = b− ε
(resp. a = b + ε) on L, where ε > 0 is a sufficiently small positive number. Similarly, given a
set A of points on L ∈ {L1, L2}, we say that A lies in R′ immediately before (resp. immediately
after) the endpoint b on L, if for every a ∈ A there is no endpoint c /∈ A ∪ {b} between a and b
in R′, and additionally if a ∈ (b − ε, b) (resp. a ∈ (b, b + ε)) on L, where ε > 0 is a sufficiently
small positive number. The exact value of ε > 0 will be chosen each time appropriately, such
that certain conditions hold.

Similarly to a trapezoid representation, we can define the relation ≪R also for a projec-
tion representation R. Namely, Pu ≪R Pv if and only if Pu lies completely to the left of Pv

in R. Otherwise, if neither Pu ≪R Pv nor Pv ≪R Pu, we will say that Pu intersects Pv in R,
i.e. Pu ∩ Pv 6= ∅ in R. Furthermore, we define the total order <R on the lines L1 and L2 in R as
follows. For two points a and b on L1 (resp. on L2), if a lies to the left of b on L1 (resp. on L2),
then we will write a <R b. Note that, for two vertices u and v of a tolerance graph G = (V,E),
Pu may intersect Pv in a projection representation R of G, although u is not adjacent to v in G,
i.e. uv /∈ E. Thus, a projection representation R of a tolerance graph G is not necessarily an
intersection model for G.

Let R be a projection representation of a tolerance graph G = (V,E) and S ⊆ V be a
set of vertices of G. We denote by R \ S the representation that we obtain by removing the
parallelograms {Pu | u ∈ S} from R. Then, R \ S is a projection representation of the induced
subgraph G \ S = G[V \ S] of G. Furthermore, similarly to the trapezoid representations, there
are several projection representations of a particular tolerance graph G. In the next two defini-
tions, we correspond to every projection representation of a tolerance graphG another projection
representation of the same graph G with special properties.

Definition 3. Let R be a projection representation. The reverse representation R̂ of R is ob-
tained as the rotation of R by the angle π.

As an example, given the projection representation R′ presented in Figure 1(c), its reverse

representation R̂′ is illustrated in Figure 2(a). It is easy to see that if R is a projection repre-
sentation of a tolerance graph G, then for any two vertices u and v of G, Pu ≪R Pv if and only
if Pv ≪

R̂
Pu, and that Pu ∩Pv 6= ∅ in R̂ if and only if Pu ∩Pv 6= ∅ in R. Furthermore, the slope

φu in R̂ equals the slope φu in R, for every vertex u of G. Therefore, reverse representation R̂
of R is also a projection representation of the same graph G.

Definition 4. Let L1 and L2 be two parallel lines and ℓ be a line segment with endpoints aℓ
and bℓ on L1 and on L2, respectively, and ε > 0 be arbitrary. A projection representation Rℓ

between L1 and L2 is ε-squeezed with respect to ℓ, if all endpoints of Rℓ on L1 and on L2 lie in
the intervals [aℓ −

ε
2
, aℓ +

ε
2
] and [bℓ −

ε
2
, bℓ +

ε
2
], respectively.

As an example, given the projection representation R′ presented in Figure 1(c), the ε-
squeezed representation R′

ℓ of R
′ with respect to a line ℓ is illustrated in Figure 2(b). It can be

easily seen that, given a projection representation R of a tolerance graph G, a line segment ℓ
with endpoints on L1 and on L2, and any ε > 0, there clearly exists an ε-squeezed projection
representation Rℓ of G with respect to ℓ; however, we will apply this squeezing operation in a
rather delicate way (cf. the proof of Theorem 2) to only some of the parallelograms in a given
representation, in order to get some desired properties.

Lemma 1. Let G be a tolerance graph and u be an unbounded vertex of G in a projection
representation R of G. Then, r(u) <R r(v), L(v) <R L(u), and v is a bounded vertex in R, for
every v ∈ N(u).
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L1
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ℓ

R
′

ℓ
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ε
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ε

2

ε

2

ε

2

a

a

(b)

Fig. 2. (a) The reverse representation R̂′ of the projection representation R′ of Figure 1(c), and (b) the ε-squeezed
representation R′

ℓ of R′ with respect to the line ℓ.

Proof. Let v ∈ N(u). Then, since u is unbounded, and since no two unbounded vertices are
adjacent, v is a bounded vertex in R and φv > φu. Moreover, Pu intersects Pv in the projection
representation R. Suppose that r(u) = l(u) >R r(v) (resp. L(v) >R L(u) = R(u)). Then, since
Pu intersects Pv in R, it follows that L(u) = R(u) <R R(v) (resp. l(v) <R r(u) = l(u)), and
thus φv < φu, which is a contradiction. Therefore, r(u) <R r(v) and L(v) <R L(u). ⊓⊔

Lemma 2. Let G be a tolerance graph and u be an unbounded vertex of G in a projection
representation R of G. Then, l(v) <R l(u) and R(u) <R R(v) for every vertex v 6= u, such that
Pv intersects Pu in R and φv < φu.

Proof. Suppose first that l(u) <R l(v). Then, since by assumption Pv intersects Pu in R, it
follows that L(v) <R L(u), and thus φv > φu in R, which is a contradiction. Thus, l(v) <R l(u).
Similarly, if R(v) <R R(u), then r(u) <R r(v), since Pv intersects Pu in R, and thus φv > φu in
R, which is again a contradiction. Thus, R(u) <R R(v). ⊓⊔

In Figure 2(a) an example for Lemma 1 (resp. Lemma 2) is illustrated, where w is the
unbounded vertex and v ∈ N(w) (resp. u is a vertex, such that Pu intersects Pw in R and
φu < φw).

Lemma 3. Let G = (V,E) be a tolerance graph, R be a projection representation of G, and u, v
be two vertices of G. If uv /∈ E, Pu intersects Pv in R, and φv < φu in R, then N(u) ⊆ N(v).

Proof. Suppose first that u is a bounded vertex in R. Then, in both cases where v is bounded or
unbounded, u is adjacent to v in R, since Pv∩Pu 6= ∅ and φv < φu. This is a contradiction, since
vu /∈ E, and thus u is an unbounded vertex of R. If v is a bounded vertex, then l(v) <R l(u) and
R(u) <R R(v) by Lemma 2. Suppose that v is unbounded. If l(u) <R l(v), then L(v) <R L(u),
since Pu intersects Pv in R, and thus φv > φu, which is a contradiction to the assumption.
Therefore l(v) <R l(u), and thus also R(u) = L(u) <R L(v) = R(v), since Pu intersects Pv

in R. Summarizing, l(v) <R r(u) = l(u) and R(u) = L(u) <R R(v) in both cases where v is
bounded and unbounded. Consider now a vertex w ∈ N(u). Then, w is a bounded vertex in
R, r(w) >R r(u), and L(w) <R L(u) by Lemma 1. Furthermore, φw > φu > φv. Therefore,
r(w) >R l(v) and L(w) <R R(v), and thus Pw intersects Pv in R. Thus, since also φw > φv, it
follows that w ∈ N(v). Therefore, N(u) ⊆ N(v). ⊓⊔

In [12, 18] the hovering set of an unbounded vertex in a tolerance graph has been defined.
According to these definitions, the hovering set depends on a particular representation of the
tolerance graph. In the following, we extend this definition to the notion of covering vertices of
an arbitrary graph G, which is independent of any representation of G.

Definition 5. Let G = (V,E) be an arbitrary graph and u ∈ V be a vertex of G. Then,
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– the set C(u) = {v ∈ V \ N [u] | N(u) ⊆ N(v)} is the covering set of u, and every vertex
v ∈ C(u)is a covering vertex of u,

– V0(u) is the set of connected components of G \N [u] that have at least one covering vertex
v ∈ C(u) of u.

Now, similarly to [12], we state the following auxiliary lemma.

Lemma 4. Let G = (V,E) be a tolerance graph and R be a canonical representation of G.
Then, for every unbounded vertex u of G in R, there exists a covering vertex u∗ of u in G, such
that u∗ is bounded in R, Pu∗ intersects Pu in R, and φu∗ < φu. Thus, in particular V0(u) 6= ∅.

Proof. Let u be an arbitrary unbounded vertex of G in R. Since R is a canonical representation
of G, if we make u a bounded vertex in R, then we introduce at last one new adjacency uu∗ in
G by Definitions 1 and 2. That is, there exists at least one vertex u∗, such that Pu∗ intersects Pu

in R, φu∗ < φu, and uu∗ /∈ E. Then, Lemma 3 implies that N(u) ⊆ N(u∗), i.e. u∗ is a covering
vertex of u.

Suppose now that every covering vertex v of u, such that Pv intersects Pu in R and φv < φu,
is unbounded, and let u∗ be the vertex with the smallest slope φu∗ among them in R. Then,
since Pu∗ intersects Pu in R and φu∗ < φu, it follows that l(u∗) = r(u∗) <R l(u) = r(u) and
L(u∗) = R(u∗) >R L(u) = R(u). Furthermore, since u∗ is assumed to be unbounded, there
exists similarly to the previous paragraph at least one vertex u∗∗, such that Pu∗∗ intersects Pu∗

in R and φu∗∗ < φu∗ , and thus N(u∗) ⊆ N(u∗∗) by Lemma 3. Thus N(u) ⊆ N(u∗∗), since
also N(u) ⊆ N(u∗). Furthermore, l(u∗∗) <R l(u∗) and R(u∗) <R R(u∗∗) by Lemma 2. That
is, l(u∗∗) <R l(u∗) <R l(u) and R(u) <R R(u∗) <R R(u∗∗), and thus Pu∗∗ intersects Pu in R.
Moreover uu∗∗ /∈ E, since u is unbounded and φu∗∗ < φu∗ < φu.

Summarizing, u∗∗ is a covering vertex of u, Pu∗∗ intersects Pu in R and φu∗∗ < φu. This is a
contradiction, since φu∗∗ < φu∗ , and since u∗ has by assumption the smallest slope φu∗ among
the covering vertices v of u, such that Pv intersects Pu in R and φv < φu. Therefore, there exists
for every unbounded vertex u at least one covering vertex u∗ of u, such that Pu∗ intersects Pu in
R, φu∗ < φu, and u∗ is bounded in R. Furthermore, note that u∗ ∈ V0(u), and thus V0(u) 6= ∅.
This completes the proof of the lemma. ⊓⊔

In the following, for simplicity of the presentation, we may not distinguish between the
connected components of V0(u) and the vertex set of these components. Note here that V0(u) 6= ∅
for every unbounded vertex u in a canonical representation R, as we proved in Lemma 4. In the
next definition we introduce the notion of the right (resp. left) border property of a vertex u in
a projection representation R of a tolerance graph G. This notion is of particular importance
for the remainder of the paper.

Definition 6. Let G = (V,E) be a tolerance graph, u be an arbitrary vertex of G, and R be a
projection representation of G. Then, u has the right (resp. left) border property in R, if there
exists no pair of vertices w ∈ N(u) and x ∈ V0(u), such that Pw ≪R Px (resp. Px ≪R Pw).

Observe that, if a vertex u has the left border property in a projection representation R
of a tolerance graph G, then u has the right border property in the reverse representation R̂
of R. We denote in the following by Tolerance the class of tolerance graphs, and we use the
corresponding notations for the classes of bounded tolerance, cocomparability, and trapezoid
graphs.

Let G ∈ Tolerance ∩ Cocomparability. Then G is also a trapezoid graph [8]. Thus,
since Trapezoid ⊆ Cocomparability, it follows that Tolerance ∩ Cocomparability
= Tolerance ∩ Trapezoid. Furthermore, clearly Bounded Tolerance ⊆ (Tolerance
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∩ Trapezoid), since Bounded Tolerance ⊆ Tolerance and Bounded Tolerance ⊆
Trapezoid. In the following we consider a graphG ∈ (Tolerance ∩ Trapezoid) \ Bounded
Tolerance, assuming that one exists, and our aim is to get to a contradiction; namely, to prove
that (Tolerance ∩ Trapezoid) = Bounded Tolerance.

Now we state two lemmas that are of crucial importance for the proof of Theorems 1 and 2,
(in Sections 3.1 and 3.2, respectively).

Lemma 5. Let G ∈ (Tolerance ∩ Trapezoid) \ Bounded Tolerance with the smallest
number of vertices and u be a vertex of G. Then, either V0(u) = ∅ or V0(u) is connected.

Proof. For the sake of contradiction, suppose that V0(u) has at least two connected compo-
nents, for some vertex u of G. Let v1 and v2 be two covering vertices of u that belong to two
different connected components of V0(u). Since G has the smallest number of vertices in the
class (Tolerance ∩ Trapezoid) \ Bounded Tolerance, G \ {u} is a bounded tolerance
graph. Let R be any parallelogram representation of G \ {u}, and R′ be the representation of
G \ N [u] obtained by R if we remove all parallelograms that correspond to vertices of N(u).
Since v1 and v2 belong to different connected components of G \N [u], there is at least one line
segment ℓ between the connected components of v1 and v2 in G\N [u], which does not intersect
any parallelogram of R′. Since NG(u) ⊆ NG(v1) and NG(u) ⊆ NG(v2), and since ℓ lies between
Pv1 and Pv2 in R′, it follows that exactly the parallelograms of the vertices of N(u) intersect ℓ
in R. Thus, we can add the trivial parallelogram Pu = ℓ to R, obtaining thus a parallelogram
representation of G. Thus, G is a parallelogram graph, i.e. a bounded tolerance graph, which
is a contradiction to the assumption. Therefore, either V0(u) = ∅ or V0(u) is connected, for any
vertex u of G. This completes the proof of the lemma. ⊓⊔

The next lemma follows now easily by Lemmas 4 and 5.

Lemma 6. Let G ∈ (Tolerance ∩ Trapezoid) \ Bounded Tolerance with the smallest
number of vertices and v1, v2 be distinct unbounded vertices of G in a canonical projection
representation R of G. Then N(v1) 6= N(v2).

Proof. Suppose otherwise that N(v1) = N(v2) for two unbounded vertices v1 and v2 in R, i.e. v2
is a covering vertex of v1 and v1 is a covering vertex of v2. Furthermore, v1 is an isolated vertex
in G \ N [v2]. Recall now by Lemma 4 that there exists at least one covering vertex v∗2 of v2
in R, such that v∗2 is bounded in R. Then, since v1 is unbounded and v∗2 is bounded in R, it
follows that the covering vertices v1 and v∗2 of v2 do not lie in the same connected component
of G \ N [v2]. That is, V0(v2) is not connected, which is a contradiction by Lemma 5. Thus,
N(v1) 6= N(v2). ⊓⊔

3 Main results

In this section, we prove that for a graph G ∈ (Tolerance ∩ Trapezoid) it follows that
also G ∈ Bounded Tolerance by making a slight assumption on the unbounded vertices
of a projection representation R of G. In particular, we choose a certain unbounded vertex u
in R and we “eliminate” u in R in the following sense: assuming that R has k ≥ 1 unbounded
vertices, we construct a projection representation R∗ of G with k−1 unbounded vertices, where
all bounded vertices remain bounded and u is transformed to a bounded vertex. In Section 3.1
we deal with the case where the unbounded vertex u has the right or the left border property
in R, while in Section 3.2 we deal with the case where u has neither the left nor the right
border property in R. Finally we combine these two results in Section 3.3, in order to eliminate
all k unbounded vertices in R, regardless of whether or not they have the right or left border
property.
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3.1 The case where u has the right or the left border property

In this section we consider an arbitrary unbounded vertex u of G in the projection representa-
tion R, and we assume that u has the right or the left border property in R. Then, as we prove
in the next theorem, there is another projection representation R∗ of G, in which u has been
replaced by a bounded vertex.

Theorem 1. Let G = (V,E) ∈ (Tolerance ∩ Trapezoid) \ Bounded Tolerance with
the smallest number of vertices. Let R be a projection representation of G with k unbounded
vertices and u be an unbounded vertex in R. If u has the right or the left border property in R,
then there exists a projection representation R∗ of G with k − 1 unbounded vertices.

Proof. If R is not a canonical representation of G, then there exists a projection representa-
tion R∗ of G with k − 1 unbounded vertices by Definition 2. Suppose in the sequel that R is
a canonical representation of G. Then, for the unbounded vertex u of G in R, there exists at
least one bounded covering vertex u∗ of u by Lemma 4. Therefore V0(u) 6= ∅, and thus V0(u) is
connected by Lemma 5. The proof is done constructively. Namely, we will construct the projec-
tion representations R′, R′′, and R′′′, by applying to R sequentially the Transformations 1, 2,
and 3, respectively. Finally, R′′′ is a projection representation of the same graph G with k − 1
unbounded vertices, where u is represented as a bounded vertex in R′′′.

For simplicity reasons, we add in G an isolated bounded vertex t. This vertex t corresponds
to a parallelogram Pt, such that Pv ≪R Pt for every vertex v of G. Recall that VB and VU

denote the sets of bounded and unbounded vertices of G in R, respectively (note that t ∈ VB).
First, we define for every w ∈ N(u) the value L0(w) = minR{L(x) | x ∈ VB \N(u), Pw ≪R Px}.
Note that the value L0(w) is well defined for every w ∈ N(u), since in particular t ∈ VB \N(u)
and Pw ≪R Pt. Moreover, for every w ∈ N(u), w is a bounded vertex and φw > φu. For every
vertex x ∈ VB \ N(u), such that Pw ≪R Px for some w ∈ N(u), it follows that x /∈ V0(u)
by Definition 6, since u has the right border property in R by assumption. Thus, for every
w ∈ N(u), L0(w) = minR{L(x) | x ∈ (VB \ N(u)) \ V0(u), Pw ≪R Px}. Define now the value
ℓ0 = maxR{l(x) | x ∈ V0(u)} and the subset N1 = {w ∈ N(u) | r(w) <R ℓ0} of neighbors of u.

An example of a projection representation R of a tolerance graph G with seven vertices
is illustrated in Figure 3(a). In this figure, the parallelogram Pu of the unbounded vertex u is
illustrated by a bold and dotted line. The transparent parallelograms Pw1

and Pw2
correspond to

the neighborsN(u) = {w1, w2} of u in G, the light colored parallelograms Pu∗ and Px correspond
to the vertices of V0(u) = {u∗, x}, and the dark colored parallelograms Py and Pt correspond to
the vertices of (V \N [u]) \ V0(u) = {y, t}. In this example, L0(w1) = L(t), L0(w2) = L(y), and
ℓ0 = l(x), while N1 = {w1, w2}.

We construct now the projection representation R′ from R as follows.

Transformation 1 For every w ∈ N1, move the right line of Pw parallel to the right, until
either r(w) comes immediately after ℓ0 on L2, or R(w) comes immediately before L0(w) on L1.
Denote the resulting projection representation by R′.

Note that the left lines of all parallelograms do not move during Transformation 1. Thus, in
particular, the value of ℓ0 is the same in R and in R′, i.e. ℓ0 = maxR′{l(x) | x ∈ V0(u)}. As we
will prove in Lemma 8, the representation R′ is a projection representation of the same graph G,
and thus the parallelograms of two bounded vertices intersect in R if and only if they intersect
also in R′. Therefore, for every w ∈ N(u) the value L0(w) remains the same in R and in R′,
i.e. L0(w) = minR′{L(x) | x ∈ (VB \N(u)) \V0(u), Pw ≪R′ Px} for every w ∈ N(u). Define now
the subset N2 = {w ∈ N(u) | ℓ0 <R′ r(w)} of neighbors of u. If N2 6= ∅, we define the value
r0 = minR′{r(w) | w ∈ N2}. Then, r0 >R′ r(u) by Lemma 1, since N2 ⊆ N(u). Since the lower
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Pu∗ r(w1)

Pt

r(w2)

(a)

L1

L2

l(u) = r(u)

Pw2 Pw1

Py

ℓ0 = l(x)

R′ :
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R(w2)

(b)

L1

L2
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L0(w1) = L(t)

Pu∗
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r(x)r(w2)Px

L0 = L0(w2) = L(y)

r0 = r(w1)

Pt

R(w2)

(c)

L1

L2

L(u) = R(u)

l(u) = r(u)

Pw2 Pw1

Px

Py

ℓ0 = l(x)

L0(w1) = L(t)

Pu∗ r(x)r(w2) r0 = r(w1)

R′′′ :

L0 = L0(w2) = L(y)

au

bu

Pt

R(w2)

(d)

Fig. 3. (a) The projection representation R of a tolerance graph G with seven vertices, and the projection
representations (b) R′ after Transformation 1, (c) R′′ after Transformation 2, and (d) R′′′ after Transformation 3.

right endpoint r(w) of all parallelograms Pw in R′ is greater than or equal to the corresponding
value r(w) in R, it follows that N(u) \N1 = {w ∈ N(u) | ℓ0 <R r(w)} ⊆ {w ∈ N(u) | ℓ0 <R′

r(w)} = N2. Thus, N(u) \N2 ⊆ N1 and N2 ∪ (N1 \N2) = N(u).

Define now the value L0 = minR′{L(x) | x ∈ (VB \N(u)) \ V0(u), Pu ≪R′ Px}; again, L0 is
well defined, since in particular t ∈ (VB \N(u)) \ V0(u) and Pu ≪R′ Pt. The following property
of the projection representation R′ can be obtained easily by Transformation 1.
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Lemma 7. For all vertices w ∈ N1 \N2, for which R(w) <R′ L0, the values R(w) lie immedi-
ately before L0 in R′.

Proof. Let w ∈ N1 \ N2. By definition of the sets N1 and N2, it follows that r(w) <R ℓ0 and
r(w) <R′ ℓ0 in both R and R′. Thus, R(w) comes immediately before L0(w) in R′ during
Transformation 1. Consider now a vertex x ∈ (VB \ N(u)) \ V0(u), such that Pw ≪R Px,
i.e. r(w) <R l(x) and R(w) <R L(x). Then r(u) <R l(x), since r(u) <R r(w) by Lemma 1.
Suppose that L(x) <R R(u). Then, Px intersects Pu in R and φx > φu. Thus, since x is assumed
to be bounded, it follows that x ∈ N(u), which is a contradiction. Therefore R(u) <R L(x),
and thus Pu ≪R Px, since also r(u) <R l(x). Furthermore, also Pu ≪R′ Px, since Pu and Px

remain the same in both R and R′. That is, Pu ≪R′ Px for every x ∈ (VB \N(u)) \ V0(u), such
that Pw ≪R Px. Therefore, it follows by the definitions of L0 and of L0(w) that L0 ≤ L0(w).
Thus, since R(w) comes immediately before L0(w) in R′ during Transformation 1, it follows
that either R(w) comes immediately before L0 in R′ during Transformation 1 (in the case where
L0 = L0(w)) or R(w) >R′ L0 (in the case where L0 < L0(w)). This completes the proof of the
lemma. ⊓⊔

For the example of Figure 3, the projection representation R′ is illustrated in Figure 3(b).
In this figure, L0 = L(y) and r0 = r(w1), while N2 = {w1} and N1 \N2 = {w2}.

If N2 = ∅, then we set R′′ = R′; otherwise, if N2 6= ∅, we construct the projection represen-
tation R′′ from R′ as follows.

Transformation 2 For every v ∈ V0(u)∩ VB, such that r(v) >R′ r0, move the right line of Pv

in R′ parallel to the left, such that r(v) comes immediately before r0 in L2. Denote the resulting
projection representation by R′′.

Since by Transformation 2 only some endpoints of vertices v ∈ V0(u) ∩ VB are moved, it
follows that the value L0 does not change in R′′, i.e. L0 = minR′′{L(x) | x ∈ (VB \N(u)) \ V0(u),
Pu ≪R′′ Px}. The next property of the projection representation R′′ follows by Lemma 7.

Corollary 1. For all vertices w ∈ N1 \ N2, for which R(w) <R′′ L0, the values R(w) lie
immediately before L0 in R′′.

Proof. Let x0 be the vertex of (VB \N(u)) \ V0(u), such that L0 = L(x0). Recall by Lemma 7
that for all vertices w ∈ N1 \ N2, for which R(w) <R′ L0, the values R(w) lie immediately
before L0 in R′. Furthermore, note that the parallelograms of all neighbors w ∈ N(u) of u
do not move by Transformation 2. Therefore, since also the value L0 is the same in both R′

and R′′, it suffices to prove that there do not exist vertices v ∈ V0(u)∩VB and w ∈ N1 \N2, such
that R(w) <R′′ R(v) <R′′ L0 in R′′. Suppose otherwise that R(w) <R′′ R(v) <R′′ L0 = L(x0)
for two vertices v ∈ V0(u) ∩ VB and w ∈ N1 \ N2. Thus, since only the right lines of some
parallelograms Pv, where v ∈ V0(u) ∩ VB , are moved to the left by Transformation 2, it follows
that R(w) <R′ L0 = L(x0) <R′ R(v) in R′. Therefore, in particular Pv intersects Px0

in R′, and
thus v ∈ N(x0), since both v and x0 are bounded. Thus x0 ∈ V0(u), since also v ∈ V0(u). This
is a contradiction, since x0 ∈ (VB \N(u)) \V0(u). This completes the proof of the corollary. ⊓⊔

The projection representation R′′ for the example of Figure 3 is illustrated in Figure 3(c).
We construct now the projection representation R′′′ from R′′ as follows.

Transformation 3 Move the line Pu in R′′, such that its upper endpoint L(u) = R(u) comes
immediately before minR′′{L0, R(w) | w ∈ N1 \ N2} and its lower endpoint l(u) = r(u) comes
immediately after maxR′′{r(v) | v ∈ V0(u)∩VB}. Finally, make u a bounded vertex. Denote the
resulting projection representation by R′′′.

14



The resulting projection representation R′′′ has k − 1 unbounded vertices, since u is repre-
sented in R′′′ as a bounded vertex. The projection representation R′′′ for the example of Figure 3
is illustrated in Figure 3(d). In this figure, the new position of the trivial parallelogram (i.e. line)
Pu that corresponds to the (bounded) vertex u is drawn in bold. Furthermore, for better visi-
bility, the position of Pu in the previous projection representations R, R′, and R′′ is pointed by
a non-bold dashed line; in this figure, au and bu denote the endpoints of this old position of Pu

on L1 and on L2, respectively.
In the following three lemmas, we prove sequentially that R′, R′′, and R′′′ are all projection

representations of the same tolerance graph G, and thus R∗ = R′′′ is a projection representation
of G with k − 1 unbounded vertices.

Lemma 8. R′ is a projection representation of G.

Proof. Denote by x0 the vertex of V0(u), such that ℓ0 = l(x0). Recall by Lemma 4 that there
exists a covering vertex u∗ of u in G, such that u∗ is bounded in R. Since we move the right
line of some parallelograms to the right, i.e. we increase some parallelograms, all adjacencies of
R are kept in R′. Suppose that R′ has the new adjacency wv that is not an adjacency in R,
for some w ∈ N1. Therefore, since we perform parallel movements of lines, i.e. since every slope
φz in R′ equals the value of φz in R for every vertex z of G, it follows that Pw ≪R Pv and Pw

intersects Pv in R′. Thus v /∈ V0(u), since u has the right border property in R by assumption.
Furthermore r(w) <R ℓ0 = l(x0), since w ∈ N1. However, since x0 ∈ V0(u), and since u has the
right border property in R, it follows that Pw intersects Px0

in R, and thus L(x0) <R R(w).
Moreover, r(u) <R r(w) <R l(x0) and L(w) <R L(u) by Lemma 1. Suppose that L(x0) <R

L(u) = R(u). Then, Pu intersects Px0
in R and φx0

> φu. Thus, x0 is unbounded, since otherwise
x0 ∈ N(u), which is a contradiction. Furthermore, N(x0) ⊆ N(u) by Lemma 3, and thus x0
is an isolated vertex of G \N [u]. Therefore, since x0 is unbounded and u∗ is bounded in R, it
follows that x0 and u∗ do not lie in the same connected component of G\N [u]. That is, V0(u) is
not connected, which is a contradiction. Thus, L(u) = R(u) <R L(x0), i.e. R(u) <R L(x0) <R

R(w) <R L(v) and r(u) <R r(w) <R l(v), which implies that Pu ≪R Pv , and thus v /∈ N(u).
Consider now the projection representation R′ constructed by Transformation 1. Let first

r(w) <R′ l(v). Then, since Pw intersects Pv in R′, it follows that L(v) <R′ R(w), and thus
φv > φw. If v is an unbounded vertex, then w is not adjacent to v in R′, which is a contradiction
to the assumption. Thus, v is a bounded vertex. Recall that Pw ≪R Pv and that v /∈ V0(u)
and v /∈ N(u), i.e. v ∈ (VB \ N(u)) \ V0(u), and thus L0(w) ≤R L(v) in R by definition
of L0(w). Furthermore, since the left lines of the parallelograms in R do not move during
Transformation 1, it remains also L0(w) ≤R′ L(v) in R′. Therefore, since R(w) <R′ L0(w) by
definition of Transformation 1, it follows that R(w) <R′ L(v), which is a contradiction, since
L(v) <R′ R(w), as we proved above in this paragraph.

Let now l(v) <R′ r(w). Suppose that l(x0) <R′ l(v). Then, since r(w) comes in R′ at most
immediately after ℓ0 = l(x0) on L2, it follows that also r(w) <R′ l(v), which is a contradiction.
Therefore, l(v) <R′ l(x0), and thus since the left lines of the parallelograms in R do not move
during Transformation 1, it follows that also l(v) <R l(x0). Furthermore, since L(x0) <R R(w)
and Pw ≪R Pv , it follows that L(x0) <R R(w) <R L(v), and thus Px0

intersects Pv in R
and φx0

> φv. Now, if x0 is bounded, then x0v ∈ E. Thus, v ∈ V0(u), since x0 ∈ V0(u) and
v /∈ N(u), which is a contradiction. Therefore, x0 is unbounded, and thus x0v /∈ E. Then, since
Px0

intersects Pv in R and φx0
> φv, it follows that N(x0) ⊆ N(v) by Lemma 3. Recall now

that there exists a bounded covering vertex u∗ of u in G, and thus u∗, x0 ∈ V0(u). Furthermore
u∗ 6= x0, since u∗ is bounded and x0 is unbounded. Therefore, since V0(u) is connected, x0 is
adjacent to at least one other vertex y ∈ V0(u), and thus y ∈ N(v), since N(x0) ⊆ N(v). It
follows now that v ∈ V0(u), since y ∈ V0(u) and v /∈ N(u), which is again a contradiction.
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Therefore, R′ has no new adjacency wv that is not an adjacency in R, for any w ∈ N1,
i.e. R′ is a projection representation of G. This completes the proof of the lemma. ⊓⊔

Lemma 9. R′′ is a projection representation of G.

Proof. Denote by w0 the vertex of N2, such that r0 = r(w0). Since we move the right line of
some parallelograms to the left, i.e. we decrease some parallelograms, no new adjacencies are
introduced in R′′ in comparison to R′. Suppose that the adjacency vx has been removed from
R′ in R′′, for some v ∈ V0(u) ∩ VB, where r(v) >R′ r0 = r(w0). Therefore, since we perform
parallel movements of lines in R′, i.e. since every slope φz in R′′ equals the value of φz in R′ for
every vertex z of G, it follows that Pv ≪R′′ Px, while Pv intersects Px in R′.

Since w0 ∈ N(u), and since the endpoints of Pw0
do not move during Transformation 2,

it follows by Lemma 1 that r(u) <R′ r(w0) and r(u) <R′′ r(w0). Thus, since r(v) comes in
R′′ immediately before r0 = r(w0), it follows that r(u) <R′′ r(v) <R′′ r(w0). Suppose that
x ∈ N(u). Then, L(x) <R′ L(u) by Lemma 1, and thus also L(x) <R′′ L(u), since the left lines
of all parallelograms do not move during Transformation 2. Therefore, R(v) <R′′ L(x) <R′′

L(u) = R(u), since Pv ≪R′′ Px. That is, r(u) <R′′ r(v) and L(v) ≤R′′ R(v) <R′′ R(u), and
thus φv > φu in both R′ and R′′. Furthermore, L(v) <R′ R(u) (since also L(v) <R′′ R(u)) and
r(u) <R′ r0 = r(w0) <R′ r(v), and thus Pv intersects Pu in R′. Therefore, since v ∈ VB and
φv > φu in R′, it follows that v ∈ N(u), which is a contradiction. Thus, x /∈ N(u).

Now, since by assumption vx ∈ E, and since v ∈ V0(u) and x /∈ N(u), it follows that x ∈
V0(u), and thus l(x) ≤R ℓ0 by definition of ℓ0. Therefore, since the left lines of all parallelograms
do not move during Transformation 1, it follows that also l(x) ≤R′ ℓ0. Note that both r0 = r(w0)
and l(x) do not move by Transformation 2. Therefore, since r(v) comes by Transformation 2 in
R′′ immediately before r0, and since Pv ≪R′′ Px, it follows that r(v) <R′′ r0 = r(w0) <R′′ l(x).
Finally, since both r(w0) and l(x) do not move during Transformation 2, it follows that also
r(w0) <R′ l(x) in R′. Thus, since l(x) ≤R′ ℓ0, it follows that r(w0) <R′ ℓ0 in R′, which is a
contradiction, since w0 ∈ N2. Therefore, no adjacency vx has been removed from R′ in R′′,
i.e. R′′ is a projection representation of G. This completes the proof of the lemma. ⊓⊔

Lemma 10. R′′′ is a projection representation of G.

Proof. The proof is done in two parts. In Part 1 we prove that u is adjacent in R′′′ to all vertices
of N(u), while in Part 2 we prove that u is not adjacent in R′′′ to any vertex of V \N [u].

Part 1. In this part we prove that u is adjacent in R′′′ to all vertices of N(u). Denote
by au and bu the coordinates of the upper and lower endpoint of Pu in the initial projection
representation R on L1 and on L2, respectively. Then, since the endpoints of Pu do not move by
Transformations 1 and 2, au and bu remain the endpoints of Pu also in the representations R′

and R′′; however, note that au and bu are not the endpoints of Pu in R′′′. Then, L(w) <R′′ au
for every w ∈ N(u) by Lemma 1, and thus also L(w) <R′′′ au for every w ∈ N(u), since only
the endpoints of Pu move during Transformation 3.

Note now that au <R′′ L0, since L0 = minR′′{L(x) | x ∈ (VB \N(u)) \ V0(u), Pu ≪R′′ Px}.
Furthermore, recall by Corollary 1 that for all vertices w ∈ N1 \N2, for which R(w) <R′′ L0, the
values R(w) lie immediately before L0 in R′′. Therefore, in particular, au <R′′ R(w) for every
w ∈ N1 \N2, since au <R′′ L0, and thus L(w) <R′′ au <R′′ R(w) for every w ∈ N1 \N2 ⊆ N(u)
by the previous paragraph. Therefore, since au <R′′ L0, and since the upper endpoint R(u) of
the line Pu lies in R′′′ immediately before minR′′{L0, R(w) | w ∈ N1 \N2}, cf. the statement of
Transformation 3, it follows that also L(w) <R′′′ au <R′′′ R(u) <R′′′ R(w) for every w ∈ N1\N2.
That is, L(w) <R′′′ R(u) <R′′′ R(w) for every w ∈ N1 \ N2, and thus Pu intersects Pw in R′′′

for every w ∈ N1 \ N2. Therefore, since all vertices of {u} ∪ N1 \ N2 are bounded in R′′′, u is
adjacent in R′′′ to all vertices of N1 \N2.
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Consider now an arbitrary vertex w ∈ N2. Recall that r0 = minR′{r(w) | w ∈ N2},
i.e. r0 ≤R′ r(w). Thus, since the endpoint r(w) does not move by Transformation 2, it fol-
lows that also r0 ≤R′′ r(w). Furthermore, by Transformation 2, r(v) <R′′ r0 ≤R′′ r(w)
for every v ∈ V0(u) ∩ VB. This holds clearly also in R′′′, i.e. r(v) <R′′′ r(w) for every
v ∈ V0(u) ∩ VB and every w ∈ N2. Since the lower endpoint of the line Pu comes immedi-
ately after maxR′′{r(v) | V0(u) ∩ VB} in R′′′, it follows that r(v) <R′′′ l(u) = r(u) <R′′′ r(w)
for every v ∈ V0(u) ∩ VB and every w ∈ N2. Thus, since also L(w) <R′′′ au <R′′′ R(u) for
every w ∈ N(u), it follows that Pu intersects Pw in R′′′ for every w ∈ N2. Therefore, since all
vertices of {u} ∪N2 are bounded in R′′′, u is adjacent in R′′′ to all vertices of N2. Thus, since
N2 ∪ (N1 \N2) = N(u), u is adjacent in R′′′ to all vertices of N(u).

Part 2. In this part we prove that u is not adjacent in R′′′ to any vertex of V \ N [u].
To this end, recall first by Lemma 4 that u∗ is a bounded covering vertex of u in G (and
thus u∗ ∈ V0(u)∩VB), such that Pu intersects Pu∗ in R and φu∗ < φu in R. Therefore, l(u∗) <R

l(u) = r(u) by Lemma 2, and thus also l(u∗) <R′′ r(u), since the endpoint l(u∗) remains the
same in the representations R, R′, and R′′. Recall now that L0 = minR′′{L(x) | x ∈ (VB \N(u))\
V0(u), Pu ≪R′′ Px}. Denote by y0 the vertex of (VB \N(u)) \ V0(u), such that L0 = L(y0), and
thus Pu ≪R′′ Py0 . Therefore, since l(u∗) <R′′ r(u), it follows that l(u∗) <R′′ l(u) <R′′ l(y0).
Since u∗ ∈ V0(u) and y0 /∈ N(u) ∪ V0(u), it follows that u∗y0 /∈ E. Therefore, since both u∗

and y0 are bounded vertices, Pu∗ does not intersect Py0 in R′′, and thus Pu∗ ≪R′′ Py0 , since
l(u∗) <R′′ l(y0). Moreover, since by Transformation 3 only the line Pu is moved, it follows that
also Pu∗ ≪R′′′ Py0 .

Since by Transformation 1 only some endpoints of vertices w ∈ N1 ⊆ N(u) are moved, the
value R(u∗) remains the same in R and in R′. Furthermore, r(u) <R′ r0 by definition of r0
and by Lemma 1. Suppose that the right line of Pu∗ is moved during Transformation 2. Then,
r(u) <R′ r0 <R′ r(u∗), while r(u∗) comes immediately before r0 in R′′, i.e. r(u) <R′′ r(u∗) <R′′

r0, since r0 does not move during Transformation 2. Therefore, since l(u∗) <R l(u) by Lemma 2
(and thus also l(u∗) <R′′ l(u)), it follows that Pu∗ still intersects Pu in R′′.

Denote by v0 the vertex of V0(u) ∩ VB , such that r(v0) = maxR′′{r(v) | v ∈ V0(u) ∩ VB},
cf. the statement of Transformation 3. Since v0 ∈ V0(u) and y0 /∈ N(u) ∪ V0(u), it follows
that v0y0 /∈ E. Therefore, since both v0 and y0 are bounded vertices, either Py0 ≪R′′ Pv0

or Pv0 ≪R′′ Py0 . Suppose that Py0 ≪R′′ Pv0 , and thus Pu∗ ≪R′′ Py0 ≪R′′ Pv0 . Then, since
u∗, v0 ∈ V0(u) and since V0(u) is connected, there exists at least one vertex v ∈ V0(u), such
that Pv intersects Py0 in R′′. Similarly, since y0 /∈ N(u) ∪ V0(u), it follows that vy0 /∈ E.
Therefore, since y0 is a bounded vertex, v must be an unbounded vertex with φv > φy0 , and
thus N(v) ⊆ N(y0) by Lemma 3. Then, N(v) includes at least one vertex v′ ∈ V0(u), and thus
v′ ∈ N(y0). Therefore, y0 ∈ V0(u), which is a contradiction. Thus, Pv0 ≪R′′ Py0 . Moreover, since
by Transformation 3 only the line Pu is moved, it follows that also Pv0 ≪R′′′ Py0 .

We will prove in the following that u is not adjacent in R′′′ to any vertex x /∈ N(u). For
the sake of contradiction, suppose that Px intersects Pu in R′′′, for some vertex x /∈ N(u). We
distinguish in the following the cases regarding x.

Case 2a. x ∈ VB \ N(u) (i.e. x is bounded) and x ∈ V0(u). Then, r(x) ≤R′′ r(v0) and
r(u∗) ≤R′′ r(v0) by definition of v0, and thus also r(x) ≤R′′′ r(v0) and r(u∗) ≤R′′′ r(v0). There-
fore, by Transformation 3, r(x) ≤R′′′ r(v0) <R′′′ l(u), i.e. r(x) <R′′′ l(u), and thus L(u) <R′′′

R(x), since we assumed that Px intersects Pu in R′′′. Furthermore, r(x) ≤R′′′ r(v0) <R′′′ l(y0),
i.e. r(x) <R′′′ l(y0), since Pv0 ≪R′′′ Py0 . Recall by Corollary 1 that for all vertices w ∈ N1\N2, for
which R(w) <R′′ L0 = L(y0), the values R(w) lie immediately before L0 in R′′, and thus also in
R′′′. Thus, since L(u) <R′′′ R(x), and since the upper endpoint L(u) = R(u) of Pu comes immedi-
ately before min{L0, R(w) | w ∈ N1\N2} in R′′′, it follows that L(u) <R′′′ L0 = L(y0) <R′′′ R(x).
Therefore, since also r(x) <R′′′ l(y0), Px intersects Py0 in R′′′, and thus also in R′′. Then xy0 ∈ E,
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since both x and y0 are bounded, and therefore y0 ∈ V0(u), which is a contradiction. It follows
that Px does not intersect Pu in R′′′ for every x ∈ VB \ N(u), such that x ∈ V0(u). In partic-
ular, since u∗, v0 ∈ VB \N(u) and u∗, v0 ∈ V0(u), it follows that neither Pu∗ nor Pv0 intersects
Pu in R′′′. Therefore, since r(u∗) ≤R′′′ r(v0) <R′′′ l(u) by Transformation 3, it follows that
Pu∗ ≪R′′′ Pu and Pv0 ≪R′′′ Pu.

Case 2b. x ∈ VB \N(u) (i.e. x is bounded) and x /∈ V0(u). Then, u
∗x /∈ E, since u∗ ∈ V0(u).

Furthermore, since both x and u∗ (resp. v0) are bounded vertices, Pu∗ (resp. Pv0) does not
intersect Px in R′′′, i.e. either Px ≪R′′′ Pu∗ or Pu∗ ≪R′′′ Px (resp. either Px ≪R′′′ Pv0 or
Pv0 ≪R′′′ Px). If Px ≪R′′′ Pu∗ (resp. Px ≪R′′′ Pv0), then Px ≪R′′′ Pu∗ ≪R′′′ Pu (resp. Px ≪R′′′

Pv0 ≪R′′′ Pu) by the previous paragraph. This is a contradiction to the assumption that Px

intersects Pu in R′′′. Therefore Pu∗ ≪R′′′ Px and Pv0 ≪R′′′ Px, and thus also Pu∗ ≪R′′ Px and
Pv0 ≪R′′ Px. Thus, in particular r(v0) <R′′′ l(x). Furthermore, the lower endpoint l(u) = r(u)
of Pu comes by Transformation 3 immediately after r(v0) in R′′′, and thus r(v0) <R′′′ r(u) <R′′′

l(x). Then L(x) <R′′′ R(u), since we assumed that Px intersects Pu in R′′′.
We distinguish now the cases according to the relative positions of Pu and Px in R′′. If

Px ≪R′′ Pu, then Pu∗ ≪R′′ Px ≪R′′ Pu by the previous paragraph, which is a contradiction,
since Pu∗ intersects Pu in R′′, as we proved above. If Pu ≪R′′ Px, then L0 ≤R′′ L(x), since
x ∈ (VB \ N(u)) \ V0(u) and L0 = minR′′{L(x) | x ∈ (VB \ N(u)) \ V0(u), Pu ≪R′′ Px}. Thus
R(u) <R′′′ L0 ≤R′′′ L(x) by Transformation 3, which is a contradiction, since L(x) <R′′′ R(u)
by the previous paragraph. If Pu intersects Px in R′′, then φx < φu in R′′, since x is bounded,
u is unbounded, and x /∈ N(u). Therefore, N(u) ⊆ N(x) by Lemma 3, and thus x is a covering
vertex of u, i.e. x ∈ V0(u), which is a contradiction to the assumption of Case 2b. Thus, Px does
not intersect Pu in R′′′, for every x ∈ VB \N(u), such that x /∈ V0(u).

Case 2c. x ∈ VU (i.e. x is unbounded), such that φx < φu in R′′′. Then, since both Px and Pu

are lines in R′′′, it follows that l(x) <R′′′ l(u) and R(x) >R′′′ R(u). Thus, by Transformation 3,
l(x) <R′′′ r(v0) <R′′′ l(u) and R(u) <R′′′ L0 = L(y0) <R′′′ R(x). Since Pv0 ≪R′′′ Py0 , it follows
that Px intersects both Pv0 and Py0 in R′′′ (and thus also in R′′), and that φx < φv0 and φx < φy0 .
Therefore, since both v0 and y0 are bounded, it follows that x ∈ N(v0) and x ∈ N(y0). Thus
x, y0 ∈ V0(u), since v0 ∈ V0(u). This is a contradiction, since y0 /∈ V0(u) by definition of y0. It
follows that Px does not intersect Pu in R′′′ for every x ∈ VU , for which φx < φu in R′′′.

Summarizing, due to Part 1 and due to Cases 2a, 2b, and 2c of Part 2, it follows that Pu

intersects in R′′′ only the parallelograms Pz, for every z ∈ N(u), and possibly some trivial
parallelograms (lines) Px, where x ∈ VU and φx > φu in R′′′. However, since φx > φu in R′′′

for all these vertices x, it follows that u is not adjacent to these vertices in R′′′. Thus R′′′ is a
projection representation of G, since R′′ is a projection representation of G by Lemma 9. This
completes the proof of the lemma. ⊓⊔

Thus, R∗ = R′′′ is a projection representation of G with k − 1 unbounded vertices. This
completes the proof of Theorem 1. ⊓⊔

3.2 The case where u has neither the left nor the right border property

In the following we consider graphs in (Tolerance ∩ Trapezoid) \ Bounded Tolerance
that admit a projection representation, in which there is no unbounded vertex u with the
right or the left border property. The proof of the main Theorem 2 of this section is based
on the fact that G has simultaneously a projection representation R, as well as a trapezoid
representation RT . In this theorem we choose a certain unbounded vertex u of G and we prove
that there is another projection representation R∗ of G, in which u has been replaced by a
bounded vertex. First, we introduce in the following the notion of neighborhood maximality for
unbounded vertices in a tolerance graph.
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Definition 7. Let G be a tolerance graph, R be a projection representation of G, and u be an
unbounded vertex in R. Then, u is unbounded-maximal if there exists no unbounded vertex v
in R, such that N(u) ⊂ N(v).

This notion of an unbounded-maximal vertex will be used in Lemma 12, in order to obtain
for an arbitrary tolerance graph G a projection representation with a special property. Before
we present Lemma 12, we first present the next auxiliary lemma.

Lemma 11. Let G be a tolerance graph, R be a projection representation of G, and u be an
unbounded vertex of G in R, such that u is unbounded-maximal. Then, there exists a projection
representation R∗ of G with the same unbounded vertices, such that φu < φv for every unbounded
vertex v 6= u, for which N(v) ⊂ N(u).

Proof. First, recall that we can assume w.l.o.g. that all slopes of the parallelograms in a projec-
tion representation are distinct [13, 15, 18]. We will construct the projection representation R∗

of G as follows. Let u be an unbounded vertex of G in R, such that u is unbounded-maximal, and
let v 6= u be an arbitrary unbounded vertex of G in R, such that N(v) ⊂ N(u) and φv < φu.
Suppose first that Pu intersects Pv in R. Then, since uv /∈ E and φv < φu, it follows that
N(u) ⊆ N(v) by Lemma 3, which is a contradiction.

Suppose now that Pv does not intersect Pu in R. Let Pu ≪R Pv, i.e. r(u) <R r(v) and
L(u) <R L(v). Furthermore, let ∆ = r(v) − r(u). Since for every w ∈ N(v), it holds also
w ∈ N(u), it follows by Lemma 1 that r(u) <R r(v) <R r(w) and L(w) <R L(u) <R L(v) for
every w ∈ N(v) ⊂ N(u). Furthermore, φw > φu > φv for every w ∈ N(v) ⊂ N(u). We can now
move the upper endpoint L(v) of the line Pv in R to the point L(u) +∆ − ε, for a sufficiently
small positive number ε > 0. In the resulting projection representation R′, φu < φv.

We will prove that R′ is a projection representation of the same graph G. Indeed, consider
first a vertex w ∈ N(v). Then, r(u) <R′ r(v) <R′ r(w) and L(w) <R′ L(u) <R′ L(v) =
L(u) +∆− ε. Furthermore, φu < φv < φw, since ε > 0 has been chosen to be sufficiently small.
Therefore, Pv still intersects Pw in R′ and φv < φw for every w ∈ N(v), i.e. v remains adjacent
in R′ to all vertices w ∈ N(v).

Suppose now that v obtains a new adjacency with a vertex y in R′. Then, due to Lemma 1,
y is bounded in both R and R′, r(v) <R′ r(y) and L(y) <R′ L(v). Since the lower endpoint r(v)
of Pv remains the same in both R and R′, and since the upper endpoint L(v) of Pv in R′ is to
the left of the upper endpoint of Pv in R, it follows that also r(v) <R r(y) and L(y) <R L(v),
i.e. Py intersects Pv also in R. Thus, since the slope φv in R is smaller than the corresponding
slope φv in R′, it follows that y is adjacent to v also in R, i.e. y ∈ N(v), which is a contradiction.
Therefore, v does not obtain any new adjacency in R′. Thus, v is adjacent in R′ to exactly the
vertices w ∈ N(v), i.e. R′ is a projection representation of the same tolerance graph G.

The case where Pv ≪R Pu is symmetric. Namely, in this case let ∆ = L(u) − L(v); then,
construct the projection representation R′ by moving the lower endpoint r(v) of the line Pv

in R to the point r(u) − ∆ + ε, for a sufficiently small positive number ε > 0. Similarly, the
resulting projection representation R′ is a projection representation of G, while φu < φv. We
repeat the above procedure, as long as there exists an unbounded vertex v 6= u in R, such
that N(v) ⊂ N(u) and φv < φu. The resulting projection representation R∗ of G satisfies the
conditions of the lemma. ⊓⊔

We are now ready to present Lemma 12.

Lemma 12. Let G be a tolerance graph and R be a projection representation of G with at least
one unbounded vertex. Then, there exists a projection representation R∗ of G with the same
unbounded vertices, such that the unbounded vertex u, for which φu = min{φx | x ∈ VU} in R∗,
is unbounded-maximal.
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Proof. Recall that VU denotes the set of unbounded vertices of G in R. Let S = {u ∈ VU | u
is unbounded-maximal}. Furthermore, let R′ be the projection representation obtained by ap-
plying for every u ∈ S the procedure described in the proof of Lemma 11. Then, R′ has the
same unbounded vertices VU , while φu < φv for every u ∈ S and every unbounded vertex
v 6= u, for which N(v) ⊂ N(u). We choose now u to be that unbounded vertex, for which
φu = min{φx | x ∈ S}. Then, u satisfies the conditions of the lemma. ⊓⊔

Assume that there exists a graph G ∈ (Tolerance ∩ Trapezoid) \ Bounded Toler-
ance, and let G have the smallest number of vertices. Furthermore, let R and RT be a canonical
projection and a trapezoid representation of G, respectively, and u be an arbitrary unbounded
vertex of G in R. Then V0(u) 6= ∅ by Lemma 4, and thus also V0(u) is connected by Lemma 5.
Therefore, since u is not adjacent to any vertex of V0(u) by Definition 5, either all trapezoids
of V0(u) lie to the left, or all to the right of Tu in RT .

Consider first the case where all trapezoids of V0(u) lie to the left of Tu in RT , i.e. Tx ≪RT
Tu

for every x ∈ V0(u). Recall by Lemma 6 that N(v) 6= N(u) for every unbounded vertex v 6= u
in R. Denote by Qu = {v ∈ VU | N(v) ⊂ N(u)} the set of unbounded vertices v of G in
R, whose neighborhood set is strictly included in the neighborhood set of u. The next lemma
follows easily by the definition of Qu.

Lemma 13. For every v ∈ Qu, every covering vertex u∗ of u is also a covering vertex of v.
Furthermore, Qu ∩ V0(u) = ∅.

Proof. Since u∗ is a covering vertex of u by assumption, u∗ /∈ N(u) and N(u) ⊆ N(u∗) by
Definition 5. Let v ∈ Qu. Then, since N(v) ⊂ N(u) and u∗ /∈ N(u), it follows that u∗ /∈ N(v).
Furthermore, N(v) ⊂ N(u) ⊆ N(u∗), and thus u∗ is a covering vertex of v by Definition 5.
Suppose now that v ∈ V0(u). Then, v is an isolated vertex in G \ N [u], since N(v) ⊂ N(u).
Thus, since v is unbounded and u∗ is bounded, i.e. v 6= u∗, it follows that v and u∗ do not lie in
the same connected component of V0(u), i.e. V0(u) is not connected, which is a contradiction.
Thus, v /∈ V0(u) for every v ∈ Qu, i.e. Qu ∩ V0(u) = ∅. ⊓⊔

Since no two unbounded vertices are adjacent, it follows in particular that Tv does not
intersect Tu in RT , for every v ∈ Qu. Therefore, we can partition the set Qu into the two
subsets Q1(u) = {v ∈ Qu | Tv ≪RT

Tu} and Q2(u) = {v ∈ Qu | Tu ≪RT
Tv}.

Consider now a vertex v ∈ Q1(u) ⊆ Qu. Note that for every x ∈ V0(u), Tv does not
intersect Tx in RT , since otherwise v ∈ V0(u), which is a contradiction by Lemma 13. Therefore,
since in particular V0(u) is connected by Lemma 5, it follows that for every x ∈ V0(u), either
Tv ≪RT

Tx or Tx ≪RT
Tv. We will now prove that Tv ≪RT

Tx for every x ∈ V0(u). Suppose
otherwise that Tx ≪RT

Tv for every x ∈ V0(u). Then, since v ∈ Q1(u), it follows that Tx ≪RT

Tv ≪RT
Tu for every x ∈ V0(u). Therefore, since V0(u) includes all covering vertices of u by

Definition 5, it follows that Tx0
≪RT

Tv ≪RT
Tu for every covering vertex x0 of u. Thus, since

N(u) ⊆ N(x0), it follows that Tz intersects Tv in RT for every z ∈ N(u) ⊆ N(x0). Therefore
N(v) ⊆ N(u), which is a contradiction, since v ∈ Q1(u) ⊆ Qu. Therefore Tv ≪RT

Tx for
every v ∈ Q1(u) and every x ∈ V0(u), i.e. Q1(u) = {v ∈ Qu | Tv ≪RT

Tx for every x ∈ V0(u)}.
Consider now the case where all trapezoids of V0(u) lie to the right of Tu in RT , i.e. Tu ≪RT

Tx for every x ∈ V0(u). Then, by performing vertical axis flipping of RT , we partition similarly
to the above the set Qu into the sets Q1(u) and Q2(u). That is, in this (symmetric) case the
sets Q1(u) and Q2(u) will be Q1(u) = {v ∈ Qu | Tx ≪RT

Tv for every x ∈ V0(u)} and Q2(u) =
{v ∈ Qu | Tv ≪RT

Tu}.
In the following we state three conditions on G, regarding the unbounded vertices of G in R;

the third one depends also on the trapezoid representation RT of G. The second condition is
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weaker than the first one, while the third condition is weaker than the other two, as it is stated
in Observation 1. Then, we prove Theorem 2, assuming that the third condition holds.

Condition 1 The projection representation R of G has exactly one unbounded vertex.

Condition 2 For every unbounded vertex u of G in R, Qu = ∅; namely, all unbounded vertices
are unbounded-maximal.

Condition 3 For every unbounded vertex u of G in R, Q2(u) = ∅, i.e. Qu = Q1(u).

The next observation, which connects the above conditions, follows easily.

Observation 1 Condition 1 implies Condition 2, and Condition 2 implies Condition 3.

In the remainder of the section we assume that Condition 3 holds, which is weaker than
Conditions 1 and 2. We present now the main theorem of this section.

Theorem 2. Let G = (V,E) ∈ (Tolerance ∩ Trapezoid) \ Bounded Tolerance with
the smallest number of vertices. Let RT be a trapezoid representation of G and R be a projection
representation of G with k unbounded vertices. Then, assuming that Condition 3 holds, there
exists a projection representation R∗ of G with k − 1 unbounded vertices.

Proof (sketch). The full proof of the theorem can be found in the Appendix. The proof is
done constructively, by exploiting the fact that G can be represented by both the projection
representation R and the trapezoid representation RT .

If at least one unbounded vertex of G in R has the right or the left border property, there
exists a projection representation R∗ of G with k− 1 unbounded vertices by Theorem 1, where
all unbounded vertices of R∗ are also unbounded vertices in R. Suppose that every unbounded
vertex of G in R has neither the right nor the left border property in R. Let u be the unbounded
vertex in R, such that φu = min{φx | x ∈ VU} in R; then, we may assume by Lemma 12 that u
is an unbounded-maximal vertex of G. By possibly performing vertical axis flipping of RT , we
may assume w.l.o.g. that all trapezoids of V0(u) lie to the left of Tu in RT , i.e. Tx ≪RT

Tu for
every x ∈ V0(u).

We now construct a projection representation R∗ of the same graph G, in which u is replaced
by a bounded vertex, while all other k−1 unbounded vertices of R remain also unbounded in R∗.
We start by constructing a subgraphG0 of G, such that u ∈ V (G0) and all vertices of V (G0)\{u}
are bounded. Then, we prove that G0 \{u} is a module in G\{u}, by exploiting the fact that G
can be represented by both R and RT . That is, we prove that N(v) \ V (G0) = N(v′) \ V (G0)
for all vertices v, v′ ∈ V (G0) \ {u}. Then, we define in a particular way a line segment ℓ with
endpoints on the lines L1 and L2, respectively. Furthermore, we replace the parallelograms of
the vertices of G0 in R by a particular projection representation R0 of G0, which is ε-squeezed
with respect to the line segment ℓ. We denote the resulting projection representation by Rℓ.
Then we prove that Rℓ \ {u} is a projection representation of the graph G \ {u} – although Rℓ

is not necessarily a projection representation of G – and that u has the right border property
in Rℓ. Then, similarly to Transformations 1, 2, and 3 in the proof of Theorem 1, we apply
three other transformations to Rℓ (Transformations 4, 5, and 6, respectively), obtaining thus
the projection representations R′

ℓ, R
′′
ℓ , and R′′′

ℓ , respectively. Then we set R∗ = R′′′
ℓ , and we

prove that R∗ is a projection representation of the graph G itself. Moreover, R∗ has the same
unbounded vertices as R except for u (which became bounded in R∗), and thus R∗ has k − 1
unbounded vertices. This completes the proof of Theorem 2. ⊓⊔
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Note that, during the proof of Theorem 2 (see Appendix), we mainly use the facts that u
is an unbounded-maximal vertex of G and that the slope φu of u is the smallest among all
unbounded vertices in R. On the contrary, we use the assumption that Condition 3 holds only
for the proof that G0 \ {u} is a module in G \ {u} (cf. Lemma 35 in the Appendix).

3.3 The general case

Recall now that Tolerance ∩ Cocomparability = Tolerance ∩ Trapezoid (cf. the dis-
cussion before Lemma 5). The next main theorem follows by recursive application of Theorem 2.

Theorem 3. Let G = (V,E) ∈ (Tolerance ∩ Cocomparability), RT be a trapezoid rep-
resentation of G, and R be a projection representation of G. Then, assuming that one of the
Conditions 1, 2, or 3 holds, G is a bounded tolerance graph.

Proof. Since G = (V,E) ∈ (Tolerance ∩ Cocomparability), it follows that G is also a
trapezoid graph [8]. That is, G ∈ (Tolerance ∩ Trapezoid). Suppose that G is not a bounded
tolerance graph. We can assume w.l.o.g. that G has the smallest number of vertices among the
graphs in (Tolerance ∩ Trapezoid) \ Bounded Tolerance. Let R0 be a projection
representation of G with the smallest possible number k0 of unbounded vertices. Note that
k0 ≥ 1; indeed, if otherwise k0 = 0, then G is a bounded tolerance graph, which is a contradiction
to the assumption on G. Suppose that the projection representation R of G has k unbounded
vertices, where k ≥ k0. Then, there exists by Theorem 2 a projection representation R∗ of G
with k − 1 unbounded vertices. In particular, due to the proof of Theorem 2, R∗ has the same
unbounded vertices as R, except for u (which became bounded in R∗).

If Condition 1 holds for the projection representation R of G, i.e. if k = k0 = 1, then R∗

has no unbounded vertex, i.e. R∗ is a parallelogram representation of G. This is a contradiction
to the assumption that G is not a bounded tolerance (i.e. parallelogram) graph. If Condition 2
holds for R, then it also holds for R∗, since all unbounded vertices of R∗ are also unbounded
vertices of R. Similarly, if Condition 3 holds for R and RT , then it follows directly that it holds
also for the pair R∗ and RT of representations of G (since for every unbounded vertex u in R∗,
the set Q2(u) depends only on the trapezoid representation RT ).

Therefore, we can apply iteratively k − k0 + 1 times the constructive proof of Theorem 2,
obtaining eventually a projection representation R∗∗ of G with k0 − 1 unbounded vertices. This
is a contradiction to the minimality of k0. Therefore, G is a bounded tolerance graph. This
completes the proof of the theorem. ⊓⊔

As an immediate implication of Theorem 3, we prove in the next corollary that Conjecture 1
is true in particular for every graph G that has no three independent vertices a, b, c such that
N(a) ⊂ N(b) ⊂ N(c), since Condition 2 is guaranteed to be true for every such graph G.
Therefore the conjecture is also true for the complements of triangle-free graphs. Thus, since
in particular no bipartite graph has a triangle, the next corollary immediately implies the
correctness of Conjecture 1 for the complements of trees and of bipartite graphs, which were
the only known results until now [1,21].

Corollary 2. Let G = (V,E) ∈ (Tolerance ∩ Cocomparability). Suppose that there do
not exist three independent vertices a, b, c ∈ V such that N(a) ⊂ N(b) ⊂ N(c). Then, G is a
bounded tolerance graph.

Proof. Due to Theorem 3, it suffices to prove that Condition 2 is true for G, with respect
to any possible canonical (projection) representation R and any trapezoid representation RT

of G. Let R be a canonical representation of G. Suppose that Condition 2 is not true for G.
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Then, there exists an unbounded vertex u ∈ VU such that Qu 6= ∅. That is, there exists by
the definition of the set Qu an unbounded vertex v ∈ VU \ {u} such that N(v) ⊂ N(u). Note
that v /∈ N(u), since no two unbounded vertices are adjacent in G. Furthermore, there exists
at least one covering vertex u∗ of u in G, since V0(u) 6= ∅ (cf. Lemma 4), and thus u∗ /∈ N(u)
andN(u) ⊂ N(u∗). Therefore, sinceN(v) ⊂ N(u) and u∗ /∈ N(u), it follows that also u∗ /∈ N(v),
i.e. the vertices v, u, u∗ are independent. Moreover N(v) ⊂ N(u) ⊂ N(u∗), which comes in
contradiction to the assumption of the lemma. Therefore Condition 2 holds for G, and thus G
is a bounded tolerance graph by Theorem 3. ⊓⊔

We now formally define the notion of a minimally unbounded tolerance graph.

Definition 8. Let G ∈ Tolerance \ Bounded Tolerance. If G\{u} is a bounded tolerance
graph for every vertex of G, then G is a minimally unbounded tolerance graph.

Assume now that Conjecture 1 is not true, and let G be a counterexample with the smallest
number of vertices. Then, in particular, G is a tolerance but not a bounded tolerance graph;
furthermore, since G has the smallest number of vertices, the removal of any vertex of Gmakes it
a bounded tolerance graph. That is,G is a minimally unbounded tolerance graph by Definition 8.
Now, if our Conjecture 2 is true (see Section 1), then G has a projection representation R with
exactly one unbounded vertex, i.e. R satisfies Condition 1. Thus, G is a bounded tolerance graph
by Theorem 3, which is a contradiction, since G has been assumed to be a counterexample to
Conjecture 1. Thus, we obtain the following theorem.

Theorem 4. Conjecture 2 implies Conjecture 1.

Therefore, in order to prove Conjecture 1, it suffices to prove Conjecture 2. In addition,
there already exists evidence that this conjecture is true, as to the best of our knowledge all
known examples of minimally unbounded tolerance graphs have a tolerance representation with
exactly one unbounded vertex; for such examples, see e.g. [13].

4 Concluding remarks and open problems

In this article we dealt with the over 25 years old conjecture of [11], which states that if a graph G
is both tolerance and cocomparability, then it is also bounded tolerance. Specifically, we proved
that the conjecture is true for every graph G, whose tolerance representation R of G satisfies a
slight assumption, instead of making any structural assumption on G – as it was the case in all
previously known results. This assumption on the tolerance representation of G is guaranteed
by a wide variety of graph classes; in particular, our results immediately imply correctness of
the conjecture for complements of triangle-free graphs (this also implies the correctness for
complements of trees and complements of bipartite graphs, which were the only known results
until now). Our proofs are algorithmic, in the sense that, given a tolerance representation R of a
graph G, we describe an algorithm to transform R into a bounded tolerance representation R∗ of
G. Furthermore, we conjecture that any minimal graph G that is a tolerance but not a bounded
tolerance graph, has a tolerance representation with exactly one unbounded vertex. Our results
imply the non-trivial result that, in order to prove the conjecture of [11], it suffices to prove
our conjecture. In addition, there already exists evidence in the literature that this conjecture
is true [13]. An interesting problem for further research that we leave open is to prove this new
conjecture. Since cocomparability graphs can be efficiently recognized [24], a positive answer to
this conjecture (and thus also to the conjecture of [11]) would enable us to efficiently distinguish
between tolerance and bounded tolerance graphs, although it is NP-complete to recognize each
of these graph classes separately [19].
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Appendix: Proof of Theorem 2

Proof. First, we may assume w.l.o.g. by the minimality of the number of vertices of G that
G is connected. If R is not a canonical representation of G, then there exists a projection
representation of G with k − 1 unbounded vertices by Definition 2. Suppose for the sequel of
the proof that R is a canonical representation of G. If at least one unbounded vertex of G in
R has the right or the left border property, there exists a projection representation of G with
k− 1 unbounded vertices by Theorem 1. Suppose in the sequel that every unbounded vertex of
G in R has neither the right nor the left border property in R. Let u be the unbounded vertex
in R, such that φu = min{φx | x ∈ VU} in R. The proof is done constructively, by exploiting
the fact that G can be represented by both the projection representation R and the trapezoid
representation RT . Namely, we will construct a projection representation R∗ of the same graph
G, in which u is replaced by a bounded vertex, while all other k − 1 unbounded vertices of R
remain also unbounded in R∗.

By Lemma 4, there exists at least one bounded covering vertex u∗ of u, such that Pu∗

intersects Pu in R and φu∗ < φu. Therefore, V0(u) 6= ∅, and thus V0(u) is connected by Lemma 5.
Since V0(u) is connected, and since u is not adjacent to any vertex of V0(u), it follows that either
all trapezoids of V0(u) lie to the left, or all to the right of Tu in RT . By possibly performing
vertical axis flipping of RT , we may assume w.l.o.g. that all trapezoids of V0(u) lie to the left of
Tu in RT , i.e. Tx ≪RT

Tu for every x ∈ V0(u). Moreover, we may assume w.l.o.g. by Lemma 12
that u is an unbounded-maximal vertex of G. Recall by Lemma 6 that N(v1) 6= N(v2) for any
two unbounded vertices v1, v2. Denote now by Qu = {v ∈ VU | N(v) ⊂ N(u)}. Furthermore,
since we assumed that Condition 3 holds, Qu = Q1(u) = {v ∈ Qu | Tv ≪RT

Tx for every
x ∈ V0(u)}.

The vertex sets D1, D2, S2, and X̃1 and the vertex x2

Define the sets D1(u,R) = {v ∈ V0(u) | Pv ≪R Pu}, D2(u,R) = {v ∈ V0(u) | Pu ≪R Pv},
and S2(u,R) = {v ∈ V0(u) | Pv 6≪R Pu}. Note that V0(u) = D1(u,R) ∪ S2(u,R) and that
D2(u,R) ⊆ S2(u,R). For simplicity reasons, we will refer in the following to the sets D1(u,R),
D2(u,R), and S2(u,R) just by D1, D2, and S2, respectively. Note that Qu∩D1 = ∅, Qu∩D2 = ∅,
and Qu ∩ S2 = ∅, since D1,D2, S2 ⊆ V0(u) and by Lemma 13.

Since u does not have the right border property in R, there exist by Definition 6 vertices
w ∈ N(u) and x ∈ V0(u), such that Pw ≪R Px. Therefore, in particular, r(w) <R l(x). Since
u is unbounded in R, and since w ∈ N(u), Lemma 1 implies that r(u) <R r(w), and thus
r(u) <R l(x). For the sake of contradiction, suppose that L(x) <R R(u). Then, Px intersects
Pu in R and φx > φu. Thus, x is unbounded in R, since otherwise x ∈ N(u), which is a
contradiction. Furthermore, N(x) ⊆ N(u) by Lemma 3, and thus x ∈ Qu, which is a contra-
diction by Lemma 13, since x ∈ V0(u). Therefore, R(u) <R L(x), and thus Pu ≪R Px, since
also r(u) <R l(x). That is, x ∈ D2. Since u has not the left border property in R, there exist
vertices w′ ∈ N(u) and y ∈ V0(u), such that Py ≪R Pw′ . Therefore, in the reverse projection

representation R̂ of R, Pw′ ≪
R̂
Py. Then, applying the same arguments as above, it follows that

Pu ≪
R̂
Py, and thus Py ≪R Pu. That is, y ∈ D1. Summarizing, both sets D1 and D2 ⊆ S2 are

not empty.

Among the vertices of D1 ∪ D2 let x1 be such a vertex, that for every other vertex x′ ∈
D1 ∪D2 \ {x1}, either Tx′ intersects Tx1

in the trapezoid representation RT , or Tx1
≪RT

Tx′ .
That is, there exists no vertex x′ in D1 ∪ D2, whose trapezoid lies to the left of Tx1

in RT .
By possibly building the reverse project representation R̂ of R, we may assume w.l.o.g. that
Px1

≪R Pu, i.e. x1 ∈ D1.
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As already mentioned above, since u does not have the right border property in R, there
exist vertices w ∈ N(u) and x ∈ D2 ⊆ V0(u), such that Pw ≪R Px. Among the vertices x ∈ D2,
for which Pw ≪R Px, let x2 be such a vertex, that for every other vertex x′ ∈ D2 \ {x2} with
Pw ≪R Px′ , either Tx′ intersects Tx2

in the trapezoid representation RT , or Tx2
≪RT

Tx′ . That
is, there exists no vertex x′ in D2 with Pw ≪R Px′ , whose trapezoid Tx′ lies to the left of Tx2

in
RT .

Furthermore, x1x2 /∈ E, since x1 ∈ D1 and x2 ∈ D2, i.e. Px1
≪R Pu ≪R Px2

. Therefore, since
Tx ≪RT

Tu for every x ∈ V0(u), it follows by the definition of x1 that Tx1
≪RT

Tx2
≪RT

Tu.
Thus, since wu ∈ E and wx2 /∈ E, it follows that also Tx1

≪RT
Tx2

≪RT
Tw, i.e. wx1 /∈ E.

That is, x1, x2, and w are three independent vertices in G.
We now construct iteratively the vertex set X̃1 ⊆ D1 from the vertex x1, as follows. Initially,

we set X̃1 = {x1}. If N(w) ∩N(X̃1) ⊂ N(X̃1), then set X̃1 to be equal to X̃1 ∪N(X̃1) \N(w).
Iterate, until finally N(w) ∩ N(X̃1) = N(X̃1). This process terminates, since every time we
strictly augment the current set X̃1. Furthermore, at the end of this procedure, N(X̃1) 6= ∅,
since otherwise G is not connected, which is a contradiction. Moreover, the vertices of X̃1 at
every step of this procedure induce a connected subgraph of G.

Lemma 14. For the constructed set X̃1, X̃1 ⊆ D1. Furthermore, Px ≪R Pw and Tx ≪RT
Tx2

for every x ∈ X̃1.

Proof. The proof of the lemma is done by induction on |X̃1|. Suppose first that |X̃1| = 1,
i.e. X̃1 = {x1}. Then, {x1} ⊆ D1 and Tx1

≪RT
Tx2

by definition of x1. We will now prove that
also Px1

≪R Pw. Otherwise, suppose first that Pw ≪R Px1
. Then, since x1 ∈ D1, it follows that

Pw ≪R Px1
≪R Pu, and thus w /∈ N(u), which is a contradiction. Thus, either Px1

intersects
Pw in R, or Px1

≪R Pw. Suppose that Px1
intersects Pw in R. Then, x1 is unbounded and

φx1
> φw > φu, since w is bounded and x1w /∈ E. Then, Lemma 3 implies that N(x1) ⊆ N(w).

Furthermore, since Tx1
≪RT

Tx2
≪RT

Tw, it follows that Tz intersects Tx2
in RT for every

z ∈ N(x1) ⊆ N(w), and thus also N(x1) ⊆ N(x2). Therefore, since Px1
≪R Pu ≪R Px2

, it
follows that for every z ∈ N(x1) ⊆ N(x2), z is bounded in R, φu < φx1

< φz, and Pz intersects
Pu in R. Thus, N(x1) ⊆ N(u), i.e. x1 ∈ Qu, which is a contradiction by Lemma 13, since
x1 ∈ V0(u). It follows that Px1

does not intersect Pw in R, and thus Px1
≪R Pw. This proves

the induction basis.
For the induction step, suppose that the statement of the lemma holds for the set X̃1

constructed after an iteration of the construction procedure, and let v ∈ N(X̃1)\N(w). Suppose
first that v ∈ N(u), and thus v is bounded in R. Then, since by the induction hypothesis
Tx ≪RT

Tx2
≪RT

Tu for every x ∈ X̃1, and since v ∈ N(x) ∩N(u) for some x ∈ X̃1, it follows
that Tv intersects Tx2

in RT , and thus vx2 ∈ E. On the other hand, since Px ≪R Pw ≪R Px2

for every x ∈ X̃1 by the induction hypothesis, and since v ∈ N(x) ∩N(x2) for some x ∈ X̃1, it
follows that Pv intersects Pw in R, and thus vw ∈ E, since both v and w are bounded. This is a
contradiction, since v ∈ N(X̃1)\N(w). Thus, v /∈ N(u) for every v ∈ N(X̃1)\N(w). Therefore,
since v ∈ N(X̃1) and X̃1 ⊆ V0(u), it follows that v ∈ V0(u) for every v ∈ N(X̃1) \ N(w), and
thus the updated set X̃1 is X̃1 ∪N(X̃1) \N(w) ⊆ V0(u).

Since v ∈ N(x) for some x ∈ X̃1, and since Px ≪R Pw for every x ∈ X̃1 by the induction
hypothesis, it follows that either Pv intersects Pw in R, or Pv ≪R Pw. Suppose that Pv intersects
Pw in R. Then, v is unbounded and φv > φw, since v /∈ N(w) and w is bounded. Therefore,
N(v) ⊆ N(w) by Lemma 3, and thus in particular x ∈ N(w) for some x ∈ X̃1, which is a
contradiction to the induction hypothesis. Therefore, Pv does not intersect Pw in R, and thus
Pv ≪R Pw for every v ∈ N(X̃1) \N(w).

We will prove that also Pv ≪R Pu for every v ∈ N(X̃1)\N(w). Otherwise, suppose first that
Pu ≪R Pv . Then, since Pv ≪R Pw by the previous paragraph, it follows that Pu ≪R Pv ≪R Pw,
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and thus w /∈ N(u), which is a contradiction. Suppose now that Pv intersects Pu in R. Recall
that v /∈ N(u), as we proved above. If φu > φv, then N(u) ⊆ N(v) by Lemma 3, and thus also
w ∈ N(v), which is a contradiction, since v ∈ N(X̃1) \N(w). If φu < φv, then v is unbounded,
since otherwise v ∈ N(u), which is a contradiction. Furthermore, N(v) ⊆ N(u) by Lemma 3,
and thus v ∈ Qu, which is a contradiction by Lemma 13, since v ∈ V0(u) as we proved above.
Therefore, Pv ≪R Pu, i.e. v ∈ D1, for every v ∈ N(X̃1) \N(w), and thus the updated set X̃1 is
X̃1 ∪N(X̃1) \N(w) ⊆ D1.

Since the updated set X̃1 ∪ N(X̃1) \N(w) is a subset of D1, i.e. x ∈ V0(u) and Px ≪R Pu

for every x ∈ X̃1 ∪ N(X̃1) \ N(w), it follows in particular that xx2 /∈ E for every x ∈ X̃1 ∪
N(X̃1) \N(w), since Pu ≪R Px2

. Recall furthermore that the set X̃1 ∪N(X̃1) \N(w) induces
a connected subgraph of G. Thus, since Tx1

≪RT
Tx2

, it follows that Tx ≪RT
Tx2

for every

x ∈ X̃1 ∪N(X̃1) \N(w). This completes the induction step, and the lemma follows. ⊓⊔

Corollary 3. For the constructed set X̃1, N(X̃1) \N(u) 6= ∅.

Proof. Suppose for the sake of contradiction that N(X̃1) \N(u) = ∅, i.e. N(X̃1) ⊆ N(u). Since
X̃1 ⊆ D1 ⊆ V0(u) by Lemma 14, it follows that Px ≪R Pu for every x ∈ X̃1, and thus in
particular x /∈ N(u) for every x ∈ X̃1. Therefore, since X̃1 induces a connected subgraph of G,
it follows that X̃1 is a connected component of G \ N [u]. Therefore, since V0(u) is connected,
it follows that V0(u) = X̃1. This is a contradiction, since ∅ 6= D2 ⊆ V0(u). Therefore, N(X̃1) \
N(u) 6= ∅. ⊓⊔

Recall by definition of x2 that for every vertex x′ ∈ D2 \ {x2} with Pw ≪R Px′ , either Tx′

intersects Tx2
in the trapezoid representation RT , or Tx2

≪RT
Tx′ . We will now prove in the

following lemma that this property holds actually for all vertices x′ ∈ S2 \ {x2}.

Lemma 15. For every vertex x′ ∈ S2 \ {x2}, either Tx′ intersects Tx2
in the trapezoid repre-

sentation RT , or Tx2
≪RT

Tx′.

Proof. Consider an arbitrary vertex x′ ∈ S2 \{x2}. If x
′ ∈ N(x2), then clearly Tx′ intersects Tx2

in RT . Thus, it suffices to consider in the sequel of the proof only the case where x′ /∈ N(x2),
i.e. the case where Tx′ does not intersect Tx2

in RT . Suppose for the sake of contradiction that
Tx′ ≪RT

Tx2
, i.e. Tx′ ≪RT

Tx2
≪RT

Tw. Then, in particular, x′ /∈ N(w). Furthermore, note
that x′ /∈ N(u), since x′ ∈ S2 ⊆ V0(u).

Suppose first that x′ ∈ S2 \D2, i.e. Px′ intersects Pu in R. If φx′ > φu, then x′ is unbounded,
since otherwise x′ ∈ N(u) which is a a contradiction. Furthermore, N(x′) ⊆ N(u) by Lemma 3,
and thus x′ ∈ Qu, which is a contradiction by Lemma 13, since x ∈ V0(u). If φx′ < φu, then
N(u) ⊆ N(x′) by Lemma 3, and thus in particular wx′ ∈ E, which is a contradiction, since
x′ /∈ N(w). Therefore, the lemma holds for every vertex x′ ∈ S2 \D2.

Suppose now that x′ ∈ D2, i.e. Pu ≪R Px′ . If Pw ≪R Px′ , then the lemma follows by
definition of x2. If Px′ ≪R Pw, then Pu ≪R Px′ ≪R Pw, and thus w /∈ N(u), which is a
contradiction. Suppose that Px′ intersects Pw in R. Then, x′ is unbounded and φx′ > φw > φu,
since w is bounded and x′ /∈ N(w). Note that Px ≪R Pu ≪R Px′ for every x ∈ X̃1, since x

′ ∈ D2

and X̃1 ⊆ D1 by Lemma 14. Therefore, x′ /∈ N(x) for every x ∈ X̃1, and thus in particular
x′ /∈ N(x1), since x1 ∈ X̃1. Therefore, Tx′ does not intersect Tx1

in RT , and thus Tx1
≪RT

Tx′ by

definition of x1. Furthermore, since X̃1 induces a connected subgraph of G, and since x′ /∈ N(x)
for every x ∈ X̃1, it follows that Tx ≪RT

Tx′ for every x ∈ X̃1. Recall now that Tx2
≪RT

Tw and

that we assumed that Tx′ ≪RT
Tx2

. That is, Tx ≪RT
Tx′ ≪RT

Tx2
≪RT

Tw for every x ∈ X̃1.

Recall that N(X̃1) ⊆ N(w) by the construction of the set X̃1. Therefore, since Tx ≪RT

Tx′ ≪RT
Tw for every x ∈ X̃1, it follows that Tz intersects Tx′ in RT for every z ∈ N(X̃1) ⊆
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N(w), and thus N(X̃1) ⊆ N(x′). On the other hand, since Px ≪R Pu ≪R Px′ for every
x ∈ X̃1 in the projection representation R, it follows that Pz intersects Pu in R for every
z ∈ N(X̃1) ⊆ N(x′). Furthermore, since x′ is unbounded and φx′ > φu in R, it follows that z is
bounded in R and φz > φx′ > φu for every z ∈ N(X̃1) ⊆ N(x′). Therefore, z ∈ N(u) for every
z ∈ N(X̃1), i.e. N(X̃1) ⊆ N(u), which is a contradiction by Corollary 3. This completes the
proof of the lemma. ⊓⊔

The vertex sets Cu, C2, X1, and H

Let Cu be the connected component of G \ Qu \ N [X̃1, x2], in which u belongs. Note that, in
particular, w belongs to Cu, since wu ∈ E, w /∈ Qu, and wx,wx2 /∈ E for every x ∈ X̃1, and thus
Cu \ {u} 6= ∅. Recall that the trapezoids of all vertices of V0(u) lie to the left of the trapezoid
of u in the trapezoid representation RT ; S2 is exactly the subset of vertices of V0(u), whose

parallelograms do not lie to the left of the parallelogram Pu of u in R. Let
˜̃
C2 be the set of

connected components of G\Qu \N [X̃1], in which the vertices of S2 belong. Since x2 ∈ S2, note

that V (Cu∪
˜̃
C2) induces the set of connected components of G\Qu\N [X̃1], in which the vertices

of S2∪{u} belong. Furthermore, let C̃2 =
˜̃
C2\N [u,w]\Cu. Finally, let H̃ be the induced subgraph

of G\Qu\N [X̃1] on the vertices of N [u,w]∩N(x2). Note now that V (Cu∪
˜̃
C2) = V (Cu∪C̃2∪H̃),

i.e. V (Cu ∪ C̃2 ∪ H̃) also induces the set of connected components of G \Qu \N [X̃1], in which
the vertices of S2 ∪ {u} belong.

Let v be a vertex of the set C̃2, and thus v /∈ N(u) by the definition of C̃2. Suppose
that Pv intersects Pu in R. If φv > φu, then v is unbounded, since otherwise v ∈ N(u), which
is a contradiction. Furthermore, N(v) ⊆ N(u) by Lemma 3, and thus v ∈ Qu, which is a
contradiction to the definition of C̃2. If φv < φu, then N(u) ⊆ N(v) by Lemma 3, and thus
w ∈ N(v), which is again a contradiction to the definition of C̃2. Therefore, there is no vertex v
of C̃2, such that Pv intersects Pu in R. That is, for every v ∈ C̃2 either Pv ≪R Pu or Pu ≪R Pv.
Let now A1, A2, . . . , Ak, Ak+1, . . . , Aℓ be the connected components of C̃2, such that Pv ≪R Pu

for every v ∈ Ai, i = 1, 2, . . . , k, and Pu ≪R Pv for every v ∈ Aj , j = k + 1, k + 2, . . . , ℓ.
We partition first the set {Ak+1, . . . , Aℓ} of components into two possibly empty subsets,

namely B1 and B2, as follows. A component Aj ∈ B2, j = k + 1, k + 2, . . . , ℓ, if Aj ∩ S2 6= ∅;
otherwise, Aj ∈ B1. Then, since any component Aj ∈ B2 is a connected subgraph of G \N [u],
and since Aj has at least one vertex of S2 ⊆ V0(u), it follows that v ∈ V0(u) for every v ∈ Aj,
where Aj ∈ B2. Furthermore, v ∈ D2 for every v ∈ Aj ∈ B2, since Pu ≪R Pv for every v ∈ Aj.
Thus, Aj ⊆ D2 for every component Aj ∈ B2, while Aj ∩D2 = ∅ for every component Aj ∈ B1.
That is, in particular the next observation follows.

Observation 2 V (B1) ⊆ V \Qu \N [u] \ V0(u), where V (B1) =
⋃

Aj∈B1
Aj .

We partition now the set {A1, A2, . . . , Ak} of components into two possibly empty subsets,
namely A1 and A2, as follows. A component Ai ∈ A2, i = 1, 2, . . . , k, if H̃ ⊆ N(x) for all vertices
x ∈ Ai; otherwise, Ai ∈ A1. That is, A2 includes exactly those components Ai, i = 1, 2, . . . , k,
for which all vertices of Ai are adjacent to all vertices of H̃.

We now extend the vertex set X̃1 to the set X1 = X̃1 ∪ V (A1), where V (A1) =
⋃

Ai∈A1
Ai,

and define C2 = A2 ∪ B2. Furthermore, similarly to the definition of H̃, let H be the induced
subgraph of G\Qu\N [X1] on the vertices of N [u,w]∩N(x2). Note that H ⊆ H̃, since X̃1 ⊆ X1,
and thus for every component Ai ∈ A2, all vertices of Ai are also adjacent to all vertices of H.
Furthermore, since X1 = X̃1∪V (A1), and since no vertex of A1 is adjacent to any vertex of X̃1,
note that N(X1) = N(X̃1)∪N(V (A1)) and that N [X1] = N [X̃1]∪N [V (A1)], i.e. in particular
N(X̃1) ⊆ N(X1). Moreover, N(X1) 6= ∅, since N(X̃1) 6= ∅.
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Recall that V (Cu ∪ C̃2 ∪ H̃) induces the set of connected components of G \ Qu \ N [X̃1],
in which the vertices of S2 ∪ {u} belong. The next lemma follows by the definitions of Cu, C2,
and H.

Lemma 16. V (Cu ∪C2 ∪H) induces a subgraph of G \Qu \N [X1] \ B1 that includes all con-
nected components of G \Qu \N [X1] \ B1, in which the vertices of S2 ∪ {u} belong. Further-
more, N(V (Cu ∪ C2 ∪H)) ⊆ Qu ∪N(X1) ∪ V (B1).

Proof. Consider a vertex v ∈ N(V (A1)). That is, v ∈ N(v′) and v /∈ V (A1), for some vertex
v′ ∈ V (A1), i.e. v

′ ∈ Ai for some Ai ∈ A1. First note that v′ /∈ N(x2), since Pv′ ≪R Pu ≪R Px2

for every v′ ∈ Ai by definition of A1. If v ∈ Qu, then N(v) ⊂ N(u) by definition of Qu, and
thus v′ ∈ N(u), which is a contradiction due to the definition of C̃2, and since v′ ∈ V (A1) ⊆ C̃2.
Therefore v /∈ Qu. We will now prove that v ∈ N(X̃1) or v ∈ H̃. To this end, suppose that
v /∈ N(X̃1). If v ∈ C̃2, then v is a vertex of the connected component Ai of C̃2, since v ∈ N(v′)

and v′ ∈ Ai. This is a contradiction, since v /∈ V (A1); thus v /∈ C̃2. That is, v
′ ∈ C̃2 ⊆

˜̃
C2 and

v /∈ C̃2. Therefore, since v ∈ N(v′) and v /∈ Qu ∪N(X̃1), it follows by definitions of
˜̃
C2 and C̃2

that v ∈ Cu or v ∈ N [u,w]. Let v ∈ Cu. Then, since v′ ∈ N(v) and v′ /∈ N(x2), it follows that
also v′ ∈ Cu, which is a contradiction by definition of C̃2. Let v ∈ N [u,w]. If v /∈ N(x2), then
v ∈ Cu and v′ ∈ Cu, which is again a contradiction. If v ∈ N(x2), then v ∈ H̃ by definition
of H̃. Summarizing, if v /∈ N(X̃1), then v ∈ H̃. That is, for an arbitrary vertex v ∈ N(V (A1)),
either v ∈ N(X̃1) or v ∈ H̃, i.e. N(V (A1)) ⊆ N(X̃1) ∪ H̃.

Note by definition of Cu and of C̃2 that V (Cu)∩V (H̃) = ∅ and that V (C̃2)∩V (H̃) = ∅. There-
fore, it follows by the previous paragraph that V (Cu)∩N(V (A1)) ⊆ V (Cu) ∩ (N(X̃1) ∪ H̃) = ∅
and that V (C̃2) ∩N(V (A1)) ⊆ V (C̃2) ∩ (N(X̃1) ∪ H̃) = ∅. Thus,

V (Cu) \N(V (A1)) = V (Cu) (1)

V (C̃2) \N(V (A1)) = V (C̃2) (2)

Recall now that N(X1) = N(X̃1) ∪N(V (A1)). Therefore, it follows by definition of H that

V (H̃) = V (H̃ \N(V (A1))) ∪ V (H̃ ∩N(V (A1))) (3)

= V (H) ∪ V (H̃ ∩N(V (A1)))

Furthermore, recall that V (C̃2) = V (C2)∪V (A1)∪V (B1) by definition of C2, and thus it follows
by (3) that

V (Cu ∪ C̃2 ∪ H̃) = V (Cu) ∪ V (C2) ∪ V (A1) ∪ V (B1) (4)

∪V (H) ∪ V (H̃ ∩N(V (A1)))

Therefore, it follows by (1), (2), and (4) that

V (Cu ∪ C̃2 ∪ H̃) \N [V (A1)] \ V (B1) = V (Cu) ∪ V (C2) ∪ V (H) (5)

Thus, since N [X1] = N [X̃1] ∪N [V (A1)], it follows that also

V (Cu ∪ C̃2 ∪ H̃) \N [X1] \ V (B1) = V (Cu ∪ C2 ∪H) (6)

Therefore, since V (Cu ∪ C̃2 ∪ H̃) induces the set of connected components of G \Qu \N [X̃1], in
which the vertices of S2∪{u} belong, it follows in particular by (6) that V (Cu∪C2∪H) induces
a subgraph of G \Qu \N [X1] \ B1; moreover, this subgraph includes all connected components
of G \Qu \N [X1] \ B1, in which the vertices of S2 ∪ {u} belong. On the other hand, since
V (Cu ∪ C̃2 ∪ H̃) induces a set of connected components of G \ Qu \ N [X̃1], it follows that
N(V (Cu ∪ C̃2 ∪ H̃)) ⊆ Qu ∪ N(X̃1). Therefore, it follows by (6) that N(V (Cu ∪ C2 ∪ H)) ⊆
Qu ∪N(X1) ∪ V (B1). This completes the proof of the lemma. ⊓⊔
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For the sequel of the proof, denote for simplicity N1(v) = N(v) ∩N(X1) for every ver-
tex v ∈ V \X1. Moreover, Cu is also the connected component of G \Qu \N [X1, x2] (and not
only of G \Qu \N [X̃1, x2]), in which u belongs, as we prove in the next lemma. The next two
lemmas extend Lemma 14.

Lemma 17. For the constructed sets X1 and C2, N1(w) = N(X1), X1 ⊆ D1, and C2 ⊆ V0(u).
Furthermore, Cu is the connected component of G \Qu \N [X1, x2], in which u belongs.

Proof. Recall first that N(X̃1) ⊆ N(w) by the construction of the set X̃1. Consider an arbitrary
component Ai ∈ A1 ∪ A2 = {A1, A2, . . . , Ak}. Recall that v /∈ N(x2) for every v ∈ Ai, since
Pv ≪R Pu ≪R Px2

. We will prove now that N(Ai) \ N [X̃1] ⊆ N(x2). Suppose otherwise that
there exists a vertex v ∈ Ai and a vertex v′ ∈ N(v) \N [X̃1], such that v′ /∈ Ai and v′ /∈ N(x2).
By definition of C̃2 it follows that either v′ ∈ Qu, or v′ ∈ N [u,w], or v′ ∈ Cu. Suppose that
v′ ∈ Qu. Then, N(v′) ⊂ N(u), and thus v ∈ N(u), since vv′ ∈ E. This is a contradiction,
since Pv ≪R Pu for every v ∈ Ai, where Ai ∈ A1 ∪ A2. Therefore, either v′ ∈ N [u,w] or
v′ ∈ Cu. Then, since u,w ∈ Cu and v′ /∈ N(x2), it follows by the definition of Cu that always
v′ ∈ Cu. Thus, v ∈ Cu, since v ∈ N(v′) and v /∈ N(x2), which is a contradiction to definition
of C̃2. Therefore, N(Ai) \ N [X̃1] ⊆ N(x2) for every Ai ∈ A1 ∪ A2. Therefore, in particular
N(V (A1)) \N [X̃1] ⊆ N(x2), and thus (N(V (A1)) \N [X̃1]) ∩N(x2) = N(V (A1)) \N [X̃1].

Recall that if a vertex v ∈ N [X̃1], then v /∈ Cu by definition of Cu. Moreover, as we have
proved in the previous paragraph, if a vertex v ∈ N(V (A1)) \N [X̃1], then v ∈ N(x2), and thus
again v /∈ Cu by definition of Cu. Therefore, since X1 = X̃1 ∪ V (A1), it follows that if a vertex
v ∈ N [X1], then v /∈ Cu. That is, Cu is the connected component of G\Qu \N [X1, x2], in which
u belongs.

Let Ai ∈ A1. Note that no vertex v ∈ Ai is adjacent to any vertex of X̃1. Indeed, otherwise
v ∈ N(w) by definition of X̃1, which is a contradiction to the definition of C̃2. Since Ai ⊆ C̃2

includes no vertex of Cu, it follows in particular that v /∈ N(w) for every v ∈ Ai. Indeed,
otherwise v ∈ Cu, since also v /∈ N(x2), which is a contradiction. Consider now a vertex
z ∈ (N(Ai) \ N [X̃1]) ∩ N(x2), i.e. z ∈ (N(v) \ N [X̃1]) ∩ N(x2) and z /∈ Ai, for some v ∈ Ai.
Suppose first that Pv intersects Pw in R. Then, v is unbounded and φv > φw, since w is bounded,
and thus N(v) ⊆ N(w) by Lemma 3. Therefore, in particular, z ∈ N(w). Suppose now that Pv

does not intersect Pw in R. Then, Pv ≪R Pu ≪R Px2
and Pv ≪R Pw ≪R Px2

, since wu ∈ E.
Thus, Pz intersects Pw and Pu in R, since z ∈ N(v) ∩N(x2). If z is unbounded, then φz > φu,
since φu = min{φx | x ∈ VU} in R by assumption. Therefore, N(z) ⊆ N(u) by Lemma 3,
and thus x2 ∈ N(u), which is a contradiction. Therefore, z is bounded, and thus z ∈ N(w),
since Pz intersects Pw in R and both z and w are bounded. Summarizing, z ∈ N(w) for every
z ∈ (N(Ai) \ N [X̃1]) ∩ N(x2). That is, (N(Ai) \ N [X̃1]) ∩ N(x2) ⊆ N(w) for every Ai ∈ A1,
i.e. (N(V (A1)) \ N [X̃1]) ∩ N(x2) ⊆ N(w). Therefore, since X1 = X̃1 ∪ V (A1), and since no
vertex of A1 is adjacent to any vertex of X̃1, it follows that

N(X1) = N(X̃1) ∪ (N(V (A1)) \N [X̃1]) (7)

= N(X̃1) ∪ ((N(V (A1)) \N [X̃1]) ∩N(x2)) ⊆ N(w)

since (N(V (A1)) \ N [X̃1]) ∩ N(x2) = N(V (A1)) \ N [X̃1] and N(X̃1) ⊆ N(w). That is,
N(X1) ⊆ N(w), i.e. N1(w) = N(X1).

Let now Ai ∈ A1 ∪ A2, and let v ∈ Ai. Suppose first that Px ≪R Pv for some x ∈ X̃1,
i.e. Px ≪R Pv ≪R Pu ≪R Px2

. Then, since x, x2 ∈ V0(u), and since V0(u) is connected, there
exists a vertex z ∈ V0(u), such that Pz intersects Pv in R. If zv ∈ E, then v ∈ V0(u), and thus
Ai ⊆ V0(u). Let now zv /∈ E. If φz > φv then N(z) ⊆ N(v) by Lemma 3. Then, since z ∈ V0(u),
and since V0(u) is connected with at least two vertices, z has at least one neighbor z′ ∈ V0(u),
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and thus z′ ∈ N(v). Then, v ∈ V0(u), and thus Ai ⊆ V0(u). On the other hand, if φv > φz, then
N(v) ⊆ N(z) by Lemma 3. Furthermore, v is unbounded, since otherwise zv ∈ E, which is a

contradiction. If N(v) ⊆ N(u), then v ∈ Qu, which is a contradiction to the definition of
˜̃
C2.

Suppose now that N(v) * N(u), i.e. v has at least one neighbor v′ /∈ N(u). Then, v′ ∈ N(z),
since N(v) ⊆ N(z). Therefore, v′ ∈ V0(u) and v ∈ V0(u), and thus Ai ⊆ V0(u). Summarizing, if
Px ≪R Pv for some x ∈ X̃1, then Ai ⊆ V0(u).

Suppose now that Pv intersects Px in R, for some x ∈ X̃1. Recall that X̃1 ⊆ V0(u) by
Lemma 14, and thus x ∈ V0(u). If vx ∈ E, then v ∈ V0(u), and thus Ai ⊆ V0(u). Let now
vx /∈ E. Then, it follows similarly to the previous paragraph that Ai ⊆ V0(u).

Suppose finally that Pv ≪R Px, i.e. Pv ≪R Px ≪R Pu ≪R Px2
, for some x ∈ X̃1. Recall

that N(Ai) \N [X̃1] ⊆ N(x2), and thus for every vertex v′ ∈ N(v) \N [X̃1], such that v′ /∈ Ai,
it follows that v′ ∈ N(x2). Consider such a vertex v′. Then, Pv′ intersects Pu and Px in R,
since Pv ≪R Px ≪R Pu ≪R Px2

. Note that v′ /∈ N(x), since otherwise v′ ∈ N(X̃1), which
is a contradiction to the assumption that v′ ∈ N(v) \ N [X̃1]. Suppose that v′ ∈ N(u), and
thus v′ is bounded in R and φv′ > φu. Then, since v′ /∈ N(x), it follows that x is unbounded
and φx > φv′ > φu. Thus, N(x) ⊆ N(v′) by Lemma 3. If X̃1 6= {x}, then x has at least
one neighbor x′ in X̃1 and x′ ∈ N(v′), since N(x) ⊆ N(v′). Thus, v′ ∈ N(X̃1), which is a
contradiction to the assumption that v′ ∈ N(v) \ N [X̃1]. Let X̃1 = {x} and z ∈ N(x). Then,
N(x) ⊆ N(w) by definition of X̃1, i.e. z ∈ N(w). Thus, since Tx ≪RT

Tx2
≪RT

Tw, it follows
that Tz intersects Tx2

in RT , i.e. z ∈ N(x2). Thus, Pz intersects Pu in R, since Px ≪R Pu ≪R Px2

and z ∈ N(x) ∩N(x2). However, z is bounded and φz > φx > φu, since x is unbounded. Thus,
zu ∈ E, i.e. z ∈ N(u). Since this holds for an arbitrary z ∈ N(x), it follows that N(x) ⊆ N(u),
and thus x ∈ Qu, which is a contradiction by Lemma 13, since X̃1 = {x} ⊆ V0(u). Thus,
v′ /∈ N(u) for every vertex v′ ∈ N(v) \ N [X̃1], such that v′ /∈ Ai. Therefore, since v′ ∈ N(x2)
for all such vertices v′, and since x2 ∈ V0(u), it follows that v

′, v ∈ V0(u), and thus Ai ⊆ V0(u).

Summarizing, Ai ⊆ V0(u) in every case, and thus Ai ⊆ D1 for every component Ai ∈ A1∪A2.
Furthermore, recall that X̃1 ⊆ D1 by Lemma 14. Thus, since also Ai ⊆ D1 for every component
Ai ∈ A1, it follows that X1 = X̃1 ∪ V (A1) ⊆ D1.

Recall now that Aj ⊆ D2 for every component Aj ∈ B2, where k + 1 ≤ j ≤ ℓ, and thus
Aj ⊆ V0(u) for every Aj ∈ B2. Therefore, since also Ai ⊆ V0(u) for every Ai ∈ A2, and since
C2 = A2 ∪ B2, it follows that C2 ⊆ V0(u). This completes the proof of the lemma. ⊓⊔

Lemma 18. For every x ∈ X1, Tx ≪RT
Tx2

and Px ≪R Pw.

Proof. Consider a component Ai ∈ A1. Recall that v /∈ N(x2) for every v ∈ Ai, since Pv ≪R

Pu ≪R Px2
. Thus, since Ai is connected, either Tx2

≪RT
Tv or Tv ≪RT

Tx2
for every vertex

v ∈ Ai. Suppose that Tx2
≪RT

Tv for every v ∈ Ai; let v ∈ Ai be such a vertex. Since
v ∈ X1 ⊆ V0(u) by Lemma 17, it follows that Tv ≪RT

Tu. Recall that v /∈ N(u) ∪ N(w)

by definition of C̃2. Therefore, since w ∈ N(u), it follows that also Tv ≪RT
Tw. Consider

now a vertex z ∈ H̃ = N [u,w] ∩ N(x2) \ Qu \ N [X̃1]. Then, since Tx2
≪RT

Tv ≪RT
Tu and

Tx2
≪RT

Tv ≪RT
Tw, it follows that Tz intersects Tv in RT , and thus vz ∈ E. Since this holds

for every vertex v ∈ Ai and every vertex z ∈ H̃, it follows that Ai ∈ A2, which is a contradiction.
Thus, Tv ≪RT

Tx2
for every vertex v ∈ Ai, where Ai ∈ A1. Therefore, since also Tx ≪RT

Tx2

for every vertex x ∈ X̃1 by Lemma 14, it follows that Tx ≪RT
Tx2

for every vertex x ∈ X1.

We will prove now that Pv ≪R Pw for every v ∈ Ai, where Ai ∈ A1. Otherwise, suppose
first that Pw ≪R Pv for some v ∈ Ai. Then, since Pv ≪R Pu for every v ∈ Ai, it follows that
Pw ≪R Pv ≪R Pu, and thus w /∈ N(u), which is a contradiction. Suppose now that Pv intersects
Pw in R, for some v ∈ Ai. Then, since v /∈ N(w) by definition of C̃2, and since w is bounded,
it follows that v is unbounded and φv > φw > φu. Thus, N(v) ⊆ N(w) by Lemma 3. Let now
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z ∈ N(v) ⊆ N(w). Then, since Tv ≪RT
Tx2

≪RT
Tw (cf. the previous paragraph), it follows

that Tz intersects Tx2
in RT , i.e. z ∈ N(x2). Since this holds for an arbitrary z ∈ N(v), it follows

that also N(v) ⊆ N(x2). Therefore, since Pv ≪R Pu ≪R Px2
, it follows that Pz intersects Pu in

R for every z ∈ N(v) ⊆ N(x2). Furthermore, since v is unbounded, it follows that z is bounded
and φz > φv > φu for every z ∈ N(v), and thus N(v) ⊆ N(u). That is, v ∈ Qu, which is a
contradiction by Lemma 13, since v ∈ Ai ⊆ X1 ⊆ V0(u). It follows that Pv ≪R Pw for every
v ∈ Ai, where Ai ∈ A1. Therefore, since also Px ≪R Pw for every vertex x ∈ X̃1 by Lemma 14,
it follows that Px ≪R Pw for every vertex x ∈ X1. This completes the lemma. ⊓⊔

Lemma 19. Denote N = N(X1) = N1(w). Then, N1(u) ⊂ N and N1(x2) = N1(v) = N for
every bounded vertex v ∈ Cu \ {u} in R.

Proof. First note that N1(u) ⊆ N , since N = N(X1) and N1(u) = N(u)∩N(X1) by definition.
Recall that N(X̃1) ⊆ N = N(X1) and that N(X̃1) \ N(u) 6= ∅ by Corollary 3. Therefore also
N \N(u) 6= ∅, and thus N1(u) ⊂ N .

Consider a vertex z ∈ N , i.e. z ∈ N(x) ∩ N(w) for some x ∈ X1 by Lemma 17. Then,
since Tx ≪RT

Tx2
≪RT

Tw by Lemma 18, it follows that Tz intersects Tx2
in RT . Therefore,

z ∈ N(x2), and thus z ∈ N1(x2). Since this holds for every z ∈ N , it follows that N ⊆ N1(x2).
Thus, since by definition N1(x2) ⊆ N , it follows that N1(x2) = N .

Consider now a bounded vertex v ∈ Cu in R and a vertex z ∈ N . Then, z ∈ N(x) ∩N(x2)
for some x ∈ X1, since N1(x2) = N by the previous paragraph. Recall that Cu is connected
and that no vertex of Cu is adjacent to x2 by the definition of Cu. Thus, since w ∈ Cu and
Tx2

≪RT
Tw, it follows that Tx2

lies in RT to the left of all trapezoids of the vertices of Cu; in
particular, Lemma 18 implies that Tx ≪RT

Tx2
≪RT

Tv for every x ∈ X1.
Suppose first that Px ≪R Pv ≪R Px2

. Then, Pz intersects Pv in R. Suppose that z /∈ N(v).
Then, since v is bounded, it follows that z is unbounded and φz > φv, and thus N(z) ⊆ N(v)
by Lemma 3. Therefore, since x ∈ N(z), it follows that x ∈ N(v), i.e. v ∈ N(X1), which is a
contradiction by Lemma 17. Thus, z ∈ N(v).

Suppose now that Pv intersects Px (resp. Px2
) in R. Recall that, since v ∈ Cu, v /∈ N(x) by

Lemma 17 (resp. v /∈ N(x2) by definition of Cu). Thus, either N(v) ⊆ N(x) or N(x) ⊆ N(v)
(resp. N(v) ⊆ N(x2) or N(x2) ⊆ N(v)) by Lemma 3. If N(v) ⊆ N(x) (resp. N(v) ⊆ N(x2)),
then v is an isolated vertex in G \ Qu \ N [X1, x2], and thus v /∈ Cu, since v 6= u, which is
a contradiction. If N(x) ⊆ N(v) (resp. N(x2) ⊆ N(v)), then z ∈ N(v), since in particular
z ∈ N(x) (resp. z ∈ N(x2)). Note here that this paragraph holds for both cases, where v is a
bounded or an unbounded vertex in R.

Suppose that Px2
≪R Pv. Then, v /∈ N(u) and v /∈ N(w), since Pu ≪R Px2

and Pw ≪R Px2
.

Furthermore, since Cu is connected, there must exist a vertex v′ of Cu, such that Pv′ intersects
Px2

in R, and a path P from v′ to v, where all intermediate vertices are v′′ ∈ Cu, such that
Px2

≪R Pv′′ , i.e. v
′′ /∈ N(u) and v′′ /∈ N(w). Recall that v′ /∈ N(x2) by definition of Cu, since

v′ ∈ Cu. Then, since Pv′ intersects Px2
in R, it follows by the previous paragraph that z ∈ N(v′).

Let v′ ∈ N(u), and thus v′ is bounded and φv′ > φu. Then, x2 is unbounded and φx2
>

φv′ > φu, since v′ is bounded and v′ /∈ N(x2). Consider now an arbitrary z′ ∈ N . Recall that
z′ ∈ N(x′)∩N(x2) for some x′ ∈ X1, and thus Pz′ intersects Pu in R, since Px′ ≪R Pu ≪R Px2

.
Furthermore, z′ is bounded and φz > φx2

> φu, since x2 is unbounded. Thus, z′ ∈ N(u). Since
this holds for an arbitrary z′ ∈ N , it follows that N1(u) = N , which is a contradiction.

Let v′ /∈ N(u). Since v, v′ /∈ N(u), and since v′′ /∈ N(u) for all intermediate vertices v′′ of
the path P , it follows that either Tu ≪RT

Tv′ and Tu ≪RT
Tv, or Tv′ ≪RT

Tu and Tv ≪RT
Tu.

Recall that z ∈ N(v′). Therefore, if Tu ≪RT
Tv′ , then Tz intersects Tu in RT , i.e. z ∈ N(u), since

in this case Tx2
≪RT

Tu ≪RT
Tv′ and z ∈ N(v′)∩N(x2). Since this holds for an arbitrary z ∈ N ,

it follows that N1(u) = N , which is a contradiction. Thus, Tv′ ≪RT
Tu and Tv ≪RT

Tu. Since
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v /∈ N(w), Tw does not intersect Tv in RT , i.e. either Tw ≪RT
Tv or Tv ≪RT

Tw. If Tw ≪RT
Tv,

then Tw ≪RT
Tv ≪RT

Tu, and thus w /∈ N(u), which is a contradiction. Therefore, Tv ≪RT
Tw,

i.e. Tx2
≪RT

Tv ≪RT
Tw. Thus, Tz intersects Tv in RT , i.e. z ∈ N(v), since z ∈ N(x2) ∩N(w).

Suppose finally that Pv ≪R Px. Then, v /∈ N(u) and v /∈ N(w), since Px ≪R Pu and
Px ≪R Pw. Furthermore, since Cu is connected, there must exist a vertex v′ of Cu, such that
Pv′ intersects Px in R, and a path P from v′ to v, where all intermediate vertices are v′′ ∈ Cu,
such that Pv′′ ≪R Px1

, i.e. v′′ /∈ N(u) and v′′ /∈ N(w). Recall that v′ /∈ N(x) by Lemma 17,
since v′ ∈ Cu. Then, since Pv′ intersects Px in R, it follows (similarly to the above case where
Pv intersects Px in R) that z ∈ N(v′).

Let v′ ∈ N(u), and thus v′ is bounded and φv′ > φu. Then, x is unbounded and φx > φv′ >
φu, since v′ is bounded and v′ /∈ N(x). Thus N(x) ⊆ N(v′) by Lemma 3. Since x ∈ X1, either
x ∈ X̃1 or x ∈ Ai for some Ai ∈ A1. Let x ∈ X̃1 (resp. x ∈ Ai for some Ai ∈ A1). If X̃1 6= {x}
(resp. Ai 6= {x}), then x has at least one neighbor x′ in X̃1 (resp. in Ai) and x′ ∈ N(v′), since
N(x) ⊆ N(v′). Thus, v′ ∈ N(X1), which is a contradiction by Lemma 17, since v′ ∈ Cu. If
X̃1 = {x} (resp. Ai = {x}), then {x} is a connected component of X1. Therefore, z

′ /∈ X1

for every neighbor z′ ∈ N(x), and thus N(x) ⊆ N(x2), since N1(x2) = N(X1), as we proved
above. That is, Pz′ intersects Pu for every z′ ∈ N(x), since in this case Px ≪R Pu ≪R Px2

and
z′ ∈ N(x) ∩ N(x2). However, z

′ is bounded and φz′ > φx > φu, since x is unbounded. Thus,
z′ ∈ N(u) for every z′ ∈ N(x). That is, N(x) ⊆ N(u), and thus x ∈ Qu, which is a contradiction
by Lemma 13, since x ∈ X1 ⊆ V0(u).

Let v′ /∈ N(u). Since v, v′ /∈ N(u), and since v′′ /∈ N(u) for all intermediate vertices v′′ of
the path P , it follows that either Tu ≪RT

Tv′ and Tu ≪RT
Tv, or Tv′ ≪RT

Tu and Tv ≪RT
Tu.

Recall that z ∈ N(v′). Therefore, if Tu ≪RT
Tv′ , then Tz intersects Tu in RT , i.e. z ∈ N(u), since

in this case Tx ≪RT
Tu ≪RT

Tv′ and z ∈ N(x)∩N(v′). Since this holds for an arbitrary z ∈ N ,
it follows that N1(u) = N , which is a contradiction. Thus, Tv′ ≪RT

Tu and Tv ≪RT
Tu. Since

v /∈ N(w), Tw does not intersect Tv in RT , i.e. either Tw ≪RT
Tv or Tv ≪RT

Tw. If Tw ≪RT
Tv,

then Tw ≪RT
Tv ≪RT

Tu, and thus w /∈ N(u), which is a contradiction. Therefore, Tv ≪RT
Tw,

i.e. Tx ≪RT
Tv ≪RT

Tw. Thus, Tz intersects Tv in RT , i.e. z ∈ N(v), since z ∈ N(x) ∩N(w).

Summarizing, z ∈ N(v) for any z ∈ N and any bounded vertex v of Cu in R, i.e. N ⊆ N1(v).
Then, since N1(v) ⊆ N(X1) = N , it follows that N1(v) = N for every bounded vertex v of Cu

in R. This completes the proof of the lemma. ⊓⊔

The next two lemmas follow easily and will be used in the sequel.

Lemma 20. Let v ∈ V \ Qu \ N [u] \ V0(u). Then, either Px2
≪R Pv or Pv ≪R Px for every

x ∈ X1.

Proof. Let v ∈ V \Qu \N [u] \V0(u). Recall that X1 ⊆ V0(u) by Lemma 17 and that x2 ∈ V0(u)
by definition of x2. Suppose first that Pv intersects Px, for some x ∈ X1 (resp. Pv intersects Px2

).
If v ∈ N(x) (resp. v ∈ N(x2)), then v ∈ V0(u), since also v /∈ N(u), which is a contradiction.
Therefore, v /∈ N(x) (resp. v /∈ N(x2)). If φx > φv (resp. φx2

> φv), then N(x) ⊆ N(v)
(resp. N(x2) ⊆ N(v)) by Lemma 3. Then, since x (resp. x2) is not the only vertex of V0(u), and
since V0(u) is connected, it follows that x (resp. x2) is adjacent to another vertex q ∈ V0(u).
Therefore q ∈ N(v), since N(x) ⊆ N(v) (resp. N(x2) ⊆ N(v)), and thus also v ∈ V0(u), which
is a contradiction. If φx < φv (resp. φx2

< φv), then N(v) ⊆ N(x) (resp. N(v) ⊆ N(x2)) by
Lemma 3. Then, in particular, v is unbounded, since otherwise v ∈ N(x) (resp. v ∈ N(x2)),
which is a contradiction. Since v /∈ Qu by the assumption on v, there exists at least one vertex
z ∈ N(v) \ N(u). Therefore, z ∈ N(x) (resp. z ∈ N(x2)), since N(v) ⊆ N(x) (resp. N(v) ⊆
N(x2)), and thus z ∈ V0(u) and v ∈ V0(u), which is a contradiction. Thus, Pv does not intersect
Px2

or Px, for any x ∈ X1.
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Suppose now that Px ≪R Pv ≪R Px2
for some x ∈ X1. Then, since x2 ∈ V0(u) and

x ∈ X1 ⊆ V0(u), and since V0(u) is connected, there exists a vertex y ∈ V0(u), such that Py

intersects Pv in R. Then v /∈ N(y), since otherwise v ∈ V0(u), which is a contradiction. If
φy > φv, then N(y) ⊆ N(v) by Lemma 3. Since V0(u) is connected with at least two vertices,
there exists at least one neighbor q ∈ V0(u) of y. Then q ∈ N(v), since N(y) ⊆ N(v), and
thus v ∈ V0(u), which is a contradiction. If φy < φv, then N(v) ⊆ N(y) by Lemma 3. Then, in
particular, v is unbounded, since otherwise v ∈ N(y), which is a contradiction. Since v /∈ Qu

by the assumption on v, there exists at least one vertex z ∈ N(v) \N(u). Therefore, z ∈ N(y),
since N(v) ⊆ N(y), and thus z ∈ V0(u) and v ∈ V0(u), which is again a contradiction.

Therefore, if v ∈ V \Qu \N [u]\V0(u), then either Px2
≪R Pv or Pv ≪R Px for every x ∈ X1.

This completes the proof of the lemma. ⊓⊔

Lemma 21. For every v ∈ V \N [u]\V0(u), either Tx2
≪RT

Tv or Tv ≪RT
Tx for every x ∈ X1.

Proof. Let v ∈ V \N [u] \V0(u). Recall first that X1 ⊆ V0(u) by Lemma 17 and that x2 ∈ V0(u)
by definition of x2. If Tv intersects Tx2

or Tx for some x ∈ X1 in RT , then v ∈ V0(u), since
v /∈ N [u], which is a contradiction. Thus, Tv does not intersect Tx2

or Tx in RT , for any x ∈ X1.
Suppose that Tx ≪RT

Tv ≪RT
Tx2

for some x ∈ X1. Then, since V0(u) is connected, it follows
that Tz intersects Tv in RT for at least one vertex z ∈ V0(u), and thus also v ∈ V0(u), which is
again a contradiction. Thus, either Tx2

≪RT
Tv or Tv ≪RT

Tx for every x ∈ X1. ⊓⊔

Some properties of the sets Cu and C2

In the next three lemmas we prove some basic properties of the vertex sets Cu and Cu, which
will be mainly used in the sequel of the proof of Theorem 2.

Lemma 22. For every vertex v ∈ Cu \ {u}, v ∈ V0(u) ∪N(u).

Proof. Consider a vertex v ∈ Cu \ {u}. Then, v /∈ Qu by definition of Cu. Suppose that v /∈
V0(u) ∪ N(u), i.e. v ∈ V \ Qu \ N [u] \ V0(u). Then, either Px2

≪R Pv or Pv ≪R Px for every
x ∈ X1 by Lemma 20.

Suppose first that Px2
≪R Pv. Then, since Cu is connected, and since Pu ≪R Px2

, there must
exist a vertex v′ of Cu, such that Pv′ intersects Px2

in R, and a path P from v′ to v, where all
intermediate vertices are v′′ ∈ Cu, such that Px2

≪R Pv′′ . Therefore, since Pu ≪R Px2
≪R Pv′′ ,

it follows that v′′ /∈ N(u) for all these intermediate vertices. Furthermore, v′ /∈ N(x2) by
definition of Cu. If φx2

< φv′ , then N(v′) ⊆ N(x2) by Lemma 3. Therefore, v′ is an isolated
vertex of G \ Qu \ N [X1, x2], and thus v′ /∈ Cu, which is a contradiction. If φx2

> φv′ , then
N(x2) ⊆ N(v′) by Lemma 3. Then, in particular, x2 is unbounded, since otherwise v′ ∈ N(x2),
which is a contradiction. Thus, φx2

> φu, since φu = min{φx | x ∈ VU}. Furthermore, since
N1(x2) = N by Lemma 19, and since Px ≪R Pu ≪R Px2

for every x ∈ X1, it follows that
Pz intersects Pu in R for every z ∈ N . Moreover, since x2 is unbounded, and since z ∈ N(x2)
for every z ∈ N , it follows that z is bounded and φz > φx2

> φu for every z ∈ N . Therefore,
N ⊆ N(u), i.e. N1(u) = N , which is a contradiction by Lemma 19.

Suppose now that Pv ≪R Px for every x ∈ X1. Then, since Cu is connected, and since
Px ≪R Pu for every x ∈ X1, there must exist a vertex v′ of Cu, such that Pv′ intersects
Px0

in R for some x0 ∈ X1, and a path P from v′ to v, where all intermediate vertices are
v′′ ∈ Cu, such that Pv′′ ≪R Px for every x ∈ X1. Therefore, since Pv′′ ≪R Px ≪R Pu for every
x ∈ X1, it follows that v′′ /∈ N(u) for all these intermediate vertices. Furthermore, v′ /∈ N(x0)
by Lemma 17, since v′ ∈ Cu.

Let first v′ /∈ N(u). If φx0
< φv′ , thenN(v′) ⊆ N(x0) by Lemma 3. Therefore, v′ is an isolated

vertex of G \ Qu \ N [X1, x2], and thus v′ /∈ Cu, which is a contradiction. If φx0
> φv′ , then
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N(x0) ⊆ N(v′) by Lemma 3. Then, in particular, x0 is unbounded, since otherwise v′ ∈ N(x0),
which is a contradiction. Since x0 ∈ X1 ⊆ V0(u), and since x0 is not the only vertex of V0(u),
it follows that x0 has at least one neighbor z ∈ V0(u). Thus, z ∈ N(v′), since N(x0) ⊆ N(v′).
Therefore, since v′ /∈ N(u), it follows that also v′ ∈ V0(u). Thus, since v /∈ N(u) and v′′ /∈ N(u)
for all intermediate vertices v′′ of the path P , it follows that v ∈ V0(u) and v′′ ∈ V0(u) for all
these vertices v′′. This is a contradiction to the assumption that v /∈ V0(u) ∪N(u).

Let now v′ ∈ N(u). Then, Pv′ intersects Px for every x ∈ X1, since Pv′′ ≪R Px ≪R Pu

for every x ∈ X1 and for every intermediate vertex v′′ of the path P . If φx < φv′ for at
least one x ∈ X1, then N(v′) ⊆ N(x) by Lemma 3. Therefore, v′ is an isolated vertex of
G \Qu \N [X1, x2], and thus v′ /∈ Cu, which is a contradiction. Otherwise, if φx > φv′ for every
x ∈ X1, then N(x) ⊆ N(v′) for every x ∈ X1 by Lemma 3. Then, in particular, every x ∈ X1

is unbounded, since otherwise v′ ∈ N(x), which is a contradiction. Thus, φx > φu for every
x ∈ X1, since φu = min{φx | x ∈ VU}. Furthermore, since N1(x2) = N = N(X1) by Lemma 19,
and since Px ≪R Pu ≪R Px2

for every x ∈ X1, it follows that Pz intersects Pu in R for every
z ∈ N . Moreover, since every x ∈ X1 is unbounded, it follows that for every z ∈ N , z is bounded
and φz > φx > φu for at least one x ∈ X1. Therefore, N ⊆ N(u), i.e. N1(u) = N , which is a
contradiction by Lemma 19. Summarizing, v ∈ V0(u) ∪N(u) for every v ∈ Cu \ {u}. ⊓⊔

Lemma 23. For every vertex v ∈ Cu \ {u}, N1(v) = N .

Proof. If v is a bounded vertex in R, then the lemma follows by Lemma 19. Suppose now that
v is unbounded. Then, since v /∈ Qu by definition of Cu, it follows that there exists at least
one vertex yv ∈ N(v) \ N(u). Furthermore, there exists at least one vertex yu ∈ N(u) \N(v).
Indeed, otherwise N(u) ⊆ N(v), and thus N(u) ⊂ N(v) by Lemma 6, i.e. u is not unbounded
maximal, which is a contradiction. Then, both yu and yv are bounded vertices in R, since u and
v are unbounded. Furthermore, since uv /∈ E, either Tu ≪RT

Tv or Tv ≪RT
Tu.

Let first Tu ≪RT
Tv. Since yv /∈ N(u), Tyv does not intersect Tu in RT , i.e. either Tyv ≪RT

Tu

or Tu ≪RT
Tyv . If Tyv ≪RT

Tu, then Tyv ≪RT
Tu ≪RT

Tv, and thus yv /∈ N(v), which
is a contradiction. Therefore, Tu ≪RT

Tyv . Moreover, Tx ≪RT
Tx2

≪RT
Tu ≪RT

Tyv for
every x ∈ X1 by Lemma 18, and thus in particular yv /∈ N(X1) and yv /∈ N(x2). Suppose
that N1(yv) 6= N . Then, yv /∈ Cu by Lemma 19, since yv is bounded. Thus, since v ∈ Cu,
yv ∈ N(v), and yv /∈ Qu, it follows by Lemma 17 that either yv ∈ N(X1) or yv ∈ N(x2), which
is a contradiction. Therefore, N1(yv) = N . Thus, for every z ∈ N , Tz intersects Tu in RT ,
i.e. z ∈ N(u), since Tx2

≪RT
Tu ≪RT

Tyv and z ∈ N(x2)∩N(yv). Therefore, N1(u) = N , which
is a contradiction by Lemma 19.

Let now Tv ≪RT
Tu. Since yu /∈ N(v), Tyu does not intersect Tv in RT , i.e. either Tyu ≪RT

Tv

or Tv ≪RT
Tyu . If Tyu ≪RT

Tv, then Tyu ≪RT
Tv ≪RT

Tu, and thus yu /∈ N(u), which is a
contradiction. Therefore, Tv ≪RT

Tyu . Recall that Cu is connected and that no vertex of Cu is
adjacent to x2 by the definition of Cu. Thus, since u ∈ Cu and Tx2

≪RT
Tu, it follows that Tx2

lies in RT to the left of all trapezoids of the vertices of Cu; in particular, Lemma 18 implies
that Tx ≪RT

Tx2
≪RT

Tv ≪RT
Tyu for every x ∈ X1. Thus, in particular, yu /∈ N(X1) and

yu /∈ N(x2). Suppose that N1(yu) 6= N . Then, yu /∈ Cu by Lemma 19, since yu is bounded.
Thus, since u ∈ Cu, yu ∈ N(u), and yu /∈ Qu, it follows by Lemma 17 that either yu ∈ N(X1)
or yu ∈ N(x2), which is a contradiction. Thus, N1(yu) = N . Therefore, for every z ∈ N , Tz

intersects Tv in RT , i.e. z ∈ N(v), since Tx2
≪RT

Tv ≪RT
Tyu and z ∈ N(x2) ∩N(yu). Thus,

N1(v) = N . This completes the proof of the lemma. ⊓⊔

Lemma 24. For every vertex v ∈ C2, N1(v) = N .
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Proof. Recall first that N1(w) = N by Lemma 17. Let v ∈ C2 and x ∈ X1. Recall that v /∈ N(w)

by definition of C̃2, and that v /∈ N(x) by definition of
˜̃
C2, and thus either Tv ≪RT

Tx or

Tx ≪RT
Tv. We will first prove that Tx ≪RT

Tv. Recall that X1 = X̃1 ∪ V (A1).

Consider first the case where x ∈ X̃1. Note that Tx1
≪RT

Tv for every vertex v of C2, due to

the definition of x1, and since v /∈ N(x1) and C2 ⊆ D1 ∪D2 \ {x1}. Recall also that X̃1 induces
a connected subgraph of G and that v /∈ N [X̃1] for every vertex v of C2 by definition of C2.
Thus, in this case Tx ≪RT

Tv for every x ∈ X̃1.

Consider now the case where x ∈ Ai, for some Ai ∈ A1, where 1 ≤ i ≤ k. Recall that
C2 = A2 ∪ B2. Suppose first that v ∈ Aj for some Aj ∈ B2, where k + 1 ≤ j ≤ ℓ. Then, v ∈ D2,
since Aj ⊆ D2, as we proved above. If Tv ≪RT

Tx, then Tv ≪RT
Tx ≪RT

Tx2
by Lemma 18,

which is a contradiction by Lemma 15, since v ∈ D2 ⊆ S2. Thus, Tx ≪RT
Tv. Suppose now

that v ∈ Ap, for some Ap ∈ A2, where 1 ≤ p ≤ k. For the sake of contradiction, suppose
that Tv ≪RT

Tx, i.e. Tv ≪RT
Tx ≪RT

Tx2
. Thus, since x ∈ Ai and Ai 6= Ap, it follows that

Tv ≪RT
Ty ≪RT

Tx2
for every y ∈ Ai. Recall by definition of A2 that v is adjacent to all vertices

v′ ∈ H̃. Thus, since v′ ∈ N(v) ∩N(x2) for every v′ ∈ H̃, it follows that Tv′ intersects Ty in RT ,

i.e. y ∈ N(v′), for every y ∈ Ai and every v′ ∈ H̃. This is a contradiction by the definition of
A1, and thus again Tx ≪RT

Tv.

Summarizing, Tx ≪RT
Tv for every v ∈ C2 and every x ∈ X1. Since v ∈ V0(u) for every

v ∈ C2 by Lemma 17, it follows that Tv ≪RT
Tu. Since v /∈ N(w) by definition of C2, Tv

does not intersect Tw in RT , i.e. either Tw ≪RT
Tv or Tv ≪RT

Tw. If Tw ≪RT
Tv, then

Tw ≪RT
Tv ≪RT

Tu, and thus w /∈ N(u), which is a contradiction. Therefore Tv ≪RT
Tw, and

thus Tx ≪RT
Tv ≪RT

Tw for every x ∈ X1. Consider now a vertex z ∈ N = N(X1). Then,
z ∈ N(x) ∩ N(w) for some x ∈ X1, since N1(w) = N = N(X1) by Lemma 17. Therefore, Tz

intersects Tv in RT , i.e. z ∈ N(v), since Tx ≪RT
Tv ≪RT

Tw. Since this holds for every z ∈ N ,
it follows that N1(v) = N . This completes the proof of the lemma. ⊓⊔

The recursive definition of the vertex subsets Hi, i ≥ 1, of H

In the following, we define a partition of the set H into the subsets H1,H2, . . ..

Definition 9. Denote H0 = N . Then, Hi = {x ∈ H \
⋃i−1

j=1Hj | Hi−1 * N(x)} for every i ≥ 1.

It is now easy to see by Definition 9 that either Hi = ∅ for every i ∈ N, or there exists
some p ∈ N, such that Hp 6= ∅ and Hi = ∅ for every i > p. That is, either

⋃∞
i=1 Hi = ∅, or⋃∞

i=1Hi =
⋃p

i=1Hi, for some p ∈ N. Furthermore,
⋃∞

i=1 Hi ⊆ H by Definition 9.

Definition 10. Let vi ∈ Hi, for some i ≥ 1. Then, a sequence (v0, v1, . . . , vi−1, vi) of vertices,
such that vj ∈ Hj, j = 0, 1, . . . , i− 1, and vj−1vj /∈ E, j = 1, 2, . . . , i, is an Hi-chain of vi.

It easy to see by Definition 9 that for every set Hi 6= ∅, i ≥ 1, and for every vertex vi ∈ Hi,
there exists at least one Hi-chain of vi. The next two lemmas will be used in the sequel of the
proof of Theorem 2.

Lemma 25. Let v1 ∈ H1 and (v0, v1) be an H1-chain of v1. Then, v1 is a bounded vertex,
Pv0 ≪R Pv1 and Tv0 ≪RT

Tv1 .

Proof. First, we will prove that v1 is a bounded vertex in R. Suppose otherwise that v1 is
unbounded, and thus v1 /∈ N(u). Suppose that Pv1 intersects Pu in R. Then, φv1 > φu, since
φu = min{φx | x ∈ VU}, and thus N(v1) ⊆ N(u) by Lemma 3. Recall that x2 ∈ N(v1), since
v1 ∈ H1 ⊆ H, and thus also x2 ∈ N(u). Then, x2 ∈ N(u), which is a contradiction. Therefore,
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Pv1 does not intersect Pu in R. If Pv1 ≪R Pu, then Pv1 ≪R Pu ≪R Px2
, and thus v1 /∈ N(x2),

which is a contradiction by definition of H. Therefore, Pu ≪R Pv1 . Furthermore, x2 is bounded
and φx2

> φv1 , since v1 is assumed to be unbounded and v1 ∈ N(x2) by definition of H.
Recall that Tx ≪RT

Tx2
≪RT

Tu for every x ∈ X1 by Lemma 18. Thus, since v1 ∈ N(x2),
v1 /∈ N(u), and v1 /∈ N(x) for every x ∈ X1, it follows that also Tx ≪RT

Tv1 ≪RT
Tu for

every x ∈ X1. Moreover, N(u) * N(v1), since u is unbounded-maximal and by Lemma 6. Let
y ∈ N(u) \ N(v1), and thus y is bounded. Then, Tv1 ≪RT

Ty, since Tv1 ≪RT
Tu, and since

y ∈ N(u) and y /∈ N(v1). Therefore, Tx ≪RT
Tv1 ≪RT

Ty for every x ∈ X1, and thus, in
particular y /∈ N(X1).

Suppose that N1(y) 6= N . Then, y /∈ Cu by Lemma 23. Thus, since u ∈ Cu, y ∈ N(u), and
y /∈ Qu, it follows by Lemma 17 that either y ∈ N(X1) or y ∈ N(x2). Therefore, y ∈ N(x2),
since y /∈ N(X1), as we have proved above. Let z ∈ N \ N1(y). Then, z ∈ N(x) ∩ N(x2) for
some x ∈ X1. Thus, since Px ≪R Pu ≪R Px2

, it follows that Pz intersects Pu in R. Suppose
that z is unbounded. Then, φz > φu, since φu = min{φx | x ∈ VU}, and thus N(z) ⊆ N(u) by
Lemma 3. Then, x2 ∈ N(u), which is a contradiction. Therefore, z is bounded, and thus Py does
not intersect Pz, since y is also bounded and z /∈ N(y). That is, either Py ≪R Pz or Pz ≪R Py.

Suppose first that Py ≪R Pz. If Py ≪R Px, then Py ≪R Px ≪R Pu, and thus y /∈ N(u),
which is a contradiction. If Px ≪R Py, then Px ≪R Py ≪R Pz, and thus z /∈ N(x), which is
again a contradiction. Thus, Py intersects Px in R. Recall that y /∈ N(x), since y /∈ N(X1).
Thus, since y is bounded, it follows that x is unbounded and φx > φy. Then, N(x) ⊆ N(y) by
Lemma 3, and thus z ∈ N(y), which is a contradiction.

Suppose now that Pz ≪R Py. Recall that L(y) <R L(u) by Lemma 1, since y ∈ N(u),
and thus R(z) <R L(y) <R L(u) <R L(x2). Therefore, r(u) <R l(x2) <R r(z) <R l(y), since
z ∈ N(x2). That is, L(y) <R L(x2) and l(x2) <R l(y), and thus φy > φx2

> φv1 (since φx2
> φv1 ,

as we proved above). If Py intersects Pv1 in R, then y ∈ N(v1), since y is bounded, which is a
contradiction. Therefore, Py does not intersect Pv1 in R, i.e. either Pv1 ≪R Py or Py ≪R Pv1 . If
Pv1 ≪R Py, then Pu ≪R Pv1 ≪R Py, and thus y /∈ N(u), which is a contradiction. Therefore,
Py ≪R Pv1 .

Summarizing, Pz ≪R Py ≪R Pv1 , and thus r(z) <R r(y) <R r(v1). Recall that v1 ∈
N [u,w] = N(u) ∪ N(w) by definition of H. Therefore, v1 ∈ N(w), since v1 /∈ N(u), and thus
r(v1) <R r(w) by Lemma 1. Recall that r(w) <R l(x2), since Pw ≪R Px2

. That is, r(z) <R

r(y) <R r(v1) <R r(w) <R l(x2), i.e. r(z) <R l(x2). On the other hand, R(z) <R L(y), since
Pz ≪R Py. Furthermore, L(y) <R L(u) by Lemma 1 and since y ∈ N(u), and L(u) <R L(x2),
since Pu ≪R Px2

. That is, R(z) <R L(y) <R L(u) <R L(x2), i.e. R(z) <R L(x2). Therefore,
since also r(z) <R l(x2), it follows that Pz ≪R Px2

. This is a contradiction, since z ∈ N = N1(x2)
by Lemma 19. Therefore, N1(y) = N .

Since N1(y) = N , and since Tx ≪RT
Tv1 ≪RT

Ty for every x ∈ X1, it follows that Tz

intersects Tv1 in RT , i.e. z ∈ N(v1), for every z ∈ N . Thus N1(v1) = N , i.e. N = H0 ⊆ N(v1),
which is a contradiction by Definition 9, since v1 ∈ H1. Therefore, v1 is a bounded vertex in R.

Recall now that v0 ∈ N(x0)∩N(x2) for some x0 ∈ X1, since v0 ∈ N = N1(x2) by Lemma 19.
Furthermore, v1 /∈ N(x0) by definition of H, since otherwise v1 ∈ N(X1), which is a contradic-
tion. Suppose that Pv1 intersects Px0

in R. If φv1 > φx0
, then v1 /∈ N(x0), since v1 is bounded,

which is a contradiction. Thus, φv1 < φx0
. Then, N(x0) ⊆ N(v1) by Lemma 3, and thus

v0 ∈ N(v1), which is a contradiction. Therefore, Pv1 does not intersect Px0
in R. If Pv1 ≪R Px0

,
then Pv1 ≪R Px0

≪R Pu ≪R Px2
, and thus v1 /∈ N(x2), which is a contradiction. Thus,

Px0
≪R Pv1 .

Furthermore, Pv0 intersects Pu in R, since Px0
≪R Pu ≪R Px2

and v0 ∈ N(x0) ∩ N(x2).
If v0 is unbounded, then φv0 > φu, since φu = min{φx | x ∈ VU}, and thus N(v0) ⊆ N(u) by
Lemma 3. Then, x2 ∈ N(u), which is a contradiction. Therefore, v0 is bounded, and thus Pv0
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does not intersect Pv1 in R, since v1 is also bounded and v0 /∈ N(v1). That is, either Pv1 ≪R Pv0

or Pv0 ≪R Pv1 . If Pv1 ≪R Pv0 , then Px0
≪R Pv1 ≪R Pv0 , and thus v0 /∈ N(x0), which is a

contradiction. Thus, Pv0 ≪R Pv1 .
Finally, recall that Tx ≪RT

Tx2
for every x ∈ X1 by Lemma 18. Therefore, Tx ≪RT

Tv1 for
every x ∈ X1, since v1 ∈ N(x2) and v1 /∈ N(x) for every x ∈ X1. Moreover, Tv1 does not intersect
Tv0 in RT , since v0 /∈ N(v1). Thus, either Tv1 ≪RT

Tv0 or Tv0 ≪RT
Tv1 . If Tv1 ≪RT

Tv0 , then
Tx ≪RT

Tv1 ≪RT
Tv0 for every x ∈ X1, and thus v0 /∈ N = N(X1), which is a contradiction.

Thus, Tv1 ≪RT
Tv0 . This completes the proof of the lemma. ⊓⊔

Lemma 26. Let vi ∈ Hi, for some i ≥ 2, and (v0, v1, . . . , vi) be an Hi-chain of vi. Then, for
every j = 1, 2, . . . , i− 1,

1. Pvj−1
≪R Pvj and Tvj−1

≪RT
Tvj , if j is odd,

2. Pvj ≪R Pvj−1
and Tvj ≪RT

Tvj−1
, if j is even.

Proof. The proof will be done by induction on j. For j = 1, the induction basis follows by
Lemma 25. For the induction step, let 2 ≤ j < i − 1. Note that vj−2 ∈ N(vj) \ N(vj−1) and
vj+1 ∈ N(vj−1) \ N(vj). Therefore, N(vj) * N(vj−1) and N(vj−1) * N(vj), and thus Pvj

does not intersect Pvj−1
in R by Lemma 3, since vj−1vj /∈ E. Thus, either Pvj−1

≪R Pvj or
Pvj ≪R Pvj−1

. Furthermore, either Tvj−1
≪RT

Tvj or Tvj ≪RT
Tvj−1

, since vj−1vj /∈ E.
Let j be odd, i.e. j−1 is even, and suppose by induction hypothesis that Pvj−1

≪R Pvj−2
and

Tvj−1
≪RT

Tvj−2
. If Pvj ≪R Pvj−1

(resp. Tvj ≪RT
Tvj−1

), then Pvj ≪R Pvj−2
(resp. Tvj ≪RT

Tvj−2
). Thus, vjvj−2 /∈ E, i.e. vj ∈ Hj−1 by Definition 9, which is a contradiction. Therefore,

Pvj−1
≪R Pvj and Tvj−1

≪RT
Tvj , if j is odd.

Let now j be even, i.e. j − 1 is odd, and suppose by induction hypothesis that Pvj−2
≪R

Pvj−1
and Tvj−2

≪RT
Tvj−1

. If Pvj−1
≪R Pvj (resp. Tvj−1

≪RT
Tvj ), then Pvj−2

≪R Pvj

(resp. Tvj−2
≪RT

Tvj ), and thus vjvj−2 /∈ E, which is again a contradiction. Therefore, Pvj ≪R

Pvj−1
and Tvj ≪RT

Tvj−1
, if j is even. This completes the induction step, and thus the lemma

follows. ⊓⊔

The next lemma, which follows now easily by Lemmas 23, 24, 25, and 26, will be mainly
used in the sequel.

Lemma 27. All vertices of N ∪H ∪ C2 ∪ Cu \ {u} are bounded.

Proof. Consider first a vertex v ∈ N . Then, v ∈ N(x) ∩N(x2) for some x ∈ X1 by Lemma 24.
Thus, Pv intersects Pu in R, since Px ≪R Pu ≪R Px2

. Suppose that v is unbounded. Then,
φv > φu, since φu = min{φx | x ∈ VU}, and thus N(v) ⊆ N(u) by Lemma 3. Then, x2 ∈ N(u),
which is a contradiction. Thus, every v ∈ N is bounded.

Consider now a vertex v ∈ H. If v ∈ H1, then v is bounded by Lemma 25. Suppose that
v ∈ H \H1 and that v is unbounded. Then, φv > φu, since φu = min{φx | x ∈ VU}. Furthermore,
H0 = N ⊆ N(v) by Definition 9, and thus N1(v) = N . If Pv ≪R Pu, then Pv ≪R Pu ≪R Px2

,
and thus v /∈ N(x2), which is a contradiction to the definition of H. If Pv intersects Pu in R, then
N(v) ⊆ N(u) by Lemma 3, since φv > φu, and thus x2 ∈ N(u), which is again a contradiction.
Therefore, Pu ≪R Pv, i.e. Px ≪R Pu ≪R Pv for every x ∈ X1, and thus Pz intersects Pu in R for
every z ∈ N1(v) = N = N(X1). However, z is bounded and φz > φv > φu for every z ∈ N1(v),
since v is unbounded. Therefore, N1(v) ⊆ N(u), and thus N1(u) = N , which is a contradiction
by Lemma 19. Thus, every v ∈ H \H1 is bounded.

Consider finally a vertex v ∈ C2∪Cu \{u} and suppose that v is unbounded. Then, similarly
to the above, φv > φu, since φu = min{φx | x ∈ VU}. Furthermore, N1(v) = N by Lemmas 23
and 24, while also N1(x2) = N by Lemma 19. Suppose that Pv ≪R Pu, i.e. Pv ≪R Pu ≪R Px2

.
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Then, since N1(v) = N1(x2) = N , Pz intersects Pu in R for every z ∈ N . Furthermore, z is
bounded and φz > φv > φu for every z ∈ N1(v), since v is unbounded. Therefore, N1(v) ⊆ N(u),
and thus N1(u) = N , which is a contradiction by Lemma 19. Suppose that Pv intersects Pu in
R. Then, N(v) ⊆ N(u) by Lemma 3, since φv > φu. Therefore, N(v) ⊂ N(u) by Lemma 6, and
thus v ∈ Qu, which is a contradiction to the definitions of Cu and C2. Suppose that Pu ≪R Pv,
i.e. Px ≪R Pu ≪R Pv for every x ∈ X1. Then, since N1(v) = N = N(X1), Pz intersects Pu in
R for every z ∈ N . Furthermore, z is bounded and φz > φv > φu for every z ∈ N1(v), since
v is unbounded. Therefore, N1(v) ⊆ N(u), and thus N1(u) = N , which is a contradiction by
Lemma 19. Thus, every v ∈ C2 ∪ Cu \ {u} is bounded. This completes the lemma. ⊓⊔

Lemma 28. For every vertex v ∈ Cu \ {u}, it holds Hi ⊆ N(v) for every i ≥ 1.

Proof. Let v be a vertex of Cu\{u}. Recall that N1(v) = N by Lemma 23. Consider first the case
where v ∈ N [u,w] = N(u)∪N(w). The proof will be done by induction on i. For i = 1, consider
a vertex v1 ∈ H1 and an H1-chain (v0, v1) of v1, where v0 ∈ H0 = N = N(X1). Since v0v1 /∈ E,
either Tv1 ≪RT

Tv0 or Tv0 ≪RT
Tv1 . Suppose that Tv1 ≪RT

Tv0 . Then, since Tx ≪RT
Tx2

for
every x ∈ X1 by Lemma 18, and since v1 ∈ N(x2) \ N(x) for every x ∈ X1 by definition of
H, it follows that Tx ≪RT

Tv1 for every x ∈ X1. That is, Tx ≪RT
Tv1 ≪RT

Tv0 for every
x ∈ X1, and thus v0 /∈ N(x) for every x ∈ X1, which is a contradiction. Thus, Tv0 ≪RT

Tv1 .
Furthermore, Tx2

≪RT
Tv, since Tx2

≪RT
Tu and Cu is connected. Suppose that v1 /∈ N(v).

Then, Tv1 ≪RT
Tv , since Tx2

≪RT
Tv and v1 ∈ N(x2) \ N(v). That is, Tv0 ≪RT

Tv1 ≪RT
Tv,

and thus v0 /∈ N(v), which is a contradiction, since N1(v) = N and v0 ∈ N . Thus, v1 ∈ N(v)
for every v1 ∈ H1. This proves the induction basis.

For the induction step, let i ≥ 2, and suppose that v′ ∈ N(v) for every v′ ∈ Hj, where
0 ≤ j ≤ i − 1. Let vi ∈ Hi and (v0, v1, . . . , vi−2, vi−1, vi) be an Hi-chain of vi. Note that
vi−2 exists, since i ≥ 2, and thus vi−1vi−2 /∈ E and vivi−2 ∈ E by Definition 9. For the sake
of contradiction, suppose that vi /∈ N(v). We will now prove that Pv ≪R Px2

. Otherwise,
suppose first that Px2

≪R Pv. Then, Pu ≪R Px2
≪R Pv and Pw ≪R Px2

≪R Pv, and thus
v /∈ N [u,w] = N(u) ∪ N(w), which is a contradiction to the assumption on v. Suppose now
that Pv intersects Px2

in R. Then, either N(x2) ⊆ N(v) or N(v) ⊆ N(x2) by Lemma 3, since
v /∈ N(x2) by the definition of Cu. If N(x2) ⊆ N(v), then vi ∈ N(v), since vi ∈ N(x2), which is
a contradiction. Let N(v) ⊆ N(x2). Then, since Cu is connected and v 6= u, v is adjacent to at
least one vertex z ∈ Cu, and thus z ∈ N(x2), which is a contradiction to the definition of Cu.
Thus, Pv ≪R Px2

.

Recall that vi−1 ∈ N(v) by the induction hypothesis. Since v ∈ N(vi−1) \N(vi) and vi−2 ∈
N(vi) \ N(vi−1), it follows that Pvi does not intersect Pvi−1

in R by Lemma 3. Similarly, Pvi

does not intersect Pv in R, since x2 ∈ N(vi) \ N(v) and vi−1 ∈ N(v) \ N(vi). Thus, since
vi−1 ∈ N(v), either Pvi ≪R Pvi−1

and Pvi ≪R Pv, or Pvi−1
≪R Pvi and Pv ≪R Pvi . Suppose

that Pvi ≪R Pvi−1
and Pvi ≪R Pv. Then, Pvi ≪R Pv ≪R Px2

, and thus vi /∈ N(x2), which is a
contradiction.

Thus, Pvi−1
≪R Pvi and Pv ≪R Pvi . Recall now by Lemmas 25 and 26 that either Pvi−2

≪R

Pvi−1
or Pvi−1

≪R Pvi−2
. If Pvi−2

≪R Pvi−1
, then Pvi−2

≪R Pvi−1
≪R Pvi , and thus vivi−2 /∈ E,

which is a contradiction. Therefore, Pvi−1
≪R Pvi−2

. Thus, also Tvi−1
≪RT

Tvi−2
and i is odd, by

Lemmas 25 and 26. Since vi−1vi /∈ E, either Tvi ≪RT
Tvi−1

or Tvi−1
≪RT

Tvi . If Tvi ≪RT
Tvi−1

,
then Tvi ≪RT

Tvi−1
≪RT

Tvi−2
, and thus vivi−2 /∈ E, which is a contradiction. Therefore,

Tvi−1
≪RT

Tvi , and thus Tv ≪RT
Tvi , since v ∈ N(vi−1) \N(vi). Recall also that Tx2

≪RT
Tv,

since Tx2
≪RT

Tu and Cu is connected. That is, Tx2
≪RT

Tv ≪RT
Tvi , and thus vi /∈ N(x2),

which is a contradiction. Thus, vi ∈ N(v). This completes the induction step.
Summarizing, we have proved that Hi ⊆ N(v) for every i ≥ 1 and for every vertex v ∈

Cu \ {u}, such that v ∈ N [u,w]. This holds in particular for w, i.e. Hi ⊆ N(w) for every
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i ≥ 1, since w ∈ N(u) is a vertex of Cu \ {u}. Consider now the case where v /∈ N [u,w].
Then, since w ∈ N(u), either Tu ≪RT

Tv and Tw ≪RT
Tv, or Tv ≪RT

Tu and Tv ≪RT
Tw.

Suppose that Tu ≪RT
Tv, i.e. Tx ≪RT

Tx2
≪RT

Tu ≪RT
Tv for every x ∈ X1 by Lemma 18.

Recall that N1(v) = N by Lemma 23. That is, Tz intersects Tu in RT , i.e. z ∈ N(u), for
every z ∈ N1(v) = N , and thus N1(u) = N , which is a contradiction by Lemma 19. Thus,
Tv ≪RT

Tu and Tv ≪RT
Tw. Then, Tx2

≪RT
Tv, since Tx2

≪RT
Tu and Cu is connected. That

is, Tx2
≪RT

Tv ≪RT
Tw. Then, since every z ∈ Hi, i ≥ 1, is adjacent to both x2 and w, it follows

that Tz intersects Tv in RT , i.e. z ∈ N(v), for every z ∈ Hi, where i ≥ 1. Thus, Hi ⊆ N(v) for
every i ≥ 1 and for every vertex v ∈ Cu \ {u}, such that v /∈ N [u,w]. This completes the proof
of the lemma. ⊓⊔

Lemma 29. For every vertex v ∈ C2, it holds Hi ⊆ N(v) for every i ≥ 1.

Proof. Recall that C2 = A2 ∪ B2, where Aj ⊆ D2 for every Aj ∈ B2, k + 1 ≤ j ≤ ℓ, and A2

includes exactly those components Ai, 1 ≤ i ≤ k, for which all vertices of Ai are adjacent to
all vertices of H̃. Therefore, if v ∈ Ai for some component Ai ∈ A2, then H ⊆ H̃ ⊆ N(v) by
definition, and thus Hi ⊆ N(v) for every i ≥ 1.

Let now v ∈ Aj , for some Aj ∈ B2, and suppose first that v /∈ N(x2). Then, since v ∈ D2 ⊆
S2 ⊆ V0(u), it follows that Tv ≪RT

Tu and that Tx2
≪RT

Tv by Lemma 15 (since v /∈ N(x2)),

i.e. Tx2
≪RT

Tv ≪RT
Tu. Moreover, v /∈ N(w) by definition of C̃2. Thus, Tv ≪RT

Tw, since
Tv ≪RT

Tu and w ∈ N(u)\N(v). That is, Tx2
≪RT

Tv ≪RT
Tw. Let now z ∈ Hi, for some i ≥ 1.

Then, z ∈ N(x2) and z ∈ N(w) by Lemma 28, and thus Tz intersects Tv in RT , i.e. z ∈ N(v).
Therefore, Hi ⊆ N(v) for every i ≥ 1, where v /∈ N(x2).

Suppose now that v ∈ N(x2). We will prove by contradiction that Hi ⊆ N(v) for every
i ≥ 1. Suppose otherwise that there exists an index i ≥ 1, such that vi /∈ N(v), for some vertex
vi ∈ Hi. W.l.o.g. let i be the smallest such index, i.e. v′ ∈ N(v) for every v′ ∈ Hj, where
0 ≤ j ≤ i− 1 (recall that H0 = N , and thus v′ ∈ N(v) for every v′ ∈ H0 by Lemma 24).

Let (v0, v1, . . . , vi−1, vi) be an Hi-chain of vi. If i = 1, then Pv1 does not intersect Pv0 in
R by Lemma 25. If i ≥ 2, then vi−2 ∈ N(vi) \ N(vi−1) and v ∈ N(vi−1) \ N(vi); therefore
N(vi−1) * N(vi) and N(vi) * N(vi−1), and thus Pvi does not intersect Pvi−1

in R by Lemma 3.
That is, Pvi does not intersect Pvi−1

in R for every i ≥ 1. Recall now that vi ∈ N [u,w] by

definition of H, and that v /∈ N [u,w] by definition of C̃2. If vi ∈ N(u) (resp. vi ∈ N(w)), then
u ∈ N(vi)\N(v) (resp. w ∈ N(vi)\N(v)). Furthermore, vi−1 ∈ N(v)\N(vi), i.e. N(vi) * N(v)
and N(v) * N(vi), and thus Pvi does not intersect Pv in R by Lemma 3. Therefore, since
vvi−1 ∈ E, it follows hat either Pvi−1

≪R Pvi and Pv ≪R Pvi , or Pvi ≪R Pvi−1
and Pvi ≪R Pv.

Suppose first that Pvi−1
≪R Pvi and Pv ≪R Pvi . Recall that vi ∈ N [u,w] and that v /∈

N [u,w]. Let vi ∈ N(u) (resp. vi ∈ N(w)). Then, Pv does not intersect Pu (resp. Pw) in R by
Lemma 3, since x2 ∈ N(v) \ N [u,w] and vi ∈ N(u) \ N(v) (resp. vi ∈ N(w) \ N(v)). Thus,
since Pu ≪R Px2

(resp. Pw ≪R Px2
) and v ∈ N(x2) \N(u) (resp. v ∈ N(x2) \N(w)), it follows

that Pu ≪R Pv (resp. Pw ≪R Pv). That is, Pu ≪R Pv ≪R Pvi (resp. Pw ≪R Pv ≪R Pvi),
i.e. vi /∈ N(u) (resp. vi /∈ N(w)), which is a contradiction.

Suppose now that Pvi ≪R Pvi−1
and Pvi ≪R Pv . Then, i 6= 1 by Lemma 25. That is, i ≥ 2,

i.e. vi−2 exists. Recall by Lemmas 25 and 26 that either Pvi−1
≪R Pvi−2

or Pvi−2
≪R Pvi−1

. If
Pvi−1

≪R Pvi−2
, then Pvi ≪R Pvi−1

≪R Pvi−2
, and thus vivi−2 /∈ E, which is a contradiction.

Therefore, Pvi−2
≪R Pvi−1

, and thus also Tvi−2
≪RT

Tvi−1
and i is even by Lemmas 25 and 26.

Since vi−1vi /∈ E, either Tvi−1
≪RT

Tvi or Tvi ≪RT
Tvi−1

. If Tvi−1
≪RT

Tvi , then Tvi−2
≪RT

Tvi−1
≪RT

Tvi , and thus vivi−2 /∈ E, which is a contradiction. Therefore, Tvi ≪RT
Tvi−1

, and
thus also Tvi ≪RT

Tv, since v ∈ N(vi−1)\N(vi). Recall also that Tx2
≪RT

Tu and Tx2
≪RT

Tw.
Thus, also Tv ≪RT

Tu and Tv ≪RT
Tw, since v ∈ N(x2) \N [u,w]. That is, Tvi ≪RT

Tv ≪RT
Tu
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and Tvi ≪RT
Tv ≪RT

Tw, i.e. vi /∈ N [u,w], which is a contradiction. Thus, Hi ⊆ N(v) for every
i ≥ 1. This completes the proof of the lemma. ⊓⊔

The recursive definition of the vertex subsets H
′

i
, i ≥ 0, of H

Similarly to Definitions 9 and 10, we partition in the following the set H \
⋃∞

i=1 Hi into the
subsets H ′

0,H
′
1, . . ..

Definition 11. Let H ′ = H \
⋃∞

i=1 Hi and H ′
0 = {x ∈ H ′ | xv ∈ E for some v ∈ V \Qu \N [u]\

V0(u)}. Furthermore, H ′
i = {x ∈ H ′ \

⋃i−1
j=0H

′
j | H ′

i−1 * N(x)} for every i ≥ 1.

It is now easy to see by Definition 11 that either H ′
i = ∅ for every i ∈ N∪{0}, or there exists

some p ∈ N∪ {0}, such that H ′
p 6= ∅ and H ′

i = ∅ for every i > p. That is, either
⋃∞

i=0 H
′
i = ∅, or⋃∞

i=0H
′
i =

⋃p
i=0 H

′
i, for some p ∈ N∪{0}, while

⋃∞
i=0H

′
i ⊆ H ′ by Definition 11. Furthermore, it

is easy to observe by Definitions 9 and 11 that every vertex of H \
⋃∞

i=1Hi \
⋃∞

i=0H
′
i is adjacent

to every vertex of N(X1) ∪
⋃∞

i=1 Hi ∪
⋃∞

i=0 H
′
i, and to no vertex of V \Qu \N [u] \ V0(u).

Definition 12. Let vi ∈ H ′
i, for some i ≥ 1. Then, a sequence (v0, v1, . . . , vi−1, vi) of vertices,

such that vj ∈ H ′
j, j = 0, 1, . . . , i− 1, and vj−1vj /∈ E, j = 1, 2, . . . , i, is an H ′

i-chain of vi.

It is easy to see by Definition 11 that for every set H ′
i 6= ∅, i ≥ 1, and for every vertex

vi ∈ H ′
i, there exists at least one H ′

i-chain of vi. Now, similarly to Lemmas 25 and 26, we state
the following two lemmas.

Lemma 30. Let v1 ∈ H ′
1 and (v0, v1) be an H ′

1-chain of v1. Then, v0, v1 ∈ N(u), Pv1 ≪R Pv0

and Tv1 ≪RT
Tv0 .

Proof. First, recall that there exists a bounded covering vertex u∗ of u by Lemma 4, and thus
w ∈ N(u) ⊆ N(u∗). Let y ∈ V \Qu \N [u]\V0(u) be a vertex, such that yv0 ∈ E; such a vertex y
exists by Definition 11. Then, y /∈ N(w), since either Pw ≪R Px2

≪R Py or Py ≪R Px ≪R Pw for
every x ∈ X1 by Lemma 20. Consider the trapezoid representation RT . Then, either Tx2

≪RT
Ty

or Ty ≪RT
Tx for every x ∈ X1 by Lemma 21. Suppose that Ty ≪RT

Tx for every x ∈ X1,
i.e. Ty ≪RT

Tx ≪RT
Tx2

for every x ∈ X1. Then, since v0 ∈ N(y) and v0 ∈ N(x2), Tv0 intersects
Tx in RT for every x ∈ X1, and thus v0 ∈ N(X1). This is a contradiction, since v0 ∈ H ′

0 ⊆ H,
and since H is an induced subgraph of G \Qu \N [X1]. Thus, Tx2

≪RT
Ty.

Since y /∈ N(u) by the assumption on y, either Ty ≪RT
Tu or Tu ≪RT

Ty. Suppose that
Ty ≪RT

Tu, i.e. Tx2
≪RT

Ty ≪RT
Tu. Then, also Tx2

≪RT
Ty ≪RT

Tw, since w ∈ N(u) and
w /∈ N(y). Note that y /∈ N(u∗), since otherwise y ∈ V0(u), which is a contradiction. Thus,
since also w ∈ N(u∗), it follows that Tx2

≪RT
Ty ≪RT

Tu∗ . Then, since x2, u
∗ ∈ V0(u), and

since V0(u) is connected, Ty intersects Tz for some z ∈ V0(u), and thus y ∈ V0(u), which is a
contradiction. Therefore, Tu ≪RT

Ty, i.e. Tx2
≪RT

Tu ≪RT
Ty. Thus, since v0 ∈ N(x2) and

v0 ∈ N(y), Tv0 intersects Tu in RT , i.e. v0 ∈ N(u); in particular, v0 is bounded.

Since v1v0 /∈ E, either Tv0 ≪RT
Tv1 or Tv1 ≪RT

Tv0 . Suppose that Tv0 ≪RT
Tv1 . Recall

that yv1 /∈ E by Definition 11, since y ∈ V \ Qu \ N [u] \ V0(u) and v1 ∈ H1. That is, either
Tv1 ≪RT

Ty or Ty ≪RT
Tv1 . If Tv1 ≪RT

Ty, then Tv0 ≪RT
Tv1 ≪RT

Ty, i.e. yv0 /∈ E, which
is a contradiction. If Ty ≪RT

Tv1 , then Tx2
≪RT

Ty ≪RT
Tv1 , i.e. v1 /∈ N(x2), which is a

contradiction. Thus, Tv1 ≪RT
Tv0 .

Consider now the projection representation R, and recall that v1v0, v1y /∈ E. Furthermore,
recall that v0 /∈ N(X̃1) by definition of H, and that either Px2

≪R Py or Py ≪R Px for every
x ∈ X1 by Lemma 20. Suppose that Py ≪R Px for every x ∈ X1, and thus Py ≪R Px ≪R

Pu ≪R Px2
for every x ∈ X̃1 ⊆ X1. Then, Pv0 intersects Px in R for every x ∈ X̃1, since
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v0 ∈ N(y) ∩ N(x2). Furthermore, v0x /∈ E for every x ∈ X̃1, since v0 /∈ N(X̃1). Thus, every
x ∈ X̃1 is unbounded and φx > φv0 > φu, since v0 is bounded and v0 ∈ N(u), as we proved
above. Moreover, since X̃1 is connected, and since no two unbounded vertices are adjacent, it
follows that X̃1 has one vertex, i.e. X̃1 = {x1}. Thus, N(x1) = N(X̃1) ⊆ N(x2) by Lemma 19,
since X̃1 ⊆ X1. Therefore, Pz intersects Pu in R, for every z ∈ N(x1), since Px1

≪R Pu ≪R Px2
.

Furthermore, z is bounded and φz > φx1
> φu for every z ∈ N(x1), since x1 is unbounded.

That is, z ∈ N(u) for every z ∈ N(x1), i.e. N(x1) ⊆ N(u), and thus x1 is an isolated vertex of
G \N [u]. Therefore, since x1 is unbounded and u∗ is bounded in R, it follows that x1 and u∗

do not lie in the same connected component of G \N [u]. That is, V0(u) is not connected, which
is a contradiction. Thus, Px2

≪R Py, i.e. Pu ≪R Px2
≪R Py.

Suppose that Pv1 intersects Py in R. Then, either N(v1) ⊆ N(y) or N(y) ⊆ N(v1) by
Lemma 3, since v1y /∈ E. If N(v1) ⊆ N(y), then x2 ∈ N(y), which is a contradiction, since
Px2

≪R Py. On the other hand, if N(y) ⊆ N(v1), then v0 ∈ N(v1), since yv0 ∈ E, which is
a contradiction. Thus, Pv1 does not intersect Py in R, i.e. either Py ≪R Pv1 or Pv1 ≪R Py.
If Py ≪R Pv1 , then Px2

≪R Py ≪R Pv1 , i.e. v1 /∈ N(x2), which is a contradiction. Thus,
Pv1 ≪R Py.

Suppose that Pv1 intersects Pv0 in R. Then, v1 is unbounded and φv1 > φv0 > φu, since v0
is bounded and v0 ∈ N(u). Furthermore, note that N1(v1) = N , since otherwise v1 ∈ H1 by
Definition 9, and thus v1 /∈ H ′ = H \

⋃∞
i=1 Hi, which is a contradiction. Consider now a vertex

z ∈ N . Then, z ∈ N(x) ∩N(x2), for some x ∈ X1. Furthermore, z ∈ N(v1), since N1(v1) = N ;
thus, z is bounded and φz > φv1 > φu, since v1 is unbounded. On the other hand, Pz intersects
Pu in R, since Px ≪R Pu ≪R Px2

and z ∈ N(x) ∩N(x2). Thus z ∈ N(u), since z is bounded
and φz > φu. Since this holds for an arbitrary z ∈ N , it follows that N1(u) = N , which is a
contradiction by Lemma 19. Thus, Pv1 does not intersect Pv0 in R, i.e. either Pv0 ≪R Pv1 or
Pv1 ≪R Pv0 . If Pv0 ≪R Pv1 , then Pv0 ≪R Pv1 ≪R Py, i.e. y /∈ N(v0), which is a contradiction.
Thus, Pv1 ≪R Pv0 .

Recall that v0 ∈ N(u) as we have proved above, and thus L(v0) <R L(u) by Lemma 1.
Furthermore, R(v1) <R L(v0), since Pv1 ≪R Pv0 , and thus R(v1) <R L(u). On the other hand,
since v1 ∈ N(x2), and since R(v1) <R L(u) <R L(x2), it follows that l(x2) <R r(v1), and thus
l(u) <R r(v1), since Pu ≪R Px2

. Therefore, since also R(v1) <R L(u), Pv1 intersects Pu in R and
φv1 > φu. If v1 /∈ N(u), then N(v1) ⊆ N(u) by Lemma 3, and thus x2 ∈ N(u), since x2 ∈ N(v1)
by definition of H, which is a contradiction. Therefore, v1 ∈ N(u). This completes the proof of
the lemma. ⊓⊔

Lemma 31. Let vi ∈ H ′
i, for some i ≥ 2, and (v0, v1, . . . , vi) be an H ′

i-chain of vi. Then, for
every j = 1, 2, . . . , i− 1:

1. Pvj−1
≪R Pvj and Tvj−1

≪RT
Tvj , if j is even,

2. Pvj ≪R Pvj−1
and Tvj ≪RT

Tvj−1
, if j is odd.

Proof. The proof will be done by induction on j. For j = 1, the induction basis follows by
Lemma 30. For the induction step, let 2 ≤ j < i. Note that vj−2 ∈ N(vj) \ N(vj−1) and
vj+1 ∈ N(vj−1) \ N(vj). Therefore, N(vj) * N(vj−1) and vj+1 ∈ N(vj−1) * N(vj), and thus
Pvj does not intersect Pvj−1

in R by Lemma 3, since vj−1vj /∈ E. Thus, either Pvj−1
≪R Pvj or

Pvj ≪R Pvj−1
. Furthermore, clearly either Tvj−1

≪RT
Tvj or Tvj ≪RT

Tvj−1
, since vj−1vj /∈ E.

Let j be even, i.e. j−1 is odd, and suppose by induction hypothesis that Pvj−1
≪R Pvj−2

and
Tvj−1

≪RT
Tvj−2

. If Pvj ≪R Pvj−1
(resp. Tvj ≪RT

Tvj−1
), then Pvj ≪R Pvj−2

(resp. Tvj ≪RT

Tvj−2
). Thus, vjvj−2 /∈ E, i.e. vj ∈ H ′

j−1 by Definition 11, which is a contradiction. Therefore,
Pvj−1

≪R Pvj and Tvj−1
≪RT

Tvj , if j is even.
Let now j be odd, i.e. j − 1 is even, and suppose by induction hypothesis that Pvj−2

≪R

Pvj−1
and Tvj−2

≪RT
Tvj−1

. If Pvj−1
≪R Pvj (resp. Tvj−1

≪RT
Tvj ), then Pvj−2

≪R Pvj
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(resp. Tvj−2
≪RT

Tvj ), and thus vjvj−2 /∈ E, which is again a contradiction. Therefore, Pvj ≪R

Pvj−1
and Tvj ≪RT

Tvj−1
, if j is odd. This completes the induction step, and thus the lemma

follows. ⊓⊔

Lemma 32. H ′
i ⊆ N(u), for every i ≥ 0.

Proof. The proof will be done by induction on i. For i = 0 and i = 1, the lemma follows by
Lemma 30. This proves the induction basis. For the induction step, let i ≥ 2. Suppose that
vi /∈ N(u), and let (v0, v1, . . . , vi−2, vi−1, vi) be an H ′

i-chain of vi. By the induction hypothesis,
vj ∈ N(u) for every j = 0, 1, . . . , i−1. Then, in particular, r(u) <R r(vi−1) and L(vi−1) <R L(u)
by Lemma 1. Furthermore, vi−2 ∈ N(vi)\N(vi−1) and u ∈ N(vi−1)\N(vi), i.e. N(vi) * N(vi−1)
and N(vi−1) * N(vi), and thus Lemma 3 implies that Pvi does not intersect Pvi−1

in R, since
vivi−1 /∈ E.

Suppose first that i is odd. Then, Pvi−2
≪R Pvi−1

by Lemma 31. Thus, since vi ∈ N(vi−2),
and since Pvi does not intersect Pvi−1

in R by the previous paragraph, it follows that Pvi ≪R

Pvi−1
. Therefore, in particular, R(vi) <R L(vi−1) <R L(u), i.e. R(vi) <R L(u). On the other

hand, vi ∈ N(x2), and thus Tvi intersects Tx2
in RT . Therefore, since R(vi) <R L(u) <R L(x2),

it follows that l(x2) <R r(vi). Furthermore, since Pu ≪R Px2
, it follows that l(u) <R l(x2) <R

r(vi). That is, R(vi) <R L(u) and l(u) <R r(vi), i.e. Pvi intersects Pu in R and φvi > φu. If
vi /∈ N(u), then N(vi) ⊆ N(u) by Lemma 3, and thus x2 ∈ N(u), which is a contradiction.
Therefore, vi ∈ N(u) if i is odd.

Suppose now that i is even. Then, Tvi−1
≪RT

Tvi−2
by Lemma 31. Thus, since vi ∈ N(vi−2)

and vi /∈ N(vi−1), it follows that Tvi−1
≪RT

Tvi . Recall that Tx2
≪RT

Tu. Since we assumed
that vi /∈ N(u), either Tvi ≪RT

Tu or Tu ≪RT
Tvi . If Tvi ≪RT

Tu, then Tvi−1
≪RT

Tvi ≪RT
Tu,

i.e. vi−1 /∈ N(u), which is a contradiction by the induction hypothesis. If Tu ≪RT
Tvi , then

Tx2
≪RT

Tu ≪RT
Tvi , i.e. vi /∈ N(x2), which is a contradiction. Thus, vi ∈ N(u) if i is even.

This completes the induction step and the lemma follows. ⊓⊔

Now, similarly to Lemmas 28, and 29, we state the following two lemmas.

Lemma 33. For every vertex v ∈ Cu \ {u}, it holds H ′
i ⊆ N(v) for every i ≥ 0.

Proof. Let v be a vertex of Cu \ {u}. Recall that N1(v) = N by Lemma 23. Consider first the
case where v ∈ N(u) ∪ N(w). The proof will be done by induction on i. For i = 0, consider a
vertex v0 ∈ H ′

0 and a vertex y ∈ V \Qu \N [u] \V0(u), such that yv0 ∈ E; such a vertex y exists
by Definition 11. Recall that Tx2

≪RT
Tu ≪RT

Ty and that Pu ≪R Px2
≪R Py by the proof of

Lemma 30.
Let first v /∈ N(u) (and thus v ∈ N(w)). If Tu ≪RT

Tv, i.e. Tx ≪RT
Tu ≪RT

Tv for every
x ∈ X1, then Tz intersects Tu in RT for every z ∈ N1(v) = N . Thus, N1(u) = N , which is a
contradiction by Lemma 19. Therefore, Tv ≪RT

Tu. Furthermore, Tx2
≪RT

Tv ≪RT
Tu, since

Tx2
≪RT

Tu, and since v ∈ Cu and Cu is connected. That is, Tx2
≪RT

Tv ≪RT
Tu ≪RT

Ty.
Then, Tv0 intersects Tv in RT , since v0 ∈ N(x2) ∩N(y), i.e. v0 ∈ N(v).

Let now v ∈ N(u), and thus v is bounded and φv > φu in the projection representation
R. Suppose that v ∈ N(y). Then, Pv intersects Px2

in R, since Pu ≪R Px2
≪R Py, and since

v ∈ N(u) and v ∈ N(y). Recall that v /∈ N(x2), since v ∈ Cu. Thus, since v is bounded, it follows
that x2 is unbounded and φx2

> φv > φu. Recall that N1(x2) = N by Lemma 19. Consider now
a vertex z ∈ N , i.e. z ∈ N(x)∩N(x2) for some x ∈ X1. Then, z is bounded and φz > φx2

> φu,
since x2 is unbounded. Furthermore, Pz intersects Pu in R, since Px ≪R Pu ≪R Px2

and
z ∈ N(x) ∩N(x2), and thus z ∈ N(u). Since this holds for an arbitrary z ∈ N , it follows that
N1(u) = N , which is a contradiction by Lemma 19. Thus, v /∈ N(y). Then, Tv ≪RT

Ty, since
Tu ≪RT

Ty, and since v ∈ N(u) and v /∈ N(y). Furthermore, Tx2
≪RT

Tv, since Tx2
≪RT

Tu,
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and since v ∈ N(u) and v /∈ N(x2). Therefore, Tx2
≪RT

Tv ≪RT
Ty, and thus Tv0 intersects

Tv in RT , i.e. v0 ∈ N(v), since v0 ∈ N(x2) ∩ N(y). Summarizing, v0 ∈ N(v) for every vertex
v0 ∈ H ′

0 and for every vertex v ∈ Cu \ {u}, such that v ∈ N(u) ∪N(w), i.e. H ′
0 ⊆ N(v) for all

these vertices v. This proves the induction basis.
For the induction step, let i ≥ 1, and suppose that v′ ∈ N(v) for every v′ ∈ Hj, where

0 ≤ j ≤ i − 1. Let vi ∈ Hi and (v0, v1, . . . , vi−2, vi−1, vi) be an Hi-chain of vi. For the sake
of contradiction, suppose that vi /∈ N(v). We will first prove that Pv ≪R Px2

. Otherwise,
suppose first that Px2

≪R Pv. Then, Pu ≪R Px2
≪R Pv and Pw ≪R Px2

≪R Pv, and thus
v /∈ N(u) ∪ N(w), which is a contradiction to the assumption on v. Suppose now that Pv

intersects Px2
in R. Then, either N(x2) ⊆ N(v) or N(v) ⊆ N(x2) by Lemma 3, since v /∈ N(x2)

by definition of C̃2. If N(x2) ⊆ N(v), then vi ∈ N(v), since vi ∈ N(x2), which is a contradiction.
Let N(v) ⊆ N(x2). Then, since Cu is connected with at least two vertices, v is adjacent to at
least one vertex z ∈ Cu, and thus z ∈ N(x2), which is a contradiction. Thus, Pv ≪R Px2

.

Recall that vi−1 ∈ N(v) by the induction hypothesis. If i = 1, Pv1 does not intersect Pv0 in
R by Lemma 30. If i ≥ 2, i.e. if vi−2 exists, then Pvi does not intersect Pvi−1

in R by Lemma 3,
since vi−2 ∈ N(vi) \ N(vi−1) and v ∈ N(vi−1) \ N(vi). Thus, Pvi does not intersect Pvi−1

in
R for every i ≥ 1. Similarly, Pvi does not intersect Pv in R, since x2 ∈ N(vi) \ N(v) and
vi−1 ∈ N(v) \ N(vi). Therefore, since vi−1 ∈ N(v), it follows that either Pvi ≪R Pvi−1

and
Pvi ≪R Pv , or Pvi−1

≪R Pvi and Pv ≪R Pvi . Suppose that Pvi ≪R Pvi−1
and Pvi ≪R Pv. Then,

Pvi ≪R Pv ≪R Px2
, and thus vi /∈ N(x2), which is a contradiction.

Therefore, Pvi−1
≪R Pvi and Pv ≪R Pvi , and thus i 6= 1 by Lemma 30. That is, i ≥ 2, i.e. vi−2

exists. Furthermore, either Pvi−2
≪R Pvi−1

or Pvi−1
≪R Pvi−2

by Lemma 31. If Pvi−2
≪R Pvi−1

,
then Pvi−2

≪R Pvi−1
≪R Pvi , and thus vivi−2 /∈ E, which is a contradiction. Therefore Pvi−1

≪R

Pvi−2
, and thus also Tvi−1

≪RT
Tvi−2

and i is even, by Lemma 31. Furthermore, Tvi−1
≪RT

Tvi ,
since vi ∈ N(vi−2) and vi /∈ N(vi−1). Moreover, Tv ≪RT

Tvi , since Tvi−1
≪RT

Tvi , and since
v ∈ N(vi−1) and v /∈ N(vi). Recall also that Tx2

≪RT
Tv, since Tx2

≪RT
Tu, and since

v ∈ Cu and Cu is connected. That is, Tx2
≪RT

Tv ≪RT
Tvi , and thus vi /∈ N(x2), which is a

contradiction. Thus, vi ∈ N(v) in the case where v ∈ N(u)∪N(w). This completes the induction
step.

Summarizing, we have proved that H ′
i ⊆ N(v) for every i ≥ 0 and for every vertex v ∈

Cu \ {u}, such that v ∈ N(u) ∪N(w). This holds in particular for w, i.e. H ′
i ⊆ N(w) for every

i ≥ 0, since w is a vertex of Cu\{u} and w ∈ N(u) ⊆ N(u)∪N(w). Consider now the case where
v /∈ N(u)∪N(w). Then, since w ∈ N(u), either Tu ≪RT

Tv and Tw ≪RT
Tv, or Tv ≪RT

Tu and
Tv ≪RT

Tw. Suppose first that Tu ≪RT
Tv, i.e. Tx ≪RT

Tx2
≪RT

Tu ≪RT
Tv for every x ∈ X1

by Lemma 18. Recall that N1(v) = N by Lemma 23. Then, Tz intersects Tu in RT , i.e. z ∈ N(u),
for every z ∈ N1(v) = N , and thusN1(u) = N , which is a contradiction by Lemma 19. Therefore,
Tv ≪RT

Tu and Tv ≪RT
Tw. Furthermore, Tx2

≪RT
Tv, since Tx2

≪RT
Tu, and since v ∈ Cu

and Cu is connected. That is, Tx2
≪RT

Tv ≪RT
Tw. Then, since every z ∈ H ′

i, i ≥ 0, is adjacent
to both x2 and w, as we proved above, it follows that Tz intersects Tv in RT , i.e. z ∈ N(v), for
every z ∈ H ′

i, where i ≥ 0. Thus, H ′
i ⊆ N(v) for every i ≥ 0 and for every vertex v ∈ Cu \ {u},

such that v /∈ N(u) ∪N(w). This completes the proof of the lemma. ⊓⊔

Lemma 34. For every vertex v ∈ C2, it holds H ′
i ⊆ N(v) for every i ≥ 0.

Proof. Recall that C2 = A2 ∪ B2, where Aj ⊆ D2 for every Aj ∈ B2, k + 1 ≤ j ≤ ℓ, and A2

includes exactly those components Ai, 1 ≤ i ≤ k, for which all vertices of Ai are adjacent to all
vertices of H̃. Therefore, if v ∈ Ai for some component Ai ∈ A2, then H ′ ⊆ H ⊆ H̃ ⊆ N(v) by
definition, and thus H ′

i ⊆ N(v) for every i ≥ 0.
Let now v ∈ Aj, for some Aj ∈ B2, and thus v ∈ D2. Suppose first that v /∈ N(x2). Then,

Tx2
≪RT

Tv by Lemma 15, and Tv ≪RT
Tu, since v ∈ D2 ⊆ S2 ⊆ V0(u). Moreover, v /∈ N(w),
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since otherwise v ∈ Cu, which is a contradiction to the definition of C2. Thus, Tv ≪RT
Tw, since

Tv ≪RT
Tu, and since w ∈ N(u) and w /∈ N(v). That is, Tx2

≪RT
Tv ≪RT

Tw. Let now z ∈ H ′
i,

for some i ≥ 0. Then, z ∈ N(x2) by definition of H ′ and z ∈ N(w) by Lemma 33, and thus
Tz intersects Tv in RT , i.e. z ∈ N(v). Therefore, H ′

i ⊆ N(v) for every i ≥ 0, in the case where
v /∈ N(x2).

Suppose now that v ∈ N(x2). We will prove by induction on i that H ′
i ⊆ N(v) for every

i ≥ 0. For i = 0, let first v0 ∈ H ′
0 and y ∈ V \Qu \N [u] \ V0(u) be a vertex, such that yv0 ∈ E;

such a vertex y exists by Definition 11. For the sake of contradiction, assume that v0 /∈ N(v).
Recall that v0 ∈ N(u) by Lemma 32, and thus v0 is bounded and φv0 > φu. Suppose that Pv0

intersects Pv in R. Then, v is unbounded and φv > φv0 > φu, since v0 is bounded and v0 /∈ N(v).
Recall that N1(v) = N by Lemma 24. Consider now a vertex z ∈ N , i.e. z ∈ N(x) ∩N(x2) for
some x ∈ X1. Then, z ∈ N(v), since N1(v) = N , and thus z is bounded and φz > φv > φu,
since v is unbounded. On the other hand, Pz intersects Pu in R, since Px ≪R Pu ≪R Px2

and
z ∈ N(x) ∩ N(x2). Thus, z ∈ N(u), since z is bounded and φz > φu. Since this holds for an
arbitrary z ∈ N , it follows that N1(u) = N , which is a contradiction by Lemma 19. Thus, Pv0

does not intersect Pv in R, i.e. either Pv ≪R Pv0 or Pv0 ≪R Pv.

Let first Pv ≪R Pv0 . Suppose that Pv intersects Pu in R. Recall that v /∈ N(u), since v ∈ C2,
and thus either N(u) ⊆ N(v) or N(v) ⊆ N(u) by Lemma 3. If N(u) ⊆ N(v), then v0 ∈ N(v),
which is a contradiction. If N(v) ⊆ N(u), then x2 ∈ N(u), which is again a contradiction.
Thus, Pv does not intersect Pu in R, i.e. either Pv ≪R Pu or Pu ≪R Pv. If Pv ≪R Pu, then
Pv ≪R Pu ≪R Px2

, i.e. v /∈ N(x2), which is a contradiction to the assumption on v. Thus,
Pu ≪R Pv. Moreover, since we assumed that Pv ≪R Pv0 , it follows that Pu ≪R Pv ≪R Pv0 ,
and thus v0 /∈ N(u), which is a contradiction by Lemma 32.

Let now Pv0 ≪R Pv. Suppose that Pv intersects Py in R. Recall that v ∈ V0(u) by Lemma 17,
and thus vy /∈ E, since otherwise y ∈ V0(u), which is a contradiction. Thus, either N(y) ⊆ N(v)
or N(v) ⊆ N(y) by Lemma 3. If N(y) ⊆ N(v), then v0 ∈ N(v), which is a contradiction. If
N(v) ⊆ N(y), then x2 ∈ N(y) (since we assumed that x2 ∈ N(v)), and thus y ∈ V0(u), which
is a contradiction. Thus, Pv noes not intersect Py in R, i.e. either Pv ≪R Py or Py ≪R Pv.
If Pv ≪R Py, then Pv0 ≪R Pv ≪R Py, i.e. yv0 /∈ E, which is a contradiction. Suppose that
Py ≪R Pv. Recall that Px2

≪R Py by the proof of Lemma 30. Thus Px2
≪R Py ≪R Pv,

i.e. v /∈ N(x2), which is a contradiction to the assumption on v. Therefore, v0 ∈ N(v), and thus
H ′

0 ⊆ N(v). This proves the induction basis.

For the induction step, let i ≥ 1, and suppose that v′ ∈ N(v) for every v′ ∈ H ′
j, where

0 ≤ j ≤ i − 1. For the sake of contradiction, assume that vi /∈ N(v). Let (v0, v1, . . . , vi−1, vi)
be an Hi-chain of vi. If i = 1, Pv1 does not intersect Pv0 in R by Lemma 30. If i ≥ 2, i.e. if
vi−2 exists, then Pvi does not intersect Pvi−1

in R by Lemma 3, since vi−2 ∈ N(vi) \ N(vi−1)
and v ∈ N(vi−1) \ N(vi). Thus, Pvi does not intersect Pvi−1

in R for every i ≥ 1. Recall now
that vi ∈ N [u,w] = N(u) ∪ N(w), since vi ∈ H, and that v /∈ N [u,w] = N(u) ∪ N(w) by
definition of C2. If vi ∈ N(u) (resp. vi ∈ N(w)), then u ∈ N(vi)\N(v) (resp. w ∈ N(vi)\N(v)).
Furthermore, vi−1 ∈ N(v) \N(vi), i.e. N(vi) * N(v) and N(v) * N(vi), and thus Pvi does not
intersect Pv in R by Lemma 3. Therefore, since vi−1 ∈ N(v), it follows that either Pvi−1

≪R Pvi

and Pv ≪R Pvi or Pvi ≪R Pvi−1
and Pvi ≪R Pv .

Suppose first that Pvi−1
≪R Pvi and Pv ≪R Pvi . Recall that vi ∈ N(u) or vi ∈ N(w).

Furthermore, recall that v ∈ N(x2) by our assumption on v. Let vi ∈ N(u) (resp. vi ∈ N(w)).
Then, Pv does not intersect Pu (resp. Pw) in R by Lemma 3, since x2 ∈ N(v)\N(u) (resp. x2 ∈
N(v) \ N(w)) and vi ∈ N(u) \ N(v) (resp. vi ∈ N(w) \ N(v)). Therefore, since Pu ≪R Px2

(resp. Pw ≪R Px2
) and v ∈ N(x2), it follows that Pu ≪R Pv (resp. Pw ≪R Pv). That is,

Pu ≪R Pv ≪R Pvi (resp. Pw ≪R Pv ≪R Pvi), i.e. vi /∈ N(u) (resp. vi /∈ N(w)), which is a
contradiction.
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Suppose now that Pvi ≪R Pvi−1
and Pvi ≪R Pv. If i = 1, then Tv1 ≪RT

Tv0 by Lemma 30.
If i ≥ 2, i.e. if vi−2 exists, then Pvi−2

≪R Pvi−1
. Indeed, otherwise Pvi ≪R Pvi−1

≪R Pvi−2
,

i.e. vivi−2 /∈ E, which is a contradiction. Thus, also Tvi−2
≪RT

Tvi−1
and i is odd by Lemma 31.

Therefore, Tvi ≪RT
Tvi−1

if i ≥ 2, since otherwise Tvi−2
≪RT

Tvi−1
≪RT

Tvi , i.e. vivi−2 /∈ E,
which is a contradiction. That is, Tvi ≪RT

Tvi−1
for all i ≥ 1. Therefore, since v ∈ N(vi−1) and

v /∈ N(vi), it follows that Tvi ≪RT
Tv. Recall also that Tx2

≪RT
Tu and Tx2

≪RT
Tw. Thus,

Tv ≪RT
Tu and Tv ≪RT

Tw, since we assumed that v ∈ N(x2), and since v /∈ N(u) ∪N(w) by
definition of C2. That is, Tvi ≪RT

Tv ≪RT
Tu and Tvi ≪RT

Tv ≪RT
Tw, i.e. vi /∈ N(u)∪N(w),

which is a contradiction. Therefore, vi ∈ N(v), and thus H ′
i ⊆ N(v). This completes the

induction step, and the lemma follows. ⊓⊔

The subgraph G0 of G

Let G0 be the graph induced in G by the vertices of Cu ∪ C2 ∪ (H \
⋃∞

i=1 Hi \
⋃∞

i=0 H
′
i). Note

that G0 is an induced subgraph also of G \ Qu \ N [X1]. Furthermore, note that every vertex
of G0 \ {u} is bounded by to Lemma 27. Recall that C2 ⊆ V0(u) by Lemma 17 and that
Cu \ {u} ⊆ N(u) ∪ V0(u) by Lemma 22. Consider now a vertex v ∈ H \

⋃∞
i=1Hi \

⋃∞
i=0 H

′
i. If

v /∈ N(u), then v ∈ V0(u), since x2 ∈ V0(u) and v ∈ N(x2) by definition of H. Thus, the next
observation follows.

Observation 3 Every vertex of G0 \ {u} is bounded. Furthermore, V (G0) ⊆ N [u] ∪ V0(u).

Lemma 35. G0 \{u} is a module in G\{u}. In particular, N(v)\V (G0) = N(X1)∪
⋃∞

i=1 Hi∪⋃∞
i=0H

′
i for every vertex v ∈ V (G0) \ {u}.

Proof. First recall by Lemma 16 that N(V (Cu ∪ C2 ∪H)) ⊆ Qu ∪ N(X1) ∪ V (B1), where
V (B1) =

⋃
Aj∈B1

Aj . Consider a vertex q ∈ Qu. Then, since we assumed in the statement

of Theorem 2 that Condition 3 holds, and since X1 ⊆ D1 ⊆ V0(u) by Lemma 17, it follows
that Tq ≪RT

Tx ≪RT
Tu for every x ∈ X1. Thus, since N(q) ⊂ N(u) by definition of Qu, it

follows that Tz intersects Tx in RT for every z ∈ N(q) ⊂ N(u) and every x ∈ X1. Therefore, in
particular, N(q) ⊆ N(X1) for every q ∈ Qu. Thus, no vertex q ∈ Qu is adjacent to any vertex of
V (Cu ∪ C2 ∪H), since V (Cu ∪ C2 ∪H) induces a subgraph of G\Qu \N [X1]\B1 by Lemma 16.
Thus, N(V (Cu ∪C2 ∪H)) ∩Qu = ∅, i.e. N(V (Cu ∪ C2 ∪H)) ⊆ N(X1) ∪ V (B1).

Recall that V (G0) = Cu ∪ C2 ∪ (H \
⋃∞

i=1 Hi \
⋃∞

i=0 H
′
i) by definition of G0. Consider now

an arbitrary vertex v ∈ V (G0) \ {u}. Then, it follows by the previous paragraph that

N(v) \ V (G0) ⊆ N(X1) ∪ V (B1) ∪ (
⋃∞

i=1
Hi ∪

⋃∞

i=0
H ′

i) (8)

We will prove that N(v)\V (G0) = N(X1)∪(
⋃∞

i=1 Hi∪
⋃∞

i=0 H
′
i). If v ∈ Cu \ {u}, then N(X1) ⊆

N(v), since N1(v) = N = N(X1) by Lemma 23. Similarly, if v ∈ C2, then N(X1) ⊆ N(v), since
N1(v) = N = N(X1) by Lemma 24. If v ∈ H \

⋃∞
i=1Hi \

⋃∞
i=0H

′
i, then N = H0 ⊆ N(v) by

Definition 9 (where N = N(X1)), since otherwise v ∈ H1, which is a contradiction. That is,
N(X1) ⊆ N(v) for every vertex v ∈ V (G0) \ {u}.

If v ∈ Cu \ {u}, then
⋃∞

i=1Hi ∪
⋃∞

i=0 H
′
i ⊆ N(v) by Lemmas 28 and 33. Similarly, if v ∈ C2,

then
⋃∞

i=1Hi ∪
⋃∞

i=0H
′
i ⊆ N(v) by Lemmas 29 and 34. If v ∈ H \

⋃∞
i=1Hi \

⋃∞
i=0H

′
i, then⋃∞

i=1Hi ∪
⋃∞

i=0H
′
i ⊆ N(v) by Definitions 9 and 11. Indeed, otherwise v ∈ Hi for some i ≥ 1, or

v ∈ H ′
i for some i ≥ 0, which is a contradiction. That is,

⋃∞
i=1Hi ∪

⋃∞
i=0H

′
i ⊆ N(v) for every

vertex v ∈ V (G0) \ {u}.
We will now prove that N(v) ∩ V (B1) = ∅. Suppose for the sake of contradiction that

v′ ∈ N(v), for some v′ ∈ V (B1). Note that v′ /∈ N(u) by definition of C̃2. Let first v ∈
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Cu \ {u}. Then, either v ∈ V0(u) or v ∈ N(u) by Lemma 22. If v ∈ V0(u), then also v′ ∈
V0(u), which is a contradiction by definition of B1. Suppose that v ∈ N(u). Recall that v′ ∈
V (B1) ⊆ V \Qu \N [u] \ V0(u) by our assumption on v′ and by Observation 2. Thus, either
Pu ≪R Px2

≪R Pv′ or Pv′ ≪R Px ≪R Pu for every x ∈ X1 by Lemma 20. Therefore Pu ≪R

Px2
≪R Pv′ , since Pu ≪R Pv′ for every v′ ∈ V (B1) by definition of B1. Then, since we assumed

that v ∈ N(u) and v ∈ N(v′), it follows that Pv intersects Px2
in R. Furthermore, x2 ∈ C2 is a

bounded vertex by Lemma 27; v is also a bounded vertex, since v ∈ N(u). Therefore v ∈ N(x2),
which is a contradiction by definition of Cu. Thus, N(v) ∩ V (B1) = ∅ for every v ∈ Cu \ {u}.

Let now v ∈ C2. Then v ∈ V0(u), since C2 ⊆ V0(u) by Lemma 17, and thus also
v′ ∈ V0(u), since v′ /∈ N(u). This which is a contradiction by definition of B1. There-
fore, N(v) ∩ V (B1) = ∅ for every v ∈ C2. Let finally v ∈ H \

⋃∞
i=1Hi \

⋃∞
i=0H

′
i. Recall

that v′ ∈ V (B1) ⊆V \Qu \N [u] \ V0(u). Thus, since v ∈ H \
⋃∞

i=1 Hi, and since vv′ ∈ E,
it follows by Definition 11 that v ∈ H ′

0. This is a contradiction to the assumption that
v ∈ H \

⋃∞
i=1 Hi \

⋃∞
i=0 H

′
i. Therefore, N(v) ∩ V (B1) = ∅ for every v ∈ H \

⋃∞
i=1 Hi \

⋃∞
i=0H

′
i.

That is, N(v) ∩ V (B1) = ∅ for every vertex v ∈ V (G0) \ {u}.
Summarizing, N(X1) ∪ (

⋃∞
i=1Hi ∪

⋃∞
i=0 H

′
i) ⊆ N(v) and N(v) ∩ V (B1) = ∅ for every ver-

tex v ∈V (G0) \ {u}. Therefore, it follows by (8) that

N(v) \ V (G0) = N(X1) ∪ (
⋃∞

i=1
Hi ∪

⋃∞

i=0
H ′

i) (9)

for every vertex v ∈ V (G0) \ {u}. Thus, in particular, G0 \ {u} is a module in G \ {u}, since
every vertex of G0 \ {u} has the same neighbors in G \ G0. This completes the proof of the
lemma. ⊓⊔

Now let G′
0 = G[V (G0) ∪ {u∗}]. Then, since u∗ ∈ V0(u) and V (G0) ⊆ N [u] ∪ V0(u) by

Observation 3, it follows that also V (G′
0) ⊆ N [u] ∪ V0(u). Furthermore, Observation 3 implies

that the set V (G′
0)\{u} has only bounded vertices, since u∗ is also bounded. Furthermore, since

N1(u) 6= N by Lemma 19 (where N = N(X1)), there exists at least one vertex q ∈ N \N(u),
which is bounded by Lemma 27. Moreover q ∈ N(x2), since N = N(X1) ⊆ N(x2) by Lemma 19.
Therefore, Pq intersects Pu in R, since q ∈ N(X1) ∩ N(x2) and Px ≪R Pu ≪R Px2

for every
x ∈ X1. Furthermore, φq < φu in R, since otherwise q ∈ N(u), which is a contradiction. Thus,
N(u) ⊆ N(q) by Lemma 3, i.e. q is a covering vertex of u. Furthermore q /∈ V (G0), since
q ∈ N = N(X1). Then, q is adjacent to all vertices of C2 ∪ Cu \ {u} by Lemmas 23 and 24.
Furthermore, q ∈ N is adjacent to all vertices of H \

⋃∞
i=1Hi \

⋃∞
i=0H

′
i by Definition 9, since no

vertex of H1 is included in H \
⋃∞

i=1 Hi \
⋃∞

i=0 H
′
i. Summarizing, q is a bounded covering vertex

of u, Pq intersects Pu in R, and φq < φu in R, and thus we may assume w.l.o.g. that u∗ = q, as
the next observation states.

Observation 4 Without loss of generality, we may assume that u∗ ∈ N = N(X1), i.e. u
∗ /∈

V (G0), and that u∗ is adjacent to every vertex of V (G0) \ {u}; thus, in particular, G′
0 is con-

nected.

Moreover, G′
0 = G[V (G0)∪{u∗}] has strictly less vertices than G, since no vertex of X1 6= ∅

is included in G′
0. We assume now that the following condition holds. Its correctness will be

proved later, in Lemma 45.

Condition 4 Let G = (V,E) be a connected graph in Tolerance ∩ Trapezoid, R be a
projection representation of G with u as the only unbounded vertex, such that V0(u) 6= ∅ is
connected and V = N [u] ∪ V0(u). Then, there exists a projection representation R∗∗ of G with
u as the only unbounded vertex, such that u has the right border property in R∗∗.
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The projection representation Rℓ

We define now the line segment ℓ with one endpoint aℓ on L1 and the other endpoint bℓ on L2 as
follows. First recall that r(w) >R r(u) by Lemma 1, since w ∈ N(u). Let ∆ = r(w)− r(u) >R 0
be the distance on L2 between the lower right endpoints of Pw and Pu inR. Define inR the values
aℓ = min{L(x2), L(u) +∆} and bℓ = r(w) as the endpoints of the line segment ℓ on L1 and L2,
respectively. Note that φℓ ≥ φu in R, where φℓ denotes the slope of the line segment ℓ. Recall
that φw > φu in R (since w ∈ N(u)), and thus in particular R(w) <R L(u) +∆. Therefore, since
Pu ≪R Px2

and Pw ≪R Px2
, it follows that the line segment ℓ lies between Pu and Px2

in R, as
well as between Pw and Px2

in R. Denote by au and bu the upper and the lower endpoint of Pu

in R, respectively. Then, always aℓ > au and bℓ > bu by definition of the line segment ℓ.
Note that G′

0 satisfies the requirements of Condition 4. Thus, since we assumed that Con-
dition 4 holds, there exists a representation R′

0 of G′
0 with u as the only unbounded vertex,

where u has the right border property in R′
0. Let R′′

0 be the projection representation of G0

that is obtained if we remove from R′
0 the parallelogram that corresponds to u∗. Let ε > 0

be a sufficiently small positive number. Consider now the ε-squeezed projection representation
R0 of G0 with respect to the line segment ℓ, which is obtained from R′′

0 . Then, replace the
parallelograms of the vertices of G0 in R by the projection representation R0, and denote the
resulting projection representation by Rℓ.

Remark 1. Recall that w.l.o.g. all slopes of the parallelograms in the projection representation R
are distinct [13,15,18]. Therefore, since ε > 0 is assumed to be sufficiently small, we can assume
w.l.o.g. that, for every vertex x ∈ V (G0), the slopes φx are arbitrarily “close” to φℓ (and to
each other) in Rℓ. That is, we can assume w.l.o.g. that for every vertex v /∈ V (G0), if φv > φℓ

(resp. φv < φℓ) in Rℓ, then also φv > φx (resp. φv < φx) in Rℓ for every vertex x ∈ V (G0).

Remark 2. Recall that the vertices of G0 in Rℓ lie on an ε-squeezed projection representation R0

with respect to the line segment ℓ, where ε > 0 is a sufficiently (very) small positive number.
Therefore, in particular bℓ − ε <Rℓ

l(v) ≤Rℓ
r(v) <Rℓ

bℓ + ε and aℓ − ε <Rℓ
L(v) ≤Rℓ

R(v) <Rℓ

aℓ+ ε for every vertex v ∈ V (G0). On the other hand, since ε has been chosen to be sufficiently
small, we may assume w.l.o.g. that for every vertex z /∈ V (G0), the lower right endpoint r(z)
(resp. the lower left endpoint l(z)) of Pz in Rℓ does not lie between bℓ − ε and bℓ + ε, i.e. ei-
ther r(z) <Rℓ

bℓ− ε or r(z) >Rℓ
bℓ+ ε (resp. either l(z) <Rℓ

bℓ− ε or l(z) >Rℓ
bℓ+ ε). Similarly,

for every vertex z /∈ V (G0), the upper right endpoint R(z) (resp. the upper left endpoint L(z))
of Pz in Rℓ does not lie between aℓ− ε and aℓ+ ε, i.e. either R(z) <Rℓ

aℓ− ε or R(z) >Rℓ
aℓ+ ε

(resp. either L(z) <Rℓ
aℓ − ε or L(z) >Rℓ

aℓ + ε).

Properties of Rℓ

Lemma 36. Rℓ \ {u} is a projection representation of G \ {u}.

Proof. Recall that all vertices of G0\{u} are bounded by Observation 3 and that N(v)\V (G0) =
N(X1)∪

⋃∞
i=1 Hi ∪

⋃∞
i=0H

′
i for every vertex v ∈ V (G0) \ {u} by Lemma 35. We will prove that

for a vertex z ∈ V (G \G0) and a vertex v ∈ V (G0) \ {u}, z is adjacent to v in Rℓ if and only if
z ∈ N(X1) ∪

⋃∞
i=1Hi ∪

⋃∞
i=0H

′
i.

Consider a vertex z ∈ N(X1)∪
⋃∞

i=1Hi∪
⋃∞

i=0H
′
i. Then z is a vertex of G\G0 by definition of

G0. Furthermore, z is bounded by Lemma 27. If z ∈
⋃∞

i=1 Hi∪
⋃∞

i=0H
′
i, then z ∈ N(w)∩N(x2)

by the definition of H. Let z ∈ N(X1). Then again z ∈ N(x2), since N1(x2) = N = N(X1)
by Lemma 19. Furthermore z ∈ N(w), since N1(w) = N(X1) by Lemma 17. That is, z ∈
N(w) ∩N(x2) for every case regarding z, and thus Pz intersects both Pw and Px2

in R. Recall
now by definition of the line segment ℓ that ℓ lies between Pw and Px2

in R. Therefore, since Pz
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intersects both Pw and Px2
in R, it follows that also Pz intersects ℓ in R. Thus, z is adjacent in

Rℓ to every vertex v ∈ V (G0) \ {u}, since both z and v are bounded.

Conversely, consider a vertex z ∈ V (G \ G0) and a vertex v ∈ V (G0) \ {u}, such that z
is adjacent to v in Rℓ. Then, in particular Pz intersects ℓ in R. Recall that v is bounded by
Observation 3. Therefore, either z is bounded or z is unbounded and φz < φℓ (in both R and
Rℓ). Furthermore, observe that z /∈ X1, since Px ≪R Pu for every x ∈ X1, and since Pz intersects
ℓ in R. Suppose that z ∈ V (B1), and thus z ∈ V \Qu \N [u] \ V0(u) by Observation 2. Then,
either Pu ≪R Px2

≪R Pz or Pz ≪R Px ≪R Pu ≪R Px2
for every x ∈ X1 by Lemma 20. Thus,

Pz does not intersect the line segment ℓ in R, since ℓ lies between Pu and Px2
in R by definition

of ℓ, which is a contradiction. Thus, z /∈ V (B1).

Suppose first that z is bounded, and thus also z /∈ Qu. We will prove that z ∈ N(X1) ∪⋃∞
i=1Hi ∪

⋃∞
i=0 H

′
i. To this end, we distinguish the cases where z ∈ V0(u), z ∈ N(u), and

z ∈ V \ N [u] \ V0(u). Recall by Lemma 16 that V (Cu ∪ C2 ∪H) induces a subgraph of
G \Qu \N [X1] \ B1 that includes all connected components of G \Qu \N [X1] \ B1, in which
the vertices of S2 ∪ {u} belong. Let first z ∈ V \ N [u] \ V0(u), i.e. z ∈ V \ Qu \ N [u] \ V0(u).
Then either Pu ≪R Px2

≪R Pz or Pz ≪R Px ≪R Pu ≪R Px2
for every x ∈ X1 by Lemma 20,

and thus Pz does not intersect ℓ in R, which is a contradiction. Let now z ∈ V0(u); then z ∈ S2,
since Pz intersects ℓ in R (i.e. Pz 6≪R Pu). Then, since z /∈ X1 ∪ Qu ∪ V (B1), it follows that
either z ∈ N(X1) or z ∈ V (Cu∪C2∪H). Therefore, since we assumed that z /∈ V (G0), it follows
that either z ∈ N(X1) or z ∈

⋃∞
i=1 Hi∪

⋃∞
i=0 H

′
i, i.e. z ∈ N(X1)∪

⋃∞
i=1Hi∪

⋃∞
i=0H

′
i. Let finally

z ∈ N(u). If z /∈ N(X1), then z ∈ V (Cu ∪H) by the definition of H and by Lemma 17. That
is, either z ∈ N(X1) or z ∈ V (Cu ∪ H). Thus, since we assumed that z /∈ V (G0), it follows
again that either z ∈ N(X1) or z ∈

⋃∞
i=1Hi ∪

⋃∞
i=0 H

′
i, i.e. z ∈ N(X1) ∪

⋃∞
i=1Hi ∪

⋃∞
i=0H

′
i.

Summarizing, if z is bounded, then z ∈ N(X1) ∪
⋃∞

i=1 Hi ∪
⋃∞

i=0 H
′
i.

Suppose now that z is unbounded and φz < φℓ (in both R and Rℓ). Then, aℓ <R L(z) and
l(z) <R bℓ. Recall that z /∈ X1; furthermore also z /∈ N(X1), since z is unbounded and every
vertex of N = N(X1) is bounded by Lemma 27. Therefore, z /∈ N [X1]. We distinguish now in
the definition of the line segment ℓ, the cases where aℓ <R L(x2) and aℓ =R L(x2) in R.

Case 1. aℓ <R L(x2). Then aℓ =R L(u)+∆ in R, and thus φℓ = φu in R by definition of the
line segment ℓ. Therefore, φz < φℓ = φu in R for some unbounded vertex z, since we assumed
that φz < φℓ in R. This is a contradiction, since φu = min{φx in R | x ∈ VU} by our initial
assumption on u.

Case 2. aℓ =R L(x2). Recall that Pw ≪R Px2
. Then, R(w) <R L(x2) =R aℓ <R L(z) and

l(z) <R bℓ =R r(w) <R l(x2), since we assumed that φz < φℓ. Therefore, Pz intersects both
Pw and Px2

in R, while also φz < φw and φz < φx2
in R. Thus z ∈ N(w) ∩N(x2), since both

w and x2 are bounded. Therefore, since also z /∈ N [X1], it follows that z ∈ H by definition
of H. If z ∈ H \

⋃∞
i=1Hi \

⋃∞
i=0 H

′
i, then z ∈ V (G0), which is a contradiction. Therefore,

z ∈
⋃∞

i=1 Hi \
⋃∞

i=0 H
′
i.

Summarizing, if z is adjacent to v in Rℓ for a vertex z ∈ V (G \ G0) and a vertex v ∈
V (G0) \ {u}, then z ∈ N(X1) ∪

⋃∞
i=1 Hi ∪

⋃∞
i=0H

′
i. This completes the proof of the lemma. ⊓⊔

Corollary 4. For every z ∈ N(u), Pz intersects Pu in Rℓ.

Proof. If z ∈ V (G0), then Pz intersects Pu in R0, since R0 is a projection representation of G0.
Therefore, Pz intersects Pu also in Rℓ, since R0 is a sub-representation of Rℓ. Suppose now that
z /∈ V (G0). Then, either z ∈ N(X1) or z ∈ V (Cu ∪H), since we assumed that z ∈ N(u). Thus,
either z ∈ N(X1) or z ∈

⋃∞
i=1Hi ∪

⋃∞
i=0H

′
i, since z /∈ V (G0), and thus z is adjacent to every

vertex v of G0 \ {u} by Lemma 35. Therefore, Pz intersects the line segment ℓ in both R and
Rℓ (cf. the proof of Lemma 36), and thus in particular Pz intersects also Pu in Rℓ. ⊓⊔
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Note that, since the position and the slope of Pu is not the same in R and in Rℓ, the
projection representation Rℓ may be not a projection representation of G. Similarly to the
Transformations 1, 2, and 3 in the proof of Theorem 1, we define in the sequel the Transforma-
tions 4, 5, and 6. After applying these transformations to Rℓ, we obtain eventually a projection
representation R∗ of G with k−1 unbounded vertices. The following lemma will be mainly used
in the remaining part of the proof of Theorem 2.

Lemma 37. u has the right border property in Rℓ.

Proof. Recall first that u has the right border property in R0. Suppose for the sake of contra-
diction that u has not the right border property in Rℓ. Then, there exist vertices z ∈ N(u)
and y ∈ V0(u), such that Pz ≪Rℓ

Py. We will now prove that bu <Rℓ
r(z) for the lower right

endpoint r(z) of every z ∈ N(u). If z ∈ V (G0), then clearly bu <Rℓ
r(z), since bu < bℓ and R0

is an ε-squeezed projection representation of G0 with respect to ℓ, where ε > 0 is sufficiently
small. If z /∈ V (G0), then bu = r(u) <R r(z) in R by Lemma 1, and thus also bu <Rℓ

r(z), since
the endpoints of Pz remain the same in both R and Rℓ. That is, bu <Rℓ

r(z) for every z ∈ N(u).

Case 1. Let first z ∈ V (G0). Then, y /∈ V (G0), since u has the right border property in R0.
Furthermore bu <Rℓ

r(z) <Rℓ
r(y), since Pz ≪Rℓ

Py. Therefore, since y /∈ V (G0), i.e. since the
endpoints of Py remain the same in both R and Rℓ, it follows that also bu <R r(y). Thus y ∈ S2,
since we assumed that y ∈ V0(u); therefore in particular y /∈ X1, since X1 ⊆ D1 by Lemma 17.
Furthermore, y /∈ Qu by Lemma 13 and y /∈ V (B1) by definition of B1, since y ∈ V0(u). Recall
now by Lemma 16 that V (Cu ∪ C2 ∪H) induces a subgraph ofG \Qu \N [X1] \ B1 that includes
all connected components of G \Qu \N [X1] \ B1, in which the vertices of S2 ∪ {u} belong.
Therefore, since y ∈ S2 and y /∈ Qu ∪X1 ∪ V (B1), it follows that y ∈ N(X1)∪ V (Cu ∪ C2 ∪H).
Thus y ∈ N(X1) ∪

⋃∞
i=1Hi ∪

⋃∞
i=0H

′
i, since otherwise y ∈ V (G0), which is a contradiction.

Therefore, y is adjacent to every vertex v ∈ V (G0) \ {u} by Lemma 35. Thus, in particular, Py

intersects Pz in Rℓ, since z ∈ V (G0) \ {u} and Rℓ \ {u} is a projection representation of G \ {u}
by Lemma 36. This is a contradiction, since we assumed that Pz ≪Rℓ

Py.

Case 2. Let now z /∈ V (G0). Since we assumed that z ∈ N(u), it follows that either z ∈
N(X1) or z ∈ V (Cu ∪ H). Therefore, either z ∈ N(X1) or z ∈

⋃∞
i=1Hi ∪

⋃∞
i=0 H

′
i, since

z /∈ V (G0), and thus z is adjacent to every vertex v ∈ V (G0) \ {u} by Lemma 35. Then, in
particular, Pz intersects Pv in Rℓ, for every vertex v ∈ V (G0) \ {u}, and thus y /∈ V (G0),
since we assumed that Pz ≪Rℓ

Py. Therefore, since both y, z /∈ V (G0) and Pz ≪Rℓ
Py, it

follows that also Pz ≪R Py, and thus in particular bu <R r(z) <R r(y) by Lemma 1. Thus
y ∈ S2, since we assumed that y ∈ V0(u); therefore in particular y /∈ X1, since X1 ⊆ D1

by Lemma 17. Furthermore, y /∈ Qu by Lemma 13 and y /∈ V (B1) by definition of B1, since
y ∈ V0(u). Therefore, since y ∈ S2 and y /∈ Qu∪X1∪V (B1), it follows (similarly to the previous
paragraph) that y ∈ N(X1) ∪ V (Cu ∪C2 ∪H). Thus y ∈ N(X1) ∪

⋃∞
i=1Hi ∪

⋃∞
i=0H

′
i, since

otherwise y ∈ V (G0), which is a contradiction.

Suppose that y ∈ N(X1), i.e. y ∈ N(x) for some x ∈ X1. Recall that Px ≪R Pu, since
X1 ⊆ D1 by Lemma 17. If Pu ≪R Py, then Px ≪R Pu ≪R Py, i.e. y /∈ N(x), which is a
contradiction. Thus Pu 6≪R Py, i.e. either Py intersects Pu in R or Py ≪R Pu. Suppose that Py

intersects Pu in R, and thus either N(y) ⊆ N(u) or N(u) ⊆ N(y) by Lemma 3, since y /∈ N(u).
If N(y) ⊆ N(u), then x ∈ N(u), where x ∈ X1, which is a contradiction. If N(u) ⊆ N(y),
then z ∈ N(y), which is a contradiction, since we assumed that Pz ≪Rℓ

Py. Therefore, Py

does not intersect Pu in R, and thus Py ≪R Pu, i.e. Pz ≪R Py ≪R Pu. Then z /∈ N(u),
which is a contradiction. Therefore, y /∈ N(X1), and thus y ∈

⋃∞
i=1Hi ∪

⋃∞
i=0 H

′
i. On the other

hand y /∈
⋃∞

i=0 H
′
i, since otherwise y ∈ N(u) by Lemma 32, which is a contradiction. Thus

y ∈
⋃∞

i=1Hi. Summarizing, z /∈ V (G0) and y = vi ∈ Hi for some i ≥ 1.
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We will now prove by induction on i that vi ∈ N(u) or Pz 6≪R Pvi , for every vertex vi ∈ Hi,
i ≥ 1. This then completes the proof of the lemma, since vi = y /∈ N(u) (by the assumption
that y ∈ V0(u)), and thus Pz 6≪R Pvi = Py, which is a contradiction (since we assumed that
Pz ≪Rℓ

Py, and thus also Pz ≪R Py).

For the sake of contradiction, suppose that vi /∈ N(u) and Pz ≪R Pvi for some i ≥ 1. Then,
note that z /∈ N(vi). Recall that vi ∈ N(x2) due to the definition of H, and since vi ∈ H.
Therefore, since vi /∈ N(u) and x2 ∈ V0(u), it follows that vi ∈ V0(u), and thus Tvi ≪RT

Tu in
the trapezoid representation RT . Therefore, also Tvi ≪RT

Tz, since z ∈ N(u) \ N(vi). Recall
now that Tx ≪RT

Tx2
for every x ∈ X1 by Lemma 18. Thus, since vi ∈ N(x2) and vi /∈ N(X1)

by definition of H, it follows that Tx ≪RT
Tvi for every x ∈ X1, i.e. Tx ≪RT

Tvi ≪RT
Tz for

every x ∈ X1. Thus, in particular, z /∈ N(X1).

For the induction basis, let i = 1. Suppose that N1(z) = N . Then, for every v ∈ N , Tv

intersects Tv1 in RT , i.e. v ∈ N(v1), since v ∈ N(X1)∩N(z) and Tx ≪RT
Tv1 ≪RT

Tz for every
x ∈ X1. Thus, N1(v1) = N , i.e. N = H0 ⊆ N(v1), which is a contradiction by Definition 9,
since v1 ∈ H1.

Therefore N1(z) 6= N , and thus there exists a vertex v ∈ N \ N(z), i.e. v ∈ N(x) \ N(z)
for some x ∈ X1. Then v ∈ N(x2), since N1(x2) = N = N(X1) by Lemma 19. Thus, since
v ∈ N(x) ∩ N(x2) and Px ≪R Pu ≪R Px2

, it follows that Pv intersects Pu in R. If v /∈ N(u),
then either N(v) ⊆ N(u) or N(u) ⊆ N(v) by Lemma 3. If N(v) ⊆ N(u), then x2 ∈ N(u), which
is a contradiction. If N(u) ⊆ N(v), then z ∈ N(v), which is again a contradiction. Therefore,
v ∈ N(u) for all vertices v ∈ N \N(z).

Consider now the trapezoid representation RT . Recall that Tx ≪RT
Tv1 ≪RT

Tu and Tx ≪RT

Tv1 ≪RT
Tz for every x ∈ X1. Consider an arbitrary vertex v ∈ N = N(X1). If v ∈ N(z), then

Tv intersects Tv1 in RT , since v ∈ N(X1) ∩ N(z) and Tx ≪RT
Tv1 ≪RT

Tz for every x ∈ X1;
therefore v ∈ N(v1). Otherwise, if v /∈ N(z), then v ∈ N(u), as we proved in the previous
paragraph. Then, Tv intersects Tv1 in RT , since v ∈ N(X1)∩N(u) and Tx ≪RT

Tv1 ≪RT
Tu for

every x ∈ X1; therefore again v ∈ N(v1). Thus, v ∈ N(v1) for every v ∈ N , i.e. N = H0 ⊆ N(v1),
which is a contradiction by Definition 9, since v1 ∈ H1. Therefore, v1 ∈ N(u) or Pz 6≪R Pv1 for
every vertex v1 ∈ H1. This proves the induction basis.

For the induction step, let i ≥ 2. Let (v0, v1, . . . , vi−2, vi−1, vi) be an Hi-chain of vi. By the
induction hypothesis, vi−1 ∈ N(u) or Pz 6≪R Pvi−1

. Recall that Tvi ≪RT
Tz, as we proved above.

Assume that z ∈ N(vi−1). Then, since z ∈ N(vi−1)\N(vi) and vi−2 ∈ N(vi)\N(vi−1), Pvi does
not intersect Pvi−1

in R by Lemma 3. Suppose first that i is even. Then, Pvi−2
≪R Pvi−1

by
Lemmas 25 and 26. Thus, since vi ∈ N(vi−2) and Pvi does not intersect Pvi−1

in R, it follows that
Pvi ≪R Pvi−1

. Then, since we assumed that Pz ≪R Pvi , it follows that Pz ≪R Pvi ≪R Pvi−1
,

i.e. z /∈ N(vi−1). This is a contradiction to the assumption that z ∈ N(vi−1). Suppose now that
i is odd, i.e. i ≥ 3. Then, Tvi−1

≪RT
Tvi−2

by Lemma 26. Thus, since vi ∈ N(vi−2) \N(vi−1),
it follows that Tvi−1

≪RT
Tvi . Then, since Tvi ≪RT

Tz, it follows that Tvi−1
≪RT

Tvi ≪RT
Tz,

i.e. z /∈ N(vi−1). This is again a contradiction to the assumption that z ∈ N(vi−1).

Therefore z /∈ N(vi−1). Recall that vi−1 is a bounded vertex by Lemma 27. Furthermore, z
is a bounded vertex, since z ∈ N(u). Therefore, since z /∈ N(vi−1), it follows that Pvi−1

does
not intersect Pz in R, i.e. either Pvi−1

≪R Pz or Pz ≪R Pvi−1
.

Case 2a. Pvi−1
≪R Pz. Then, since z ∈ N(u) and Pu ≪R Px2

, it follows by Lemma 1
that R(vi−1) <R L(z) <R L(u) <R L(x2), i.e. R(vi−1) <R L(x2). Thus, since vi−1 ∈ N(x2)
and Pu ≪R Px2

, it follows that r(u) <R l(x2) <R r(vi−1). That is, R(vi−1) <R L(u) = R(u)
and r(u) <R r(vi−1), i.e. Pvi−1

intersects Pu in R and φvi−1
> φu. If vi−1 /∈ N(u), then

N(vi−1) ⊆ N(u) by Lemma 3, and thus x2 ∈ N(u), which is a contradiction. Thus, vi−1 ∈ N(u).

Since Pvi−1
≪R Pz and Pz ≪R Pvi by assumption, it follows that Pvi−1

≪R Pvi . Recall
by Lemmas 25 and 26 that either Pvi−2

≪R Pvi−1
or Pvi−1

≪R Pvi−2
. If Pvi−2

≪R Pvi−1
, then
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Pvi−2
≪R Pvi−1

≪R Pvi , i.e. vi−2vi /∈ E, which is a contradiction. Therefore, Pvi−1
≪R Pvi−2

and
i is odd, and thus Tvi−1

≪RT
Tvi−2

by Lemmas 25 and 26. Thus, since vi ∈ N(vi−2) \N(vi−1),
it follows that also Tvi−1

≪RT
Tvi . Recall now that Tvi ≪RT

Tu, as we proved above. Therefore,
it follows that Tvi−1

≪RT
Tvi ≪RT

Tu, and thus vi−1 /∈ N(u), which is a contradiction by the
previous paragraph.

Case 2b. Pz ≪R Pvi−1
. Then, vi−1 ∈ N(u) by the induction hypothesis, and thus vi−1 is

bounded. Furthermore, vi is also bounded by Lemma 27, since vi ∈ H. Therefore, Pvi does
not intersect Pvi−1

in R, since vi−1vi /∈ E, and thus either Pvi ≪R Pvi−1
or Pvi−1

≪R Pvi .
Recall that vi /∈ N(u) and Pz ≪R Pvi by assumption. Suppose first that Pvi ≪R Pvi−1

, that is,
Pz ≪R Pvi ≪R Pvi−1

. Then, since z ∈ N(u) and vi−1 ∈ N(u), it follows that Pu intersects Pvi

in R. Since vi /∈ N(u), either N(vi) ⊆ N(u) or N(u) ⊆ N(vi) by Lemma 3. If N(vi) ⊆ N(u),
then x2 ∈ N(u), which is a contradiction. If N(u) ⊆ N(vi), then vi−1 ∈ N(vi), which is again a
contradiction.

Suppose now that Pvi−1
≪R Pvi . Recall by Lemmas 25 and 26 that either Pvi−2

≪R Pvi−1

or Pvi−1
≪R Pvi−2

. If Pvi−2
≪R Pvi−1

, then Pvi−2
≪R Pvi−1

≪R Pvi , i.e. vi−2vi /∈ E, which is a
contradiction. Therefore, Pvi−1

≪R Pvi−2
and i is odd, and thus Tvi−1

≪RT
Tvi−2

by Lemmas 25
and 26. Thus, since vi ∈ N(vi−2) \N(vi−1), it follows that also Tvi−1

≪RT
Tvi . Recall now that

Tvi ≪RT
Tu, as we proved above. Therefore, Tvi−1

≪RT
Tvi ≪RT

Tu, and thus vi−1 /∈ N(u),
which is a contradiction. This completes the induction step and the lemma follows. ⊓⊔

The projection representations R
′

ℓ
, R′′

ℓ
, and R

′′′

ℓ

Notation 1 In the following, whenever we refer to N(u), we will mean NG(u), i.e. the neigh-
borhood set of vertex u in G. Note that, since Rℓ may be not a projection representation of G
(although Rℓ \ {u} is a projection representation of G \ {u} by Lemma 36), the set NG(u) does
not coincide necessarily with the set of adjacent vertices of u in the graph induced by Rℓ.

Similarly to the proof of Theorem 1, we add to G an isolated bounded vertex t. This isolated
vertex t corresponds to a parallelogram Pt, such that Pv ≪R Pt and Pv ≪Rℓ

Pt for every other
vertex v of G. Denote by VB and VU the set of bounded and unbounded vertices of G in Rℓ,
after the addition of the auxiliary vertex t to G (note that t ∈ VB).

Now, we define for every z ∈ N(u) the value L0(z) = minRℓ
{L(x) | x ∈ VB \N(u), Pz ≪Rℓ

Px}. For every vertex x ∈ VB \N(u), such that Pz ≪Rℓ
Px for some z ∈ N(u), it follows that

x /∈ V0(u), since u has the right border property in Rℓ by Lemma 37. Thus, for every z ∈ N(u),
L0(z) = minRℓ

{L(x) | x ∈ VB \ N(u) \ V0(u), Pz ≪Rℓ
Px}. Note that the value L0(z) is well

defined for every z ∈ N(u), since in particular t ∈ VB \N(u) and Pz ≪Rℓ
Pt. Furthermore, note

that for every every z ∈ N(u), the endpoint L0(z) does not correspond to any vertex of G0, since
V (G0) ⊆ N [u]∪V0(u) by Observation 3. Define now the the value ℓ0 = maxRℓ

{l(x) | x ∈ V0(u)}
and the subset N1 = {z ∈ N(u) | r(z) <Rℓ

ℓ0} of neighbors of u (in G, and not in Rℓ). Similarly
to Transformation 1 in the proof of Theorem 1, we construct now the projection representation
R′

ℓ from Rℓ as follows.

Transformation 4 For every z ∈ N1, move the right line of Pz parallel to the right, until
either r(z) comes immediately after ℓ0 on L2, or R(z) comes immediately before L0(z) on L1.
Denote the resulting projection representation by R′

ℓ.

Remark 3. Suppose now that the endpoint ℓ0 corresponds to a vertex of V (G0),
i.e. bℓ − ε <Rℓ

ℓ0 <Rℓ
bℓ + ε by Remark 2. Then, since ε has been chosen to be sufficiently

small, we make w.l.o.g. the following convention in the statement of Transformation 4: for every
vertex z ∈ N1, such that z /∈ V (G0), either r(z) <R′

ℓ
bℓ − ε (in the case where r(z) <R′

ℓ
ℓ0)
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or r(z) comes immediately after bℓ+ε on L2, i.e. r(z) >R′
ℓ
bℓ+ε (in the case where r(z) >R′

ℓ
ℓ0).

Summarizing, similarly to Rℓ, we may assume in R′
ℓ w.l.o.g. that for every vertex z ∈ N(u),

such that z /∈ V (G0), either r(z) <R′
ℓ
bℓ − ε or r(z) >R′

ℓ
bℓ + ε.

Note that the left lines of all parallelograms do not move during Transformation 4. Thus,
in particular, the value of ℓ0 is the same in Rℓ and in R′

ℓ, i.e. ℓ0 = maxR′
ℓ
{l(x) | x ∈ V0(u)}.

As we will prove in Lemma 40, the representation R′
ℓ \ {u} is a projection representation of the

graph G \ {u}, and thus the parallelograms of two bounded vertices intersect in Rℓ if and only
if they intersect also in R′

ℓ. Therefore, for every z ∈ N(u), the value L0(z) remains the same in
Rℓ and in R′

ℓ, i.e. L0(z) = minR′
ℓ
{L(x) | x ∈ VB \N(u) \V0(u), Pz ≪R′

ℓ
Px} for every z ∈ N(u).

Similarly to the proof of Theorem 1, we define now the subset N2 = {z ∈ N(u) | ℓ0 <R′
ℓ
r(z)} of

neighbors of u. Since the lower right endpoint r(z) of all parallelograms Pz in R′
ℓ is greater than

or equal to the corresponding value r(z) in Rℓ, it follows that N(u) \N1 = {z ∈ N(u) | ℓ0 <Rℓ

r(z)} ⊆ {z ∈ N(u) | ℓ0 <R′
ℓ
r(z)} = N2. Thus, N(u) \N2 ⊆ N1 and N2 ∪ (N1 \N2) = N(u). If

N2 6= ∅, we define the value r0 = minR′
ℓ
{r(z) | z ∈ N2}.

Lemma 38. If N2 6= ∅, i.e. if the value r0 can be defined, then r(u) <R′
ℓ
r0.

Proof. Denote by z0 the vertex of N2, such that r0 = r(z0). Let first z0 ∈ V (G0). Then r(z0) >R0

r(u) by Lemma 1, since N2 ⊆ N(u), and since R0 is a projection representation of G0. Thus,
also r(z0) >Rℓ

r(u), since R0 is a sub-representation of Rℓ. Furthermore, r0 = r(z0) >R′
ℓ
r(u),

since the lower right endpoints r(z) do not decrease by Transformation 4. Let now z0 /∈ V (G0).
Then, either r(z0) <R′

ℓ
bℓ−ε or r(z0) >R′

ℓ
bℓ+ε by Remark 3. Recall that x2 ∈ V (G0), and thus

bℓ − ε <Rℓ
l(x2) <Rℓ

bℓ + ε by Remark 2. Thus, since also x2 ∈ V0(u), it follows by definition
of ℓ0 that bℓ − ε <Rℓ

l(x2) ≤Rℓ
ℓ0. Therefore bℓ − ε <R′

ℓ
ℓ0 <R′

ℓ
r(z0), since z0 ∈ N2. Thus

r(z0) >R′
ℓ
bℓ + ε by Remark 3 (since z0 /∈ V (G0)), i.e. r(z0) >R′

ℓ
bℓ + ε >R′

ℓ
r(u). Summarizing,

r0 = r(z0) >R′
ℓ
r(u) in all cases. ⊓⊔

Define now the value L0 = minRℓ
{L(x) | x ∈ VB \N(u)\V0(u), Pu ≪Rℓ

Px}; again, L0 is well
defined, since in particular t ∈ VB\N(u)\V0(u) and Pu ≪Rℓ

Pt. Then, since by Transformation 4
only some endpoints of vertices z ∈ N(u) are moved, it follows that the value L0 does not change
in R′

ℓ, i.e. L0 = minR′
ℓ
{L(x) | x ∈ VB \N(u) \V0(u), Pu ≪R′

ℓ
Px}. The following property of the

projection representation R′
ℓ can be obtained easily by Transformation 4.

Lemma 39. For all vertices z ∈ N1 \N2, for which R(z) <R′
ℓ
L0, the values R(z) lie immedi-

ately before L0 in R′
ℓ.

Proof. Let z ∈ N1 \ N2. By definition of the sets N1 and N2, it follows that r(z) <Rℓ
ℓ0

and r(z) <R′
ℓ
ℓ0 in both Rℓ and R′

ℓ. Thus, R(z) comes immediately before L0(z) in R′
ℓ during

Transformation 4. We will now prove that L0 ≤Rℓ
L0(z). Consider a vertex x ∈ VB\N(u)\V0(u),

such that Pz ≪Rℓ
Px, i.e. r(z) <Rℓ

l(x) and R(z) <Rℓ
L(x). Then, in particular x /∈ V (G0),

since x /∈ N(u)∪V0(u) and V (G0) ⊆ N [u]∪V0(u) by Observation 3. Suppose that Px intersects
Pu in Rℓ, i.e. Px intersects the line segment ℓ in Rℓ. Then, in particular Px intersects also Px2

in
Rℓ, since x2 ∈ V (G0), and thus x ∈ N(x2), since both x and x2 are bounded in Rℓ. Therefore
x ∈ V0(u), since x2 ∈ V0(u) and x /∈ N(u), which is a contradiction. Thus, Px does not intersect
Pu in Rℓ, i.e. either Px ≪Rℓ

Pu or Pu ≪Rℓ
Px. If Px ≪Rℓ

Pu, then Pz ≪Rℓ
Px ≪Rℓ

Pu, which
is a contradiction, since Pz intersects Pu in Rℓ by Corollary 4. Therefore, Pu ≪Rℓ

Px. That is,
for every x ∈ VB \N(u) \ V0(u), for which Pz ≪Rℓ

Px, it follows that also Pu ≪Rℓ
Px. Thus, it

follows by the definitions of L0 and of L0(z) that L0 ≤Rℓ
L0(z).

Furthermore, also L0 ≤R′
ℓ
L0(z) in R′

ℓ, since by Transformation 4 only some endpoints
of vertices z ∈ N(u) are moved. Therefore, since R(z) comes immediately before L0(z) in
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R′
ℓ during Transformation 4, it follows that either R(z) comes immediately before L0 in R′

ℓ

during Transformation 4 (in the case where L0 =R′
ℓ
L0(z)) or R(z) >R′

ℓ
L0 (in the case where

L0 <R′
ℓ
L0(z)). ⊓⊔

If N2 = ∅, then we set R′′
ℓ = R′

ℓ; otherwise, if N2 6= ∅, we construct the projection represen-
tation R′′

ℓ from R′
ℓ as follows.

Transformation 5 For every v ∈ V0(u) ∩ VB, such that r(v) >R′
ℓ
r0, we move the right line

of Pv in R′
ℓ to the left, such that r(v) comes immediately before r0 in L2. Denote the resulting

projection representation by R′′
ℓ .

Since by Transformation 5 only some endpoints of vertices v ∈ V0(u) ∩ VB are moved,
it follows that the value L0 does not change in R′′

ℓ , i.e. L0 = minR′′
ℓ
{L(x) | x ∈ VB \ N(u) \

V0(u), Pu ≪R′′
ℓ
Px}. The next property of the projection representation R′′

ℓ follows by Lemma 39.

Corollary 5. For all vertices z ∈ N1 \N2, for which R(z) <R′′
ℓ
L0, the values R(z) lie imme-

diately before L0 in R′′
ℓ .

Proof. Let x0 be the vertex of VB \ N(u) \ V0(u), such that L0 = L(x0). Recall by Lemma 39
that for all vertices z ∈ N1 \ N2, for which R(z) <R′

ℓ
L0, the values R(z) lie immediately

before L0 in R′
ℓ. Furthermore, note that the parallelograms of all neighbors z ∈ N(u) of u

do not move by Transformation 5. Therefore, since also the value L0 is the same in both R′
ℓ

and R′′
ℓ , it suffices to prove that there do not exist vertices v ∈ V0(u)∩VB and z ∈ N1 \N2, such

that R(z) <R′′
ℓ
R(v) <R′′

ℓ
L0 in R′′

ℓ . Suppose otherwise that R(z) <R′′
ℓ
R(v) <R′′

ℓ
L0 = L(x0)

for two vertices v ∈ V0(u) ∩ VB and z ∈ N1 \ N2. Thus, since only the right lines of some
parallelograms Pv, where v ∈ V0(u) ∩ VB , are moved to the left by Transformation 5, it follows
that R(z) <R′

ℓ
L0 = L(x0) <R′

ℓ
R(v) in R′

ℓ. Therefore, in particular Pv intersects Px0
in R′

ℓ, and
thus v ∈ N(x0), since both v and x0 are bounded. Thus x0 ∈ V0(u), since also v ∈ V0(u). This
is a contradiction, since x0 ∈ VB \N(u) \ V0(u). This completes the proof. ⊓⊔

We construct now the projection representation R′′′
ℓ from R′′

ℓ as follows.

Transformation 6 Move the line Pu in R′′
ℓ , such that its upper endpoint L(u) = R(u) comes

immediately before minR′′
ℓ
{L0, R(z) | z ∈ N1 \ N2} and its lower endpoint l(u) = r(u) comes

immediately after maxR′′
ℓ
{r(v) | v ∈ V0(u)∩VB}. Finally, make u a bounded vertex. Denote the

resulting projection representation by R′′′
ℓ .

Note by the statement of Transformation 6 that R′′′
ℓ is a projection representation with k−1

unbounded vertices, since u is a bounded vertex in R′′′
ℓ .

Properties of R′

ℓ
, R′′

ℓ
, and R

′′′

ℓ

In the following (in Lemmas 40, 41), we prove that the projection representations R′
ℓ \ {u} and

R′′
ℓ \ {u} (constructed by Transformations 4 and 5, respectively) are both projection represen-

tations of G \ {u}. Furthermore, we prove in Lemma 42 that R′′′
ℓ is a projection representation

of G; that is, R∗ = R′′′
ℓ is a projection representation of G with k − 1 unbounded vertices, as

Theorem 2 states.

Lemma 40. R′
ℓ \ {u} is a projection representation of G \ {u}.

54



Proof. Denote by x0 the vertex of V0(u), such that ℓ0 = l(x0). Since we move the right line
of some parallelograms to the right, i.e. we increase some parallelograms, all adjacencies of Rℓ

are kept in R′
ℓ. Suppose that R′

ℓ has the new adjacency zv that is not an adjacency in Rℓ, for
some z ∈ N1. Therefore, since perform parallel movements of lines, i.e. since every slope φx

in R′
ℓ equals the value of φx in Rℓ for every vertex x of G, it follows that Pz ≪Rℓ

Pv and Pz

intersects Pv in R′
ℓ. Thus, v /∈ V0(u), since u has the right border property in Rℓ by Lemma 37.

Furthermore, r(z) <Rℓ
ℓ0 = l(x0), since z ∈ N1. However, since x0 ∈ V0(u), and since u has the

right border property in Rℓ, it follows that Pz intersects Px0
in Rℓ, and thus L(x0) <Rℓ

R(z).
We distinguish in the following the cases where v /∈ N(u) and v ∈ N(u).

Case 1. v /∈ N(u). Then, since also v /∈ V0(u), it follows by Observation 3 that v /∈ V (G0).
We will derive a contradiction to the assumption that R′

ℓ has the new adjacency zv that is not
an adjacency in Rℓ, for some z ∈ N1. Recall that every slope φx in R′

ℓ equals the value of φx in
Rℓ for every vertex x of G. Suppose first that r(z) <R′

ℓ
l(v). Then, since Pz intersects Pv in R′

ℓ,
it follows that L(v) <R′

ℓ
R(z), and thus φv > φz in R′

ℓ. If v is unbounded, then z is not adjacent
to v in R′

ℓ, which is a contradiction to the assumption. Thus v is bounded, i.e. v ∈ VB \N(u)
and Pz ≪Rℓ

Pv, and thus L0(z) ≤Rℓ
L(v) by definition of L0(z). Furthermore, since all left

lines of the parallelograms in Rℓ do not move during Transformation 4, it follows that also
L0(z) ≤R′

ℓ
L(v). Thus, R(z) <R′

ℓ
L0(z) ≤R′

ℓ
L(v) by the statement of Transformation 4, which

is a contradiction, since L(v) <R′
ℓ
R(z).

Suppose now that l(v) <R′
ℓ
r(z). We will first prove that in this case l(v) <Rℓ

l(x0). Suppose
otherwise that l(x0) <Rℓ

l(v). Let x0 /∈ V (G0). Then, since r(z) comes inR′
ℓ at most immediately

after ℓ0 = l(x0) on L2, it follows that l(x0) <R′
ℓ
r(z) <R′

ℓ
l(v). This is a contradiction to

the assumption that l(v) <R′
ℓ
r(z). Let x0 ∈ V (G0). Then, bℓ − ε <Rℓ

l(x0) <Rℓ
bℓ + ε by

Remark 2. Furthermore, since v /∈ V (G0), and since we assumed that l(x0) <Rℓ
l(v), it follows

that l(x0) <Rℓ
bℓ + ε <Rℓ

l(v) by Remark 2. If z ∈ V (G0), then r(z) comes in R′
ℓ (due to

the statement of Transformation 4) at most immediately after ℓ0 = l(x0) on L2, and thus in
this case l(x0) <R′

ℓ
r(z) <R′

ℓ
bℓ + ε <R′

ℓ
l(v). This is a contradiction to the assumption that

l(v) <R′
ℓ
r(z). Otherwise, if z /∈ V (G0), then r(z) comes in R′

ℓ (due to Remark 3) immediately
after bℓ + ε on L2, and thus in this case l(x0) <R′

ℓ
bℓ + ε <R′

ℓ
r(z) <R′

ℓ
l(v). This is again a

contradiction to the assumption that l(v) <R′
ℓ
r(z). Therefore l(v) <Rℓ

l(x0).

Recall that L(x0) <Rℓ
R(z), and thus also L(x0) <Rℓ

R(z) <Rℓ
L(v), since Pz ≪Rℓ

Pv.
Therefore, since also l(v) <Rℓ

l(x0) by the previous paragraph, it follows that Px0
intersects

Pv in Rℓ and φx0
> φv in Rℓ. If x0 is bounded, then x0v ∈ E, and thus v ∈ V0(u), since

x0 ∈ V0(u) and v /∈ N(u), which is a contradiction. Therefore, x0 is unbounded, and thus
x0v /∈ E. Therefore, N(x0) ⊆ N(v) by Lemma 3. Recall now that there exists a bounded
covering vertex u∗ of u in G, and thus u∗, x0 ∈ V0(u). Furthermore, u∗ 6= x0, since x0 is
unbounded. Therefore, since V0(u) is connected with at least two vertices, x0 is adjacent to at
least one other vertex y ∈ V0(u), and thus y ∈ N(v), since N(x0) ⊆ N(v). Thus v ∈ V0(u), since
v /∈ N(u), which is again a contradiction. Summarizing, R′

ℓ has no new adjacency zv that is not
an adjacency in Rℓ, for any v /∈ N(u) and any z ∈ N1.

Case 2. v ∈ N(u). We distinguish in the following the cases where z /∈ V (G0) and z ∈ V (G0).

Case 2a. z /∈ V (G0). Since z ∈ N(u), it follows that Pz intersects Pu in Rℓ by Corollary 4,
and thus Pz intersects the line segment ℓ in Rℓ. If v ∈ V (G0), then Pz intersects Pv in Rℓ (since
v ∈ N(u)), which is a contradiction. Thus, v /∈ V (G0). Therefore, since both z, v /∈ V (G0),
and since Pz ≪Rℓ

Pv, it follows that also Pz ≪R Pv. Therefore, since v ∈ N(u), it follows
that R(z) <R L(v) <R au =R L(u) by Lemma 1, and thus L(x0) <Rℓ

R(z) <Rℓ
L(v) <Rℓ

au,
since the endpoints of Pz and Pv remain the same in both R and Rℓ. Therefore x0 /∈ V (G0),
since otherwise L(x0) >Rℓ

aℓ − ε >Rℓ
au (by definition of the line segment ℓ). Thus, also

L(x0) <R R(z) <R L(v) <R au. Furthermore bu =R r(u) <R r(z) <R ℓ0 = l(x0) due to
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Lemma 1, since z ∈ N1. Then, Px0
intersects Pu in R and φx0

> φu, since L(x0) <R au and
bu <R l(x0). If x0 /∈ N(u), then N(x0) ⊆ N(u) by Lemma 3, and thus x0 ∈ Qu. This is a
contradiction by Lemma 13, since x0 ∈ V0(u) by assumption. Thus x0 ∈ N(u), which is again a
contradiction, since x0 ∈ V0(u).

Case 2b. z ∈ V (G0). Then, note that r(u) <R0
r(z) by Lemma 1, and thus also bu <Rℓ

r(u) <Rℓ
r(z), since R0 is a projection representation of G0 (and a sub-representation of Rℓ).

Suppose that v /∈ V (G0). Then, since we assumed that v ∈ N(u), it follows by Corollary 4 that
Pv intersects Pu in Rℓ. That is, Pv intersects the line segment ℓ in Rℓ, and thus Pv intersects
Pz in Rℓ, which is a contradiction, since Pz ≪Rℓ

Pv . Therefore, v ∈ V (G0).

Consider the projection representation R0 of G0 (which is a sub-representation of Rℓ) and
suppose that x0 ∈ V (G0). Then, r(u) <R0

r(z) <R0
ℓ0 = l(x0) and L(z) <R0

L(u) = R(u) by
Lemma 1. If L(x0) <R0

R(u), then Pu intersects Px0
in R0 and φx0

> φu in R0. Thus, since
x0 ∈ V (G0) \ {u} and every vertex of G0 \ {u} is bounded by Lemma 27, it follows that x0 ∈
N(u). This is a contradiction, since x0 ∈ V0(u) by definition of x0. Therefore R(u) <R0

L(x0).
Recall now that L(x0) <Rℓ

R(z) and Pz ≪Rℓ
Pv ; thus, also L(x0) <R0

R(z) and Pz ≪R0
Pv,

since R0 is a sub-representation of Rℓ. Therefore, R(u) <R0
L(x0) <R0

R(z) <R0
L(v) and

r(u) <R0
r(z) <R0

l(v). That is, R(u) <R0
L(v) and r(u) <R0

l(v), i.e. Pu ≪R0
Pv , and thus

v /∈ N(u), which is a contradiction to the assumption of Case 2. Therefore, x0 /∈ V (G0).

Since x0 /∈ V (G0), i.e. the endpoints of Px0
remain the same in both R and Rℓ, and since

bu <Rℓ
r(z) <Rℓ

ℓ0 = l(x0), it follows that also bu <R l(x0). Suppose that L(x0) <R au.
Then, Px0

intersects Pu in R and φx0
> φu. Thus, x0 is unbounded, since otherwise x0 ∈ N(u),

which is a contradiction. Furthermore, N(x0) ⊆ N(u) by Lemma 3, and thus x0 ∈ Qu, which is a
contradiction by Lemma 13, since x0 ∈ V0(u) by assumption. Therefore au <R L(x0), i.e. Pu ≪R

Px0
, since also bu <R l(x0). Thus x0 ∈ D2 ⊆ S2, since x0 ∈ V0(u). Furthermore x0 /∈ N [X1],

since Px ≪R Pu ≪R Px0
for every x ∈ X1. Moreover, x0 /∈ Qu by Lemma 13 and x0 /∈ V (B1)

by definition of B1, since x0 ∈ V0(u). Recall now by Lemma 16 that V (Cu ∪ C2 ∪H) induces a
subgraph ofG \Qu \N [X1] \ B1 that includes all connected components of G \Qu \N [X1] \ B1,
in which the vertices of S2 ∪ {u} belong. Therefore, since x0 ∈ S2 and x0 /∈ Qu∪N [X1]∪V (B1),
it follows that x0 ∈ V (Cu ∪ C2 ∪H). Thus x0 ∈

⋃∞
i=1 Hi∪

⋃∞
i=0H

′
i, since otherwise x0 ∈ V (G0),

which is a contradiction. If x0 ∈
⋃∞

i=0 H
′
i, then x0 ∈ N(u) by Lemma 32, which is a contradiction,

since x0 ∈ V0(u). Therefore x0 ∈
⋃∞

i=1 Hi.

Let x0 = vi ∈ Hi, for some i ≥ 1, and let (v0, v1, . . . , vi) be an Hi-chain of vi. Note that
vj ∈ N(u) ∪ V0(u) for every vertex vj, where 0 ≤ j ≤ i; indeed, if vj /∈ N(u), then vj ∈ V0(u),
since x2 ∈ V0(u) and vj ∈ N(x2) by definition of H. Furthermore, recall that every vertex vj,
where 0 ≤ j ≤ i, is a bounded vertex by Lemma 27. Therefore, since vivi−1 /∈ E, it follows
that Pvi does not intersect Pvi−1

in Rℓ, i.e. either Pvi ≪Rℓ
Pvi−1

or Pvi−1
≪Rℓ

Pvi . Moreover,
either Pvj ≪Rℓ

Pvj−1
or Pvj−1

≪Rℓ
Pvj for every j ∈ {1, 2, . . . , i−1} by Lemma 26. Thus, either

Pvj−1
≪Rℓ

Pvj or Pvj ≪Rℓ
Pvj−1

for every j ∈ {1, 2, . . . , i}.

We will prove by induction on j that vj ∈ V0(u), bℓ − ε <Rℓ
r(vj), and L(vj) <Rℓ

aℓ − ε,
for every j ∈ {0, 1, . . . , i}. Recall first that every vj , where 0 ≤ j ≤ i, is adjacent to every
vertex of G0 \ {u} by Lemma 35. Thus, in particular every Pvj , where 0 ≤ j ≤ i, intersects the
line segment ℓ in Rℓ, since Rℓ \ {u} is a projection representation of G \ {u} by Lemma 36.
Furthermore, recall that vj /∈ V (G0) by definition of G0, for every j ∈ {0, 1, . . . , i}, and thus
the endpoints of every Pvj , j ∈ {0, 1, . . . , i}, remain the same in both R and Rℓ. Furthermore,
since vj /∈ V (G0), either l(vj) <Rℓ

bℓ − ε or l(vj) >Rℓ
bℓ + ε by Remark 2, for every vj , where

0 ≤ j ≤ i.

For the induction basis, let j = i. Then, x0 = vi ∈ V0(u) by definition of x0. If l(x0) <Rℓ
bℓ−ε,

then l(x0) <Rℓ
bℓ−ε <Rℓ

r(z) <Rℓ
bℓ+ε, since x0 /∈ V (G0) and z ∈ V (G0) (cf. Remark 2). This

is a contradiction, since r(z) <Rℓ
ℓ0 = l(x0) by definition of N1. Therefore bℓ + ε <Rℓ

l(x0) ≤Rℓ
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r(x0). Thus, since Px0
= Pvi intersects the line segment ℓ in Rℓ, it follows that L(x0) <Rℓ

aℓ−ε.
That is, vi ∈ V0(u), bℓ + ε <Rℓ

r(vi), and L(vi) <Rℓ
aℓ − ε. This completes the induction basis.

For the induction step, assume that vj ∈ V0(u), bℓ + ε <Rℓ
r(vj), and L(vj) <Rℓ

aℓ − ε, for
some j ∈ {1, 2, . . . , i}. We will prove that also vj−1 ∈ V0(u), bℓ+ε <Rℓ

r(vj−1), and L(vj−1) <Rℓ

aℓ − ε. Let first Pvj−1
≪Rℓ

Pvj . Suppose that vj−1 /∈ V0(u). Then, since vj−1 ∈ N(u) ∪ V0(u), it
follows that vj−1 ∈ N(u). That is, Pvj−1

≪Rℓ
Pvj , where vj−1 ∈ N(u) and vj ∈ V0(u). This is a

contradiction, since u has the right border property in Rℓ by Lemma 37. Therefore vj−1 ∈ V0(u).
Furthermore, since we assumed that Pvj−1

≪Rℓ
Pvj , and since L(vj) <Rℓ

aℓ−ε by the induction
hypothesis, it follows that R(vj−1) <Rℓ

L(vj) <Rℓ
aℓ − ε. Thus, also L(vj−1) <Rℓ

aℓ − ε, since
L(vj−1) ≤Rℓ

R(vj−1). Furthermore, since Pvj−1
intersects the line segment ℓ in Rℓ, it follows

that bℓ + ε <Rℓ
r(vj−1). That is, vj−1 ∈ V0(u), bℓ + ε <Rℓ

r(vj−1), and L(vj−1) <Rℓ
aℓ − ε.

Let now Pvj ≪Rℓ
Pvj−1

, and thus also Pvj ≪R Pvj−1
, since vj−1, vj /∈ V (G0). Then, since

bℓ+ ε <Rℓ
r(vj) (and thus also bℓ+ ε <R r(vj)) by the induction hypothesis, it follows that bℓ+

ε <Rℓ
r(vj) <Rℓ

l(vj−1). Therefore bℓ + ε <Rℓ
r(vj−1), since l(vj−1) ≤Rℓ

r(vj−1). Furthermore,
since bℓ + ε <Rℓ

l(vj−1), and since Pvj−1
intersects the line segment ℓ in Rℓ, it follows that

R(vj−1) <Rℓ
aℓ−ε. Therefore L(vj−1) <Rℓ

aℓ−ε, since L(vj−1) ≤Rℓ
R(vj−1). That is, bℓ+ε <Rℓ

r(vj−1) and L(vj−1) <Rℓ
aℓ−ε. Recall that also bℓ+ε <Rℓ

l(vj−1). Thus bu <R bℓ+ε <R l(vj−1),
since bu <R bℓ (by definition of the line segment ℓ), and since the endpoints of Pvj−1

remain the
same in both R and Rℓ. Suppose now that vj−1 /∈ V0(u). Then, since vj−1 ∈ N(u) ∪ V0(u), it
follows that vj−1 ∈ N(u), i.e. in particular Pvj−1

intersects Pu in R. Thus, since bu =R r(u) <R

l(vj−1), it follows that L(vj−1) <R au =R L(u). Therefore R(vj) <R L(vj−1) <R au, since we
assumed that Pvj ≪R Pvj−1

. Then, since R(vj) <R au and bu <R bℓ + ε <R r(vj), it follows
that Pvj intersects Pu in R and φvj > φu. Thus vj ∈ N(u), since vj is bounded in R, which
is a contradiction to the induction hypothesis that vj ∈ V0(u). Therefore, vj−1 ∈ V0(u). This
completes the induction step, and thus vj ∈ V0(u), bℓ − ε <Rℓ

r(vj), and L(vj) <Rℓ
aℓ − ε, for

every j ∈ {0, 1, . . . , i}.
Consider now the vertex v0 ∈ H0 = N . Then Pv0 intersects Pu in R, since v0 ∈ N(X1)∩N(x2)

by Lemma 19, and since Px ≪R Pu ≪R Px2
for every x ∈ X1. Recall that x0 = vi ∈ Hi, for

some i ≥ 1, and that (v0, v1, . . . , vi) is an Hi-chain of vi. Thus, in particular, v1 exists, since
i ≥ 1. Furthermore, L(v1) <Rℓ

aℓ − ε by the previous paragraph. Thus also L(v1) <R aℓ − ε,
since the endpoints of Pv1 remain the same in both R and Rℓ. Therefore, since Pv0 ≪R Pv1 by
Lemma 25, it follows that R(v0) <R L(v1) <R aℓ−ε. On the other hand, bℓ−ε <Rℓ

r(v0) by the
previous paragraph, and thus also bℓ−ε <R r(v0). That is, R(v0) <R aℓ−ε and bℓ−ε <R r(v0),
and thus in particular φv0 > φℓ in R. Therefore φv0 > φℓ ≥ φu in R, since φℓ ≥ φu in R by the
definition of the line segment ℓ. Thus, since Pv0 intersects Pu in R, it follows that v0 ∈ N(u).
This is a contradiction, since v0 ∈ V0(u) by the previous paragraph.

This completes Case 2b, and thus also due to Cases 1 and 2a, it follows that R′
ℓ has no

new adjacency zv that is not an adjacency in Rℓ, for any z ∈ N1, i.e. R
′
ℓ \ {u} is a projection

representation of G \ {u}. This completes the proof of the lemma. ⊓⊔

Lemma 41. R′′
ℓ \ {u} is a projection representation of G \ {u}.

Proof. Denote by z0 the vertex of N2, such that r0 = r(z0). Since during Transformation 5 we
move the right line of some parallelograms to the left, i.e. we decrease some parallelograms,
no new adjacencies are introduced in R′′

ℓ in comparison to R′
ℓ. Suppose that vx ∈ E and

that the adjacency vx has been removed from R′
ℓ in R′′

ℓ , for some v ∈ V0(u) ∩ VB, such that
r(v) >R′

ℓ
r0 = r(z0). Therefore, since we perform parallel movements of lines in R′

ℓ, i.e. since
every slope φy in R′′

ℓ equals the value of φy in R′
ℓ for every vertex y of G, it follows that

Pv ≪R′′
ℓ

Px and that Pv intersects Px in R′
ℓ. Note that l(v) ≤R′

ℓ
ℓ0, since v ∈ V0(u) and

ℓ0 = maxR′
ℓ
{l(x) | x ∈ V0(u)}.
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We first assume that x /∈ N(u). Since r(v) comes in R′′
ℓ immediately before r0, and since

Pv ≪R′′
ℓ
Px, it follows that r(v) <R′′

ℓ
r0 <R′′

ℓ
l(x), and thus also r0 <R′

ℓ
l(x). Furthermore, since

vx ∈ E by assumption, and since v ∈ V0(u), it follows that x ∈ V0(u). Therefore l(x) ≤R′
ℓ
ℓ0,

since ℓ0 = maxR′
ℓ
{l(x) | x ∈ V0(u)}, and thus r0 = r(z0) <R′

ℓ
l(x) ≤R′

ℓ
ℓ0, i.e. r(z0) <R′

ℓ
ℓ0. This

is a contradiction, since z0 ∈ N2. Therefore, no adjacency vx has been removed from R′
ℓ in R′′

ℓ

in the case where x /∈ N(u).

Assume now that x ∈ N(u), and thus the endpoints of Px in R′
ℓ remain the same also in R′′

ℓ .

Case 1. v ∈ V (G0). Then, since the endpoints of Pv do not move during Transformation 4,
it follows by Remark 2 that bℓ − ε <R′

ℓ
l(v) ≤R′

ℓ
r(v) <R′

ℓ
bℓ + ε and aℓ − ε <R′

ℓ
L(v) ≤R′

ℓ

R(v) <R′
ℓ
aℓ + ε in R′

ℓ. Thus, in particular also bℓ − ε <R′′
ℓ

l(v) and aℓ − ε <R′′
ℓ

L(v) in
R′′

ℓ , since the left lines of all parallelograms do not move during Transformation 5. Therefore
bℓ − ε <R′′

ℓ
l(v) <R′′

ℓ
l(x) and aℓ − ε <R′′

ℓ
L(v) <R′′

ℓ
L(x), since Pv ≪R′′

ℓ
Px. Furthermore, also

bℓ − ε <Rℓ
l(x) and aℓ − ε <Rℓ

L(x) in Rℓ, since left lines of all parallelograms do not move
during Transformations 4 and 5. We distinguish in the following the cases where x /∈ V (G0)
and x ∈ V (G0).

Case 1a. x /∈ V (G0). Then, either l(x) <Rℓ
bℓ − ε or l(x) >Rℓ

bℓ + ε (resp. either L(x) <Rℓ

aℓ − ε or L(x) >Rℓ
aℓ + ε) by Remark 2. Thus, since bℓ − ε <Rℓ

l(x) and aℓ − ε <Rℓ
L(x)

by the previous paragraph, it follows that l(x) >Rℓ
bℓ + ε and L(x) >Rℓ

aℓ + ε. Therefore
r(v) <Rℓ

bℓ+ ε <Rℓ
l(x) and R(v) <Rℓ

aℓ+ ε <Rℓ
L(x) by Remark 2, i.e. Pv ≪Rℓ

Px in Rℓ, and
thus vx /∈ E. This is a contradiction, since we assumed that vx ∈ E.

Case 1b. x ∈ V (G0). Recall by Lemma 38 that r(u) <R′
ℓ
r0 = r(z0), and thus r(u) <R′

ℓ

r0 <R′
ℓ
r(v). Therefore, since r(v) comes immediately before r0 in R′′

ℓ during Transformation 5,
it follows that r(u) <R′′

ℓ
r(v) <R′′

ℓ
r0. Therefore, r(u) <R′′

ℓ
r(v) <R′′

ℓ
l(x), since Pv ≪R′′

ℓ
Px.

Suppose that Px intersects Pu in R′′
ℓ . Then, since r(u) <R′′

ℓ
l(x), it follows that L(x) <R′′

ℓ
R(u);

thus R(v) <R′′
ℓ
L(x) <R′′

ℓ
R(u), since Pv ≪R′′

ℓ
Px. That is, r(u) <R′′

ℓ
r(v) and R(v) <R′′

ℓ
R(u),

i.e. Pv intersects Pu in R′′
ℓ and φv > φu in R′′

ℓ . Therefore, Pv intersects Pu and φv > φu also in
R′

ℓ and in Rℓ. Thus, since v ∈ V (G0), and since R0 is a sub-representation of Rℓ, Pv intersects
Pu in R0 and φv > φu in R0. Therefore, since v is bounded (recall that v ∈ V0(u) ∩ VB by
our initial assumption on v), it follows that v ∈ N(u), which is a contradiction. Therefore, Px

does not intersect Pu in R′′
ℓ , and thus Pu ≪R′′

ℓ
Px, since r(u) <R′′

ℓ
l(x). Thus also Pu ≪R′

ℓ
Px

and Pu ≪Rℓ
Px, since the left line of Px does not move by Transformations 4 and 5. Therefore

Pu ≪R0
Px, since x ∈ V (G0) and R0 is a sub-representation of Rℓ. Thus x /∈ N(u), which is a

contradiction to our assumption on x.

Case 2. v /∈ V (G0).

Case 2a. x /∈ V (G0). We will now prove that bu <R′′
ℓ
r(v) <R′′

ℓ
l(x). Recall that z0 ∈ N(u).

Thus, if z0 ∈ V (G0), then r(u) <R0
r(z0) by Lemma 1, and thus also r(u) <Rℓ

r(z0), since R0 is
a sub-representation of Rℓ. Furthermore bu <R′

ℓ
r(u) <R′

ℓ
r(z0), since the right endpoint r(z0) of

Pz0 does not decrease by Transformation 4. On the other hand, let z0 /∈ V (G0). Then bu <R r(z0)
by Lemma 1, and thus also bu <Rℓ

r(z0), since z0 /∈ V (G0) (i.e. the endpoints of Pz0 are the same
in both R and Rℓ). Furthermore bu <R′

ℓ
r(z0), since r(z0) does not decrease by Transformation 4.

That is, bu <R′
ℓ
r(z0) = r0 <R′

ℓ
r(v) in both cases where z0 ∈ V (G0) and z0 /∈ V (G0). Therefore,

since r(v) comes immediately before r0 = r(z0) in R′′
ℓ by Transformation 5, it follows that

bu <R′′
ℓ
r(v) <R′′

ℓ
r0. Thus, bu <R′′

ℓ
r(v) <R′′

ℓ
l(x), since Pv ≪R′′

ℓ
Px.

Furthermore, since the left lines of the parallelograms do not move by Transformations 4
and 5, it follows that also bu <Rℓ

l(x). Therefore r(u) =R bu <R l(x), since x /∈ V (G0) (i.e. the
endpoints of Px are the same in both R and Rℓ). Thus, since we assumed that x ∈ N(u), it
follows that L(x) <R au =R L(u). Similarly, since the left lines of the parallelograms do not
move by Transformations 4 and 5, and since x /∈ V (G0), it follows that also L(x) <Rℓ

au and
L(x) <R′′

ℓ
au. Thus, R(v) <R′′

ℓ
L(x) <R′′

ℓ
au, since Pv ≪R′′

ℓ
Px. That is, bu <R′′

ℓ
r(v) (by the
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previous paragraph) and L(v) ≤R′′
ℓ
R(v) <R′′

ℓ
au. Therefore, since the slope φv of Pv (where

v /∈ V (G0)) remains the same in the representations R, Rℓ, R
′
ℓ, and R′′

ℓ , and since the lower
right endpoint r(v) in R is greater than or equal to the corresponding value r(v) in R′′

ℓ , it follows
that Pv intersects Pu in R and φv > φu in R. Thus v ∈ N(u), since v is bounded (recall that
v ∈ V0(u) ∩ VB), which is a contradiction to the assumption that v ∈ V0(u).

Case 2b. x ∈ V (G0). Recall that v /∈ V (G0) by the assumption of Case 2. Therefore, since
vx /∈ E, it follows by Lemma 35 that v ∈ N(X1)∪

⋃∞
i=1 Hi

⋃∞
i=0 H

′
i. Recall that v ∈ V0(u)∩VB,

and thus in particular v /∈ N(u). Therefore v /∈
⋃∞

i=0 H
′
i by Lemma 32, and thus v ∈ N(X1) ∪⋃∞

i=1Hi. We distinguish in the following the cases where v ∈ N(X1) and v ∈
⋃∞

i=1 Hi.

Case 2b-i. v ∈ N = N(X1). Then, Pv intersects Pu in R, since v ∈ N(X1) ∩ N(x2) by
Lemma 19, and since Px ≪R Pu ≪R Px2

for every x ∈ X1. Recall that v is bounded and
v /∈ N(u), since v ∈ V0(u) ∩ VB by our initial assumption on v, and thus φv < φu ≤ φℓ in R.
Therefore, φv < φℓ also in Rℓ, since v /∈ V (G0) (i.e. the endpoints of Pv remain the same in
both R and Rℓ). On the other hand, since z0 ∈ N(u), it follows that φz0 > φu in R, and thus
φv < φu < φz0 in R. Furthermore, recall by Remark 2 that bℓ−ε <Rℓ

l(x) <Rℓ
bℓ+ε in Rℓ, since

x ∈ V (G0) by the assumption of Case 2b. Therefore, since the left lines of the parallelograms
do not move by Transformations 4 and 5, it follows that also bℓ − ε <R′′

ℓ
l(x) <R′′

ℓ
bℓ + ε in R′′

ℓ .
Similarly, it follows by to Remark 2 that aℓ − ε <R′′

ℓ
L(x) <R′′

ℓ
aℓ + ε in R′′

ℓ .

Let first z0 /∈ V (G0). Then, either r(z0) >R′
ℓ
bℓ + ε or r(z0) <R′

ℓ
bℓ − ε by Remark 3.

Suppose that r(z0) >R′
ℓ
bℓ + ε. Then, since r(v) comes by Transformation 5 immediately before

r0 = r(z0) in R′′
ℓ , it follows that bℓ+ ε <R′′

ℓ
r(v) <R′′

ℓ
r(z0). Thus bℓ+ ε <R′′

ℓ
r(v) <R′′

ℓ
l(x), since

Pv ≪R′′
ℓ
Px. This is a contradiction, since bℓ− ε <R′′

ℓ
l(x) <R′′

ℓ
bℓ+ ε. Therefore r(z0) <R′

ℓ
bℓ− ε.

Recall now by Corollary 4 that Pz0 intersects Pu in Rℓ, since z0 ∈ N(u). Therefore, since Pz0

does not decrease during Transformation 4, Pz0 intersects Pu also in R′
ℓ, i.e. Pz0 intersects the

line segment ℓ in R′
ℓ. Furthermore, since z0 /∈ V (G0), either R(z0) >R′

ℓ
aℓ+ε or R(z0) <R′

ℓ
aℓ−ε

by Remark 3. Therefore, since r(z0) <R′
ℓ
bℓ − ε and Pz0 intersects the line segment ℓ in R′

ℓ, it
follows that R(z0) >R′

ℓ
aℓ + ε; thus also R(z0) >R′′

ℓ
aℓ + ε, since the endpoints of Pz0 do not

change by Transformation 5. Recall now that φv < φz0 in R. Therefore also φv < φz0 in R′′
ℓ ,

since v, z0 /∈ V (G0) (i.e. the slopes φz0 and φv remain the same in both R and R′′
ℓ ). Furthermore,

recall that r(v) comes by Transformation 5 immediately before r(z0) (i.e. sufficiently close to
r(z0)) in R′′

ℓ . Therefore, since aℓ + ε <R′′
ℓ
R(z0) and φv < φz0 in R′′

ℓ , it follows that aℓ + ε <R′′
ℓ

R(z0) <R′′
ℓ
R(v). Thus aℓ + ε <R′′

ℓ
R(v) <R′′

ℓ
L(x), since Pv ≪R′′

ℓ
Px. This is a contradiction,

since aℓ − ε <R′′
ℓ
L(x) <R′′

ℓ
aℓ + ε in R′′

ℓ .

Let now z0 ∈ V (G0). Then r(u) <R0
r(z0) by Lemma 1, since z0 ∈ N(u). Thus, also

r(u) <Rℓ
r(z0), since R0 is a sub-representation of Rℓ. Furthermore r(u) <R′′

ℓ
r(z0), since

the value r(z0) does not decrease by Transformations 4 and 5. Therefore, since r(v) comes by
Transformation 5 immediately before r(z0), it follows that r(u) <R′′

ℓ
r(v) <R′′

ℓ
r(z0). Similarly,

L(x) <R0
L(u) by Lemma 1, since x ∈ N(u), and thus also L(x) <Rℓ

L(u). Furthermore
L(x) <R′′

ℓ
L(u), since the left lines of the parallelograms do not move by Transformations 4

and 5. Therefore R(v) <R′′
ℓ
L(x) <R′′

ℓ
L(u), since Pv ≪R′′

ℓ
Px. That is, r(u) <R′′

ℓ
r(v) and

R(v) <R′′
ℓ
L(u) = R(u), and thus φv > φu in R′′

ℓ . Therefore, φv > φu also in Rℓ, since all the
slopes are the same in both Rℓ and R′′

ℓ . However, recall that φv < φℓ in Rℓ (as we proved in
the beginning of Case 2b-i), and thus φv < φu in Rℓ by Remark 1, since u ∈ V (G0). This is a
contradiction, since φv > φu in Rℓ.

Case 2b-ii. v ∈
⋃∞

i=1 Hi. Let v = vi ∈ Hi for some i ≥ 1 and let (v0, v1, . . . , vi) be an Hi-chain
of vi. Recall that Pv ≪R′′

ℓ
Px and that Pv intersects Px in R′

ℓ by our initial assumption on v and
on x. Assume w.l.o.g. that i ≥ 1 is the smallest index, such that Pv = Pvi does not intersect Px

in R′′
ℓ , i.e. in particular Pvi−1

intersects Px in R′′
ℓ . Recall that both vi and vi−1 are bounded by

Lemma 27, and thus Pvi does not intersect Pvi−1
inR′

ℓ, i.e. either Pvi−1
≪R′

ℓ
Pvi or Pvi ≪R′

ℓ
Pvi−1

.
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Let first Pvi−1
≪R′

ℓ
Pvi . Recall that the left line of Pvi does not move by Transformation 5

and that the right line of Pvi−1
is possibly moved to the left by Transformation 5. Thus, also

Pvi−1
≪R′′

ℓ
Pvi in R′′

ℓ . Furthermore, since Pvi = Pv ≪R′′
ℓ
Px by our assumption on v, it follows

that Pvi−1
≪R′

ℓ
Px. This is a contradiction, since Pvi−1

intersects Px in R′′
ℓ .

Let now Pvi ≪R′
ℓ
Pvi−1

, and thus in particular l(vi) <R′
ℓ
l(vi−1). Thus also l(vi) <Rℓ

l(vi−1),
since the left lines of Pvi and Pvi−1

do not move by Transformation 4. Furthermore l(vi) <R

l(vi−1), since vi, vi−1 /∈ V (G0) (i.e. Pvi and Pvi−1
remain the same in both R and Rℓ). Recall

now that vi and vi−1 are bounded by Lemma 27, and thus Pvi does not intersect Pvi−1
in R,

i.e. either Pvi−1
≪R Pvi or Pvi ≪R Pvi−1

. Therefore, since l(vi) <R l(vi−1), it follows that
Pvi ≪R Pvi−1

.

We will now prove that bu <R r(vi) <R l(vi−1). Recall that z0 ∈ N(u). Thus, if z0 ∈ V (G0),
then r(u) <R0

r(z0) by Lemma 1, and thus also r(u) <Rℓ
r(z0), since R0 is a sub-representation

of Rℓ. Furthermore bu <R′
ℓ
r(u) <R′

ℓ
r(z0), since the right endpoint r(z0) of Pz0 does not decrease

by Transformation 4. On the other hand, let z0 /∈ V (G0). Then bu <R r(z0) by Lemma 1, and
thus also bu <Rℓ

r(z0), since z0 /∈ V (G0) (i.e. the endpoints of Pz0 are the same in both R
and Rℓ). Furthermore bu <R′

ℓ
r(z0), since r(z0) does not decrease by Transformation 4. That

is, in both cases where z0 ∈ V (G0) and z0 /∈ V (G0), it follows that bu <R′
ℓ
r(z0) = r0 <R′

ℓ
r(v)

(since r0 <R′
ℓ
r(v) by our initial assumption on v), and thus bu <R′

ℓ
r(v) = r(vi). Furthermore,

bu <R′
ℓ
r(vi) <R′

ℓ
l(vi−1), since we assumed that Pvi ≪R′

ℓ
Pvi−1

. Recall now that the value
r(vi) remains the same in both Rℓ and R′

ℓ, since vi /∈ N(u) and by Transformation 4 only some
endpoints of vertices of N(u) are moved. Furthermore, the value l(vi−1) remains the same in both
Rℓ and R′

ℓ, since the left lines of the parallelograms do not move by Transformation 4. Therefore
bu <Rℓ

r(vi) <Rℓ
l(vi−1), since also bu <R′

ℓ
r(vi) <R′

ℓ
l(vi−1). Moreover, since vi, vi−1 /∈ V (G0)

(i.e. the endpoints of Pvi and Pvi−1
remain the same in both R and Rℓ), it follows that bu <R

r(vi) <R l(vi−1).

Suppose that vi−1 ∈ N(u). Then L(vi−1) <R L(u) = au by Lemma 1, and thus R(vi) <R

L(vi−1) <R au, since Pvi ≪R Pvi−1
. That is, R(vi) <R au and bu <R r(vi) (by the previous

paragraph). Therefore, Pvi intersects Pu in R and φvi > φu in R. Thus, since vi is bounded, it
follows that vi ∈ N(u). This is a contradiction to the assumption that vi = v ∈ V0(u). Therefore
vi−1 /∈ N(u). Thus, since vi−1 ∈ N(x2) (by definition of H) and x2 ∈ V0(u), it follows that
vi−1 ∈ V0(u). Therefore, in particular l(vi−1) ≤R′

ℓ
ℓ0, since ℓ0 = maxR′

ℓ
{l(x) | x ∈ V0(u)}.

Recall now that Pvi ≪R′
ℓ
Pvi−1

(as we assumed) and that r0 = r(z0) <R′
ℓ
r(v) = r(vi) (by

our initial assumption on v). Therefore r(z0) <R′
ℓ
r(vi) <R′

ℓ
l(vi−1) ≤R′

ℓ
ℓ0, i.e. r(z0) <R′

ℓ
ℓ0.

This is a contradiction, since z0 ∈ N2.

Summarizing Cases 1 and 2, it follows that no adjacency vx has been removed from R′
ℓ in

R′′
ℓ in the case where x ∈ N(u). This completes the proof of the lemma. ⊓⊔

Lemma 42. R′′′
ℓ is a projection representation of G.

Proof. The proof is done in two parts. In Part 1 we prove that u is adjacent in R′′′
ℓ to all vertices

of N(u), while in Part 2 we prove that u is not adjacent in R′′′
ℓ to any vertex of V \N [u].

Part 1. In this part we prove that u is adjacent in R′′′
ℓ to all vertices of N(u). Denote by âu

and b̂u the coordinates of the upper and lower endpoint of Pu in the projection representation Rℓ

on L1 and on L2, respectively. Then, since the endpoints of Pu do not move by Transformations 4
and 5, âu and b̂u remain the endpoints of Pu also in the representations R′

ℓ and R′′
ℓ . Let z ∈ N(u)

be arbitrary. Suppose that z /∈ V (G0). Then, the left line of Pz remains the same in the
representations R, Rℓ, R

′
ℓ, and R′′

ℓ . Therefore, since L(z) <R au =R L(u) by Lemma 1, it
follows that also L(z) <R′′

ℓ
au <R′′

ℓ
L(u) = âu. Suppose that z ∈ V (G0). Then, L(z) <R0

L(u)
by Lemma 1, since R0 is a projection representation of G0, and thus also L(z) <Rℓ

L(u) = âu,
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since R0 is a sub-representation of Rℓ. Furthermore L(z) <R′′
ℓ
L(u) = âu, since the left line

of Pz remains the same in the representations Rℓ, R
′
ℓ, and R′′

ℓ . Summarizing, L(z) <R′′
ℓ
âu for

every vertex z ∈ N(u). Therefore, since the endpoint L(z) does not move by Transformation 6,
it follows that also L(z) <R′′′

ℓ
âu for every vertex z ∈ N(u).

Note now that âu <R′′
ℓ
L0, since L0 = minR′′

ℓ
{L(x) | x ∈ VB \ N(u) \ V0(u), Pu ≪R′′

ℓ
Px}.

Furthermore, recall by Corollary 5 that for all vertices z ∈ N1 \ N2, for which R(z) <R′′
ℓ
L0,

the values R(z) lie immediately before L0 in R′′
ℓ . Therefore, since âu <R′′

ℓ
L0, it follows in

particular that âu <R′′
ℓ
R(z) for every z ∈ N1 \ N2, and thus L(z) <R′′

ℓ
âu <R′′

ℓ
R(z) for every

z ∈ N1 \N2 ⊆ N(u) by the previous paragraph. Therefore, since âu <R′′
ℓ
L0, and since the upper

endpoint R(u) of the line Pu lies in R′′
ℓ immediately before minR′′

ℓ
{L0, R(z) | z ∈ N1\N2}, cf. the

statement of Transformation 6, it follows that also L(z) <R′′′
ℓ
âu <R′′′

ℓ
R(u) <R′′′

ℓ
R(z) for every

z ∈ N1 \N2. That is, L(z) <R′′′
ℓ

R(u) <R′′′
ℓ

R(z) for every z ∈ N1 \N2, and thus Pu intersects
Pz in R′′′

ℓ for every z ∈ N1 \ N2. Therefore, since all vertices of {u} ∪ N1 \ N2 are bounded in
R′′′

ℓ , u is adjacent in R′′′
ℓ to all vertices of N1 \N2.

Consider now an arbitrary vertex z ∈ N2. Recall that r0 = minR′
ℓ
{r(z) | z ∈ N2}, i.e. r0 ≤R′

ℓ

r(z). Thus, since the endpoint r(z) does not move by Transformation 5, it follows that also
r0 ≤R′′

ℓ
r(z). Furthermore, by Transformation 5, r(v) <R′′

ℓ
r0 ≤R′′

ℓ
r(z) for every v ∈ V0(u)∩VB .

This holds clearly also in R′′′
ℓ , i.e. r(v) <R′′′

ℓ
r(z) for every v ∈ V0(u) ∩ VB . Since the lower

endpoint of the line Pu comes immediately after maxR′′′
ℓ
{r(v) | V0(u) ∩ VB}, it follows that

r(v) <R′′′
ℓ

l(u) = r(u) <R′′′
ℓ

r(z) for every v ∈ V0(u) ∩ VB and every z ∈ N2. Thus, since also
L(z) <R′′′

ℓ
âu <R′′′

ℓ
R(u) for every z ∈ N(u), it follows that Pu intersects Pz in R′′′

ℓ for every
z ∈ N2. Therefore, since all vertices of {u} ∪N2 are bounded in R′′′

ℓ , u is adjacent in R′′′
ℓ to all

vertices of N2. Thus, since N2 ∪ (N1 \N2) = N(u), u is adjacent in R′′′
ℓ to all vertices of N(u).

Part 2. In this part we prove that u is not adjacent in R′′′
ℓ to any vertex of V \ N [u].

To this end, recall first by Lemma 4 that u∗ is a bounded covering vertex of u in G (and
thus u∗ ∈ V0(u) ∩ VB), such that Pu intersects Pu∗ in the initial projection representation R
and φu∗ < φu in R. Therefore, l(u∗) <R bu =R r(u) by Lemma 2. Furthermore, u∗ /∈ V (G0)
by Observation 4. Therefore, the endpoint l(u∗) remains the same in the representations R, Rℓ,
R′

ℓ, and R′′
ℓ , and thus l(u∗) <R′′

ℓ
bu, since also l(u∗) <R bu. Therefore, since bu <R′′

ℓ
b̂u =R′′

ℓ
r(u),

it follows that also l(u∗) <R′′
ℓ
b̂u =R′′

ℓ
r(u). Recall now that L0 = minR′′

ℓ
{L(x) | x ∈ VB \N(u) \

V0(u), Pu ≪R′′
ℓ
Px}. Denote by y0 the vertex of VB \N(u) \ V0(u), such that L0 = L(y0) in R′′

ℓ ,
and thus Pu ≪R′′

ℓ
Py0 . Therefore, since l(u

∗) <R′′
ℓ
r(u), it follows that l(u∗) <R′′

ℓ
r(u) <R′′

ℓ
l(y0).

Now, since u∗ ∈ V0(u) and y0 /∈ N(u)∪V0(u), it follows that u
∗y0 /∈ E. Thus, Pu∗ ≪R′′

ℓ
Py0 , since

both u∗ and y0 are bounded vertices and l(u∗) <R′′
ℓ
l(y0). Moreover, since by Transformation 6

only the line Pu is moved, it follows that also Pu∗ ≪R′′′
ℓ
Py0 .

Recall that u∗ /∈ V (G0) and that u∗ is adjacent to every vertex of V (G0) \ {u} by Ob-
servation 4. Therefore u∗ ∈ N(x2), since x2 ∈ V (G0) \ {u}, and thus Pu∗ intersects the line
segment ℓ in Rℓ; in particular, Pu∗ intersects Pu in Rℓ. Moreover, since by Transformation 4
the parallelogram Pu∗ is not modified, Pu∗ intersects Pu also in R′

ℓ. Denote by z0 the vertex
of N2, such that r0 = r(z0). We will now prove that r(u) <R′

ℓ
r0 = r(z0). Suppose first that

z0 /∈ V (G0). Then, in particular, either r(z0) <R′
ℓ
bℓ − ε <R′

ℓ
l(x2) or r(x2) <R′

ℓ
bℓ + ε <R′

ℓ
r(z0)

by Remarks 2 and 3. Recall that ℓ0 = maxR′
ℓ
{l(x) | x ∈ V0(u)} and that z0 ∈ N2, and thus

l(x2) ≤R′
ℓ
ℓ0 <R′

ℓ
r(z0). Therefore r(x2) <R′

ℓ
bℓ + ε <R′

ℓ
r(z0). Thus, since u ∈ V (G0), also

r(u) <R′
ℓ
bℓ + ε <R′

ℓ
r(z0) in the case where z0 /∈ V (G0). Suppose now that z0 ∈ V (G0); then

r(u) <R0
r(z0) by Lemma 1. Thus, since R0 is a sub-representation of R′

ℓ, and since r(z0)
does not decrease by Transformation 4, it follows that r(u) <R′

ℓ
r(z0) = r0 in the case where

z0 ∈ V (G0). That is, r(u) <R′
ℓ
r0 = r(z0) in both cases, where z0 ∈ V (G0) and z0 /∈ V (G0).
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We will now prove that Pu∗ intersects Pu also in R′′
ℓ . This holds clearly in the case where

the right line of Pu∗ is not moved during Transformation 5, since Pu∗ intersects Pu in R′
ℓ by the

previous paragraph. Suppose now that the right line of Pu∗ is moved during Transformation 5.
Then, r(u) <R′

ℓ
r0 <R′

ℓ
r(u∗), while r(u∗) comes immediately before r0 in R′′

ℓ , i.e. r(u) <R′′
ℓ

r(u∗) <R′′
ℓ
r0, since r0 = r(z0) does not move during Transformation 5. Therefore, since the left

line of Pu∗ does not move during Transformation 5, and since Pu∗ intersects Pu in R′
ℓ, it follows

that Pu∗ intersects Pu also in R′′
ℓ .

Denote by v0 the vertex of V0(u) ∩ VB , such that r(v0) = maxR′′
ℓ
{r(v) | v ∈ V0(u) ∩ VB},

cf. the statement of Transformation 6. Since v0 ∈ V0(u) and y0 /∈ N(u) ∪ V0(u), it follows
that v0y0 /∈ E. Therefore, since both v0 and y0 are bounded vertices, either Py0 ≪R′′

ℓ
Pv0

or Pv0 ≪R′′
ℓ
Py0 . Suppose that Py0 ≪R′′

ℓ
Pv0 , and thus Pu∗ ≪R′′

ℓ
Py0 ≪R′′

ℓ
Pv0 . Then, since

u∗, v0 ∈ V0(u) and since V0(u) is connected, there exists at least one vertex v ∈ V0(u), such that
Pv intersects Py0 in R′′

ℓ . Similarly vy0 /∈ E, since y0 /∈ N(u) ∪ V0(u). Therefore, since y0 is a
bounded vertex, v must be an unbounded vertex with φv > φy0 in R′′

ℓ , and thus N(v) ⊆ N(y0)
by Lemma 3. Then,N(v) includes at least one vertex v′ ∈ V0(u), and thus v′ ∈ N(y0). Therefore,
y0 ∈ V0(u), which is a contradiction. Thus, Pv0 ≪R′′

ℓ
Py0 . Moreover, since by Transformation 6

only the line Pu is moved, it follows that also Pv0 ≪R′′′
ℓ
Py0 .

We will prove in the following that u is not adjacent in R′′′
ℓ to any vertex x /∈ N(u). For the

sake of contradiction, suppose that Px intersects Pu in R′′′
ℓ . We distinguish in the following the

cases regarding x.

Case 2a. x ∈ VB \ N(u) (i.e. x is bounded) and x ∈ V0(u). Then, r(x) ≤R′′
ℓ
r(v0) and

r(u∗) ≤R′′
ℓ

r(v0) by definition of v0, and thus also r(x) ≤R′′′
ℓ

r(v0) and r(u∗) ≤R′′′
ℓ

r(v0).
Therefore, by Transformation 6, r(x) ≤R′′′

ℓ
r(v0) <R′′′

ℓ
l(u), i.e. r(x) <R′′′

ℓ
l(u). Thus L(u) <R′′′

ℓ

R(x), since we assumed that Px intersects Pu in R′′′
ℓ . Furthermore, r(x) ≤R′′′

ℓ
r(v0) <R′′′

ℓ
l(y0),

i.e. r(x) <R′′′
ℓ
l(y0), since Pv0 ≪R′′′

ℓ
Py0 . Recall by Corollary 5 that for all vertices z ∈ N1\N2, for

which R(z) <R′′
ℓ
L0 = L(y0), the values R(z) lie immediately before L0 in R′′

ℓ , and thus also in
R′′′

ℓ . Thus, since L(u) <R′′′
ℓ
R(x), and since the upper point L(u) = R(u) lies immediately before

min{L0, R(z) | z ∈ N1 \N2} in R′′′
ℓ , it follows that L(u) <R′′′

ℓ
L0 = L(y0) <R′′′

ℓ
R(x). Therefore,

since also r(x) <R′′′
ℓ

l(y0), Px intersects Py0 in R′′′
ℓ , and thus also in R′′

ℓ . Thus xy0 ∈ E, since
both x and y0 are bounded, and therefore y0 ∈ V0(u), which is a contradiction. Therefore, Px

does not intersect Pu in R′′′
ℓ , for every x ∈ VB \N(u), such that x ∈ V0(u). In particular, since

u∗, v0 ∈ VB \N(u) and u∗, v0 ∈ V0(u), it follows that neither Pu∗ nor Pv0 intersects Pu in R′′′
ℓ .

Therefore, since r(u∗) ≤R′′′
ℓ

r(v0) <R′′′
ℓ

l(u) by Transformation 6, it follows that Pu∗ ≪R′′′
ℓ

Pu

and Pv0 ≪R′′′
ℓ
Pu.

Case 2b. x ∈ VB \N(u) (i.e. x is bounded) and x /∈ V0(u). Then u∗x /∈ E, since u∗ ∈ V0(u).
Furthermore, since both x and u∗ (resp. v0) are bounded vertices, either Px ≪R′′′

ℓ
Pu∗ or

Pu∗ ≪R′′′
ℓ

Px (resp. either Px ≪R′′′
ℓ

Pv0 or Pv0 ≪R′′′
ℓ

Px). If Px ≪R′′′
ℓ

Pu∗ (resp. Px ≪R′′′
ℓ

Pv0),
then Px ≪R′′′

ℓ
Pu∗ ≪R′′′

ℓ
Pu (resp. Px ≪R′′′

ℓ
Pv0 ≪R′′′

ℓ
Pu) by the previous paragraph. This is

a contradiction to the assumption that Px intersects Pu in R′′′
ℓ . Therefore Pu∗ ≪R′′′

ℓ
Px and

Pv0 ≪R′′′
ℓ

Px, and thus also Pu∗ ≪R′′
ℓ
Px and Pv0 ≪R′′

ℓ
Px. Thus, in particular r(v0) <R′′′

ℓ
l(x).

Furthermore, the lower endpoint l(u) = r(u) of Pu comes by Transformation 6 immediately
after r(v0) in R′′′

ℓ , and thus r(v0) <R′′′
ℓ
r(u) <R′′′

ℓ
l(x). Then, L(x) <R′′′

ℓ
R(u), since we assumed

that Px intersects Pu in R′′′
ℓ .

We distinguish now the cases according to the relative positions of Pu and Px in R′′
ℓ . If

Px ≪R′′
ℓ
Pu, then Pu∗ ≪R′′

ℓ
Px ≪R′′

ℓ
Pu by the previous paragraph, which is a contradiction,

since Pu∗ intersects Pu in R′′
ℓ , as we proved above. If Pu ≪R′′

ℓ
Px, then L0 ≤R′′

ℓ
L(x), since

x ∈ VB \ N(u) \ V0(u) and L0 = minR′′
ℓ
{L(x) | x ∈ VB \ N(u) \ V0(u), Pu ≪R′′

ℓ
Px}. Thus

R(u) <R′′′
ℓ

L0 ≤R′′′
ℓ

L(x) by Transformation 3, which is a contradiction, since L(x) <R′′′
ℓ

R(u)
by the previous paragraph. Suppose that Px intersects Pu in R′′

ℓ . Note that x /∈ V (G0), since

62



x /∈ N(u) ∪ V0(u) and V (G0) ⊆ N [u] ∪ V0(u) by Observation 3. Thus, since we assumed that
Px intersects Pu in R′′

ℓ , i.e. Px intersects the line segment ℓ in R′′
ℓ , it follows that Px intersects

also Px2
in R′′

ℓ . Therefore x ∈ N(x2), since both x and x2 are bounded, and thus x ∈ V0(u),
since also x2 ∈ V0(u). This is a contradiction, since x /∈ V0(u) by the assumption of Case 2b.
Therefore, Px does not intersect Pu in R′′′

ℓ , for every x ∈ VB \N(u), such that x /∈ V0(u).

Case 2c. x ∈ VU (i.e. x is unbounded), such that φx < φu in R′′′
ℓ . Then, since both Px and Pu

are lines in R′′′
ℓ , it follows that l(x) <R′′′

ℓ
l(u) and R(x) >R′′′

ℓ
R(u). Thus, by Transformation 6,

l(x) <R′′′
ℓ

r(v0) <R′′′
ℓ

l(u) and R(u) <R′′′
ℓ

L0 = L(y0) <R′′′
ℓ

R(x). Since Pv0 ≪R′′′
ℓ

Py0 (as we
proved above), it follows that Px intersects both Pv0 and Py0 in R′′′

ℓ (and thus also in R′′
ℓ ), and

that φx < φv0 and φx < φy0 in both R′′
ℓ and R′′′

ℓ . Therefore, since both v0 and y0 are bounded,
it follows that x ∈ N(v0) and x ∈ N(y0). Thus x, y0 ∈ V0(u), since v0 ∈ V0(u). This is a
contradiction, since y0 /∈ V0(u) by definition of y0. Therefore, Px does not intersect Pu in R′′′

ℓ ,
for every x ∈ VU , for which φx < φu in R′′′

ℓ .

Summarizing, due to Part 1 and due to Cases 2a, 2b, and 2c of Part 2, it follows that Pu

intersects in R′′′
ℓ only the parallelograms Pz, for every z ∈ N(u), and possibly some trivial

parallelograms (lines) Px, where x ∈ VU and φx > φu in R′′′
ℓ . However, since φx > φu in R′′′

ℓ

for all these vertices x, it follows that u is not adjacent to these vertices in R′′′
ℓ . Thus R′′′

ℓ is
a projection representation of G, since R′′

ℓ \ {u} is a projection representation of G \ {u} by
Lemma 41. This completes the proof of the lemma. ⊓⊔

The next lemma follows now easily by Lemma 42 and by the fact that V0(u) induces a
connected subgraph of G.

Lemma 43. The (bounded) vertex u has the right border property in R′′′
ℓ , i.e. there exists no

pair of vertices z ∈ N(u) and v ∈ V0(u), such that Pz ≪R′′′
ℓ
Pv.

Proof. Recall first that u∗0 ∈ V0(u) ∩ VB by Lemma 4, i.e. V0(u) ∩ VB 6= ∅. Furthermore, re-
call that by Transformation 6 the lower endpoint l(u) = r(u) of Pu comes immediately after
max{r(v) | v ∈ V0(u) ∩ VB} in R′′′

ℓ , and thus r(v) <R′′′
ℓ

r(u) for every v ∈ V0(u) ∩ VB . Since
u is a bounded vertex in R′′′

ℓ , and since R′′′
ℓ is a projection representation of G by Lemma 42,

Pu does not intersect Pv in R′′′
ℓ , for any v ∈ V0(u) ∩ VB. Therefore, for every v ∈ V0(u) ∩ VB,

either Pu ≪R′′′
ℓ
Pv or Pv ≪R′′′

ℓ
Pu. If Pu ≪R′′′

ℓ
Pv for a vertex v ∈ V0(u)∩VB , then in particular

r(u) <R′′′
ℓ
r(v), which is a contradiction. Therefore, Pv ≪R′′′

ℓ
Pu for every v ∈ V0(u) ∩ VB .

Suppose now for the sake of contradiction that Pz ≪R′′′
ℓ

Pv for two vertices z ∈ N(u) and
v ∈ V0(u). Suppose first that v is a bounded vertex, i.e. v ∈ V0(u)∩VB. Then, since Pv ≪R′′′

ℓ
Pu

by the previous paragraph, it follows that Pz ≪R′′′
ℓ
Pv ≪R′′′

ℓ
Pu, and thus z /∈ N(u), which is a

contradiction.

Suppose now that v is an unbounded vertex. Then, since V0(u) is connected and V0(u) ∩
VB 6= ∅, there exists at least one bounded vertex v′ ∈ V0(u) ∩ VB , such that v′ ∈ N(v). Then
Pv′ ≪R′′′

ℓ
Pu, as we proved above. We distinguish now the cases according to the relative

positions of Pv and Pu in R′′′
ℓ . If Pv ≪R′′′

ℓ
Pu, then Pz ≪R′′′

ℓ
Pv ≪R′′′

ℓ
Pu by the assumption on z

and v, and thus z /∈ N(u), which is a contradiction. If Pu ≪R′′′
ℓ
Pv , then Pv′ ≪R′′′

ℓ
Pu ≪R′′′

ℓ
Pv,

and thus v′ /∈ N(v), which is again a contradiction. Suppose that Pv intersects Pu in R′′′
ℓ .

Then, φv > φu in R′′′
ℓ , since u is bounded in R′′′

ℓ and v /∈ N(u). Therefore, in particular
r(u) <R′′′

ℓ
r(v). Furthermore, since v is unbounded and v′ ∈ N(u), it follows that r(v) <R′′′

ℓ
r(v′)

by Lemma 1, and thus r(u) <R′′′
ℓ

r(v) <R′′′
ℓ

r(v′), i.e. r(u) <R′′′
ℓ

r(v′). This is a contradiction,
since Pv′ ≪R′′′

ℓ
Pu for every v′ ∈ V0(u) ∩ VB, as we proved above. Summarizing, there exist

no vertices z ∈ N(u) and v ∈ V0(u), such that Pz ≪R′′′
ℓ

Pv. This completes the proof of the
lemma. ⊓⊔
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The correctness of Condition 4

Note now that the projection representation R′′′
ℓ of G (cf. Lemma 42) has k − 1 unbounded

vertices, since the input graph G has k unbounded vertices, and since u is bounded in R′′′
ℓ .

Therefore, the projection representation R∗ = R′′′
ℓ satisfies the conditions of Theorem 2. How-

ever, in order to complete the proof of Theorem 2, we have to prove the correctness of Condition 4
(cf. Lemma 45). To this end, we first prove Lemma 44.

Recall that for simplicity reasons, before applying Transformations 4, 5, and 6, we have
added to G an isolated bounded vertex t, and thus also t ∈ VB \ N(u) \ V0(u). This isolated
vertex t corresponds to a parallelogram Pt, such that Pv ≪R Pt and Pv ≪Rℓ

Pt for every other
vertex v of G; thus also Pv ≪R′

ℓ
Pt, Pv ≪R′′

ℓ
Pt, and Pv ≪R′′′

ℓ
Pt for every vertex v 6= t of G.

The next lemma follows now easily by Transformation 6 and Lemma 42.

Lemma 44. If VB \N(u) \ V0(u) = {t}, then there exists a projection representation R# of G
with the same unbounded vertices as in R, where u has the right border property in R#.

Proof. Suppose that VB \N(u) \V0(u) = {t}, i.e. the set VB \N(u) \V0(u) is empty in G before
the addition of the isolated bounded vertex t. Then, the values L0 and L0(z) for every z ∈ N(u)
are all equal to L(t). Therefore, since we can place the parallelogram Pt that corresponds to
t arbitrarily much to the right of every other parallelogram in the projection representation
Rℓ, these values can become arbitrarily big in Rℓ. Recall that N1 = {z ∈ N(u) | r(z) <Rℓ

ℓ0}
by definition. Then, during Transformation 4, r(z) comes immediately after ℓ0 on L2 for every
z ∈ N1 (i.e. R(z) does not come immediately before L0(z) on L1, since L0(z) = L(t) is arbitrarily
big). Therefore, ℓ0 <R′

ℓ
r(z) for every z ∈ N1, and thus ℓ0 <R′

ℓ
r(z) for every z ∈ N(u).

That is, N2 = N(u), since by definition N2 = {z ∈ N(u) | ℓ0 <R′
ℓ
r(z)}. Thus, in particular

N1 \N2 = N1 \N(u) = ∅, since N1 ⊆ N(u) by definition.
Consider now the projection representation R′′′

ℓ , which is obtained by applying Transfor-
mation 6 to R′′

ℓ . Recall that by Transformation 6 the upper endpoint L(u) = R(u) of the line
Pu comes immediately before min{L0, R(z) | z ∈ N1 \N2} = L0 in R′′′

ℓ (since N1 \N2 = ∅ by
the previous paragraph). Then, since the value L0 = L(t) has been chosen arbitrarily big, the
slope φu of Pu becomes arbitrarily small in R′′′

ℓ , i.e. in particular smaller than all other slopes
in R′′′

ℓ . Furthermore, since R′′′
ℓ is a projection representation of G by Lemma 42, it follows that

Pu intersects in R′′′
ℓ only the parallelograms Pz , for every z ∈ N(u), and possibly some trivial

parallelograms (lines) Px, where x is an unbounded vertex and φx > φu in R′′′
ℓ . Denote now by

R# the projection representation that is obtained from R′′′
ℓ if we make u again an unbounded

vertex. Then, since the slope φu is smaller than all other slopes in both R′′′
ℓ and R#, it follows in

particular that φu < φz in R# for every z ∈ N(u). Therefore, u remains adjacent to all vertices
z ∈ N(u) in the graph induced by R#, and thus R# is a projection representation of G, in
which u is an unbounded vertex.

Finally, recall by Lemma 43 that there exists no pair of vertices z ∈ N(u) and v ∈ V0(u),
such that Pz ≪R′′′

ℓ
Pv in R′′′

ℓ . Therefore, since the only difference between R′′′
ℓ and R# is that

u is made bounded in R#, there exists also in R# no pair of vertices z ∈ N(u) and v ∈ V0(u),
such that Pz ≪R# Pv in R#. That is, u has the right border property in R#. This completes
the proof of the lemma. ⊓⊔

Now we can prove the correctness of Condition 4.

Lemma 45. Condition 4 is true.

Proof. Let G = (V,E) be a connected graph in Tolerance ∩ Trapezoid and R be a pro-
jection representation of G with u as the only unbounded vertex. Let furthermore V0(u) 6= ∅
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be connected and V = N [u] ∪ V0(u). If u has the right (resp. the left) border property in R,
then R (resp. the reverse representation R̂ of R) satisfies Condition 4. Suppose now that u
has neither the left nor the right border property in R, and suppose w.l.o.g. that G has the
smallest number of vertices among the graphs that satisfy the above conditions. Then, since
V0(u) 6= ∅ is connected, the whole proof of Theorem 2 above applies to G. In particular, we
can construct similarly to the above the induced subgraphs G0 and G′

0 = G[V (G0) ∪ {u∗}] of
G. Then, V (G0) ⊆ N [u] ∪ V0(u) by Observation 3, and thus also V (G′

0) ⊆ N [u] ∪ V0(u), since
u∗ ∈ V0(u). Furthermore, u is the only unbounded vertex of G′

0.
Recall that G′

0 is a connected subgraph of G by Observation 4. Furthermore, G′
0 has strictly

smaller vertices than G, and thus Condition 4 applies to G′
0, i.e. we can construct the projection

representations Rℓ, R
′
ℓ, R

′′
ℓ , and R′′′

ℓ , as above. Moreover, since V = V (G) = N [u] ∪ V0(u) by
assumption, it follows that VB \N(u) \ V0(u) = {t} after adding an isolated bounded vertex t
to Rℓ. Thus, there exists by Lemma 44 a projection representation R∗∗ = R# of G with the
same unbounded vertices as in R (i.e. with u as the only unbounded vertex), such that u has
the right border property in R∗∗. This completes the proof of the lemma. ⊓⊔

Summarizing, since also the correctness of Condition 4 has been proved in Lemma 45, the
projection representation R∗ = R′′′

ℓ of G, cf. Lemma 42, has k − 1 unbounded vertices, since
the input graph G has k unbounded vertices, and since u is bounded in R′′′

ℓ . This completes the
proof of Theorem 2. ⊓⊔
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recent network simulators: A performance evaluation study

2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving

2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems

2008-19 Dirk Wilking: Empirical Studies for the Application of Agile Methods to

Embedded Systems

67



2009-02 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Quantitative Model Checking of Continuous-Time Markov Chains

Against Timed Automata Specifications

2009-03 Alexander Nyßen: Model-Based Construction of Embedded

Real-Time Software - A Methodology for Small Devices

2009-04 Daniel Klünder: Entwurf eingebetteter Software mit abstrakten Zus-

tandsmaschinen und Business Object Notation

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-

erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-

dependent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm

Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the

Correctness of the Upper Bound of a Maximum Independent Set Algo-

rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The

Longest Path Problem is Polynomial on Interval Graphs
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sis statischer Prozessmanagementsysteme

2010-05 Daniel Retkowitz: Softwareunterstützung für adaptive eHome-Systeme
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2011-08 Thomas Ströder, Fabian Emmes, Peter Schneider-Kamp, Jürgen Giesl,

Carsten Fuhs: A Linear Operational Semantics for Termination and

Complexity Analysis of ISO Prolog

2011-09 Markus Beckers, Johannes Lotz, Viktor Mosenkis, Uwe Naumann (Edi-

tors): Fifth SIAM Workshop on Combinatorial Scientific Computing

2011-10 Markus Beckers, Viktor Mosenkis, Michael Maier, Uwe Naumann: Ad-

joint Subgradient Calculation for McCormick Relaxations
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