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Martin R. Neuhäußer1,3 and Lijun Zhang2

1 Software Modeling and Verification Group, RWTH Aachen University, Germany
2 Dependable Systems and Software Group, Universität des Saarlands, Germany

3 Formal Methods and Tools Group, University of Twente, The Netherlands

Abstract. This paper solves the problem of computing the maximum and mini-
mum probability to reach a set of goal states within a given time bound for locally
uniform continuous-time Markov decision processes (CTMDPs). As this model al-
lows for nondeterministic choices between exponentially delayed transitions, we
define total time positional (TTP) schedulers which rely on the CTMDP’s cur-
rent state and the total elapsed time when taking a decision. In this paper, TTP
schedulers are proved to be sufficient to maximize timed reachability even w.r.t.
fully time- and history-dependent schedulers; further, they allow us to derive
a fixed point characterization of the optimal timed-reachability probability. The
main contribution of this paper is a discretization technique which, for an a priori
given error bound ε, induces a discrete-time MDP that approximates the optimal
timed reachability probability in the underlying CTMDP up to ε.

1 Introduction

Continuous-time Markov decision processes (CTMDPs) [3,14] are a stochastic
model which allows for nondeterministic choices between transitions whose de-
lay is governed by negative exponential distributions. Therefore, CTMDPs can
be seen as an extension of continuous-time Markov chains (CTMCs) [10,11] by
nondeterministic choices as well as an extension of Markov decision processes
(MDPs) [14] by exponentially distributed delays.

To obtain a unique stochastic process, we follow the MDP approach [14]
and use schedulers to resolve the CTMDP’s nondeterministic choices. Intuitively,
depending on the trajectory that led into the current state, a scheduler chooses
the next action to be performed in a randomised way. Accordingly, the stochastic
behaviour of a CTMDP is described by the upper and lower probability bounds
which are induced by a given (usually uncountable) class of schedulers.

For general CTMDPs, the sojourn time distribution of the current state de-
pends on the action that is chosen by the scheduler; this dependency requires
the scheduler to decide early, that is, when entering the current state. However,
in this paper we restrict to the subclass of locally uniform CTMDPs which share
the property that the state residence time distribution does not depend on the
scheduler’s choice. As shown in [13], local uniformity allows to delay the schedul-
ing decision until the current state is left; the resulting late schedulers, which are
well-defined only for locally uniform CTMDPs, perform at least as good as any
early scheduler and generally induce strictly better probability bounds [13].

We solve the timed reachability problem by computing the maximum and
minimum probability to reach a set of goal states G within a given time bound z
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(QUASIMODO).



under all late schedulers. More precisely, we prove that for timed reachability, it
suffices to consider total time positional deterministic schedulers (TTPD) which
base their decision only on the total amount of time that has passed and on
the current state. Exploiting this result, we characterize the maximum timed
reachability probability as the least fixed point of a higher-order operator which
involves integration over the time domain. With this characterization at hand,
we reduce the timed reachability problem for locally uniform CTMDPs to the
problem of computing step-bounded reachability probabilities in discrete-time
MDPs. More precisely, we approximate the behaviour of the CTMDP up to an
a priori specified accuracy ε by defining its discretized MDP such that its step-
bounded reachability probabilities which can be computed by standard methods
like value iteration [4], coincide (up to ε) with the timed-reachability probabilities
of the underlying CTMDP. The complexity of our approach lies in O(m ·(λz)2/ε)
where m denotes the size of the input model and λ is its maximal exit rate.

Besides the theoretical contribution, we believe that the results of this paper
have many practical applications: In fact, CTMDPs are the semantic basis for
many stochastic models like stochastic activity networks [15], generalized stochas-
tic Petri nets [6,12] and Markovian process algebras [9]. So far, their analysis is
restricted to those instances (called “well-specified” or “non-confused”) which
do not exhibit non-deterministic choices, that is, where the underlying stochas-
tic process is a CTMC. However, if nondeterminism is present in those models,
their semantics becomes more intricate and, in fact, is a locally uniform CTMDP.
So far, model checking of CTMDPs has received scant attention. Most of the ex-
isting analysis methods focus on optimizing criteria such as the expected total
reward [8] or the expected long-run average reward [7,8]. In [3], the authors pro-
vide an algorithm to compute timed-reachability probabilities in globally uniform
CTMDPs. However, its applicability is severely restricted, as global uniformity
— which requires the sojourn time in any state of the model to be identically
distributed — is hard to achieve. Further, the approach is based on time-abstract
schedulers, which are strictly less powerful than time-dependent ones [3]. There-
fore, our paper extends the results of [3] in two ways: We consider fully time-
and history-dependent schedulers and lift the restriction to globally uniform CT-
MDPs by allowing different states to have different sojourn time distributions.

Although the results of this paper refer to the maximum timed reachability
probability, all proofs can be adapted to the dual problem, namely determining
the minimum timed reachability probability.

2 Continuous-time Markov decision processes

We consider CTMDPs with a finite set of states S = {s0, s1, . . . } and a finite
set of actions Act = {α, β, . . . }; accordingly, we use Distr(S) and Distr(Act) to
denote the sets of probability distributions over S and Act , respectively.

Definition 1 (Continuous-time Markov decision process). A continuous-
time Markov decision process (CTMDP) is a tuple C = (S,Act ,R, ν) where S
and Act are finite, nonempty sets of states and actions, R : S ×Act ×S → R≥0

is a three-dimensional rate matrix and ν ∈ Distr(S) is an initial distribution.

Intuitively, a CTMDP behaves as follows: If R(s, α, s′) = λ and λ > 0, an α-
transition leads from state s to state s′. Here, λ is the rate of an exponential
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distribution which governs the transition’s delay. If action α is chosen, the tran-
sition executes in time interval [a, b] with probability ηλ

(
[a, b]

)
=
∫ b

a
λe−λt dt.

If multiple α-transitions emanate a state s, a race condition occurs: The α-
transition whose delay expires first executes and thereby determines the sojourn
time of state s under action α. As the minimum of independent exponentials is
again exponentially distributed with the sum of their rates, the sojourn-time of
state s under action α is distributed with exit rate E(s, α) =

∑

s′∈S R(s, α, s′).

An action α is enabled in state s iff E(s, α) > 0; accordingly, the set Act(s) =
{α ∈ Act | E(s, α) > 0} is the set of enabled actions in state s and determines
the available nondeterministic choices in state s. A CTMDP is well-formed iff
Act(s) 6= ∅ for all s ∈ S. As this is easily achieved by adding self-loops, we restrict
to well-formed CTMDPs. A well-formed CTMDP C = (S,Act ,R, ν) induces
the embedded discrete time MDP M = (S,Act ,P, ν) where the (time abstract)

transition probability matrix P satisfies P(s, α, s′) = R(s,α,s′)
E(s,α) if E(s, α) > 0

and 0, otherwise. In fact, P(s, α, s′) is the time-abstract probability to move from
state s to state s′ if action α is selected in state s. For the initial distribution ν,
we use νs = {s 7→ 1} to denote a single initial state.

Example 1. Consider the CTMDP in Fig. 1. If α is chosen in state s0, the two
emanating α-transitions to s2 and s3, resp., compete for execution. The sojourn
time in s0 is exponentially distributed with rate E(s0, α) = 3. Further, the prob-

ability to reach state s2 is given by P(s0, α, s2) = R(s0,α,s2)
E(s0,α) = 1

3 .

s0

s1 s2

s3
α, 2

γ, 1

γ, 1

α, 1
β, 3

β, 1

Fig. 1. Example CTMDP

A CTMDP only defines a stochastic process if
the nondeterministic choices between actions are re-
solved by a scheduler. As shown in [13], locally uni-
form CTMDPs allow to define schedulers that can-
not be defined for general CTMDPs and which per-
form strictly better than general schedulers. As local
uniformity is commonly found in queuing systems,
GSPNs and SANs, we restrict our analysis to the subclass of locally uniform
CTMDPs:

Definition 2 (Local uniformity). Let C = (S,Act ,R, ν) be a well formed
CTMDP. C is locally uniform iff ∀s ∈ S. ∀α, β ∈ Act(s). E(s, α) = E(s, β).

Local uniformity ensures that the sojourn time in any state does not depend
on the action chosen in that state. Hence, we may use λ(s) = E(s, α) for some
α ∈ Act(s) to denote the exit rate of state s.

2.1 The probability space

Finite paths in a CTMDP C = (S,Act ,R, ν) are sequences π = s0
t0,α0
−−−→ s1

t1,α1
−−−→

· · ·
tn−1,αn−1
−−−−−−→ sn where si ∈ S, αi ∈ Act and ti ∈ R≥0 for i ≤ n; n is the length

of π, denoted |π|. We use π[k] = sk and δ(π, k) = tk to refer to the k-th state
on π and its associated sojourn time. Further, let ∆(π) =

∑n−1
k=0 tk be the total

time spent on π and π↓ = sn be the last state of π.

Any path π is a concatenation of a state with a sequence of combined tran-
sitions from the set Ω = R≥0 × Act × S; hence, π = s0 ◦ m0 ◦ m1 ◦ · · · ◦ mn−1
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with mi = (ti, αi, si+1) ∈ Ω. Thus Pathsn(C) = S × Ωn is the set of paths of
length n in C; further, let Paths⋆(C), Pathsω(C) and Paths(C) denote the sets of
finite, infinite and all paths of C. To simplify notation, we omit the reference to C
wherever possible. The following measure-theoretic concepts are mentioned only
briefly; we refer to [13,16] for an in-depth discussion. Events in C are measurable
sets of paths; as paths are Cartesian products of combined transitions, we first
define the σ-field F = σ

(
B × FAct × FS

)
on subsets of Ω where B denotes the

Borel σ-field over R≥0 and FS = 2S and FAct = 2Act . Based on (Ω,F), we de-
rive the product σ-field FPaths

n = σ
(
{S0 × M0 × · · · × Mn−1 | S0 ∈ FS ,Mi ∈ F}

)

of measurable subsets of Pathsn. Finally, the cylinder-set construction [1] ex-
tends this uniquely to a σ-field over infinite paths: A set B ∈ FPaths

n is called
a base of an infinite cylinder C if C = Cyl(B) = {π ∈ Pathsω | π[0..n] ∈ B}.
Now the desired σ-field FPaths

ω is generated by the set of all cylinders, i.e.
FPaths

ω = σ
(⋃∞

n=0 {Cyl(B) | B ∈ FPaths
n}
)
.

2.2 Schedulers

To reason about probabilities in CTMDPs, we need to introduce schedulers that
resolve the nondeterminism that occurs in states with multiple enabled actions:
If Act(s) = {α1, . . . , αn}, a scheduler yields a distribution over α1, . . . , αn and
thereby quantifies the nondeterminism. In the classical setting, the scheduler
immediately decides for an action when entering a state [3,14,16]. However, in
locally uniform CTMDPs the state’s sojourn time distribution is independent of
the choice of a particular action. Thus, we can define a strictly better class of
schedulers which delay their decision up to the point when the current state is
left and which incorporate the current state’s sojourn time into their decision:

Definition 3 (Generic measurable scheduler). A generic scheduler for a
locally uniform CTMDP (S,Act ,R, ν) is a mapping D : Paths⋆ ×R≥0 × FAct →
[0, 1] where D(π, t, ·) ∈ Distr(Act(π↓)) for all t ∈ R≥0 and π ∈ Paths⋆. D is
measurable iff the functions D(·, ·, A) : Paths⋆ ×R≥0 → [0, 1] are measurable for
all A ∈ FAct .

Formally, the measurability condition states that for all A ∈ FAct and B ∈
B ([0, 1]), i.e. measurable subsets of [0, 1], it holds that {(π, t) | D(π, t,A) ∈ B} ∈
σ (FPaths

⋆ × B); intuitively, it excludes schedulers which resolve the nondetermin-
ism in a way that induces non-measurable sets (like Vitali sets, see [1, p.34]), i.e.,
sets of paths that cannot be assigned a probability. Let π be a finite path ending
in state s with |Act(s)| > 1. If s is left after t units of time, then D(π, t, ·) de-
fines a probability distribution over Act(s) which resolves the nondeterminism in
state s for history π and sojourn time t. We call a gm-scheduler D deterministic
iff for all π ∈ Pathsω and t ∈ R≥0 the distribution D(π, t, ·) is degenerate. We
use GM (and GMD) to denote the class of generic measurable (deterministic)
schedulers.

Definition 4 (Total time positional scheduler). Let C = (S,Act ,R, ν) be a
locally uniform CTMDP. A mapping D : S × R≥0 → Distr(Act) is a total time
positional scheduler iff ∀s ∈ S. ∀t ∈ R≥0. D(s, t)(α) > 0 =⇒ α ∈ Act(s).

As D(s, t) in general is a distribution over actions, we use TTPR to denote the set
of all randomized total time positional schedulers; accordingly, TTPD ⊂ TTPR
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denotes the subset of all deterministic TTPR schedulers where D(s, t)(α) = 1
for some α ∈ Act(s). Note that any D ∈ TTPR naturally induces the generic
scheduler D′ where D′(π, t,A) =

∑

α∈A D(π↓,∆(π)+t)(α) for all π ∈ Paths⋆, t ∈
R≥0. Accordingly, D is measurable iff D′ is a gm-scheduler. Intuitively, TTPR-
scheduler base their decision only on the current state and the total amount
of time that has passed; later, Thm. 1 proves that TTPD schedulers suffice to
optimize timed-reachability objectives.

2.3 Probability measures

A gm-scheduler D uniquely determines the stochastic process of a CTMDP. We
define its induced probability measure on the measurable space (Pathsω,FPaths

ω).
Following the lines of [16,13], we start by deriving the probability of measurable
sets of combined transitions:

Definition 5 (Probability of combined transitions). Let C=(S,Act ,R, ν)
be a locally uniform CTMDP and D a gm-scheduler on C. For all π ∈ Paths⋆,
define the probability measure µD(π, ·) : F → [0, 1] where

µD(π,M) =

∫

R≥0

ηλ(π↓)(dt)

∫

Act

D(π, t, dα)

∫

S

IM (t, α, s′) P(s, α, ds′). (1)

Here, ηλ(π↓) is the exponential distribution that refers to the sojourn time of the
state π↓ which is distributed with rate λ(π↓); further, IM is the characteristic
function of M ∈ F. In fact, µD(π,M) is the probability to continue with some
combined transition in M , given that we hit the current state π↓ along the
trajectory π. Having the probability measures µD(π, ·) at hand, we now can
define the probabilities of measurable sets of paths from the sets FPaths

n :

Definition 6 (Probability measure). Let C = (S,Act ,R, ν) be a locally uni-
form CTMDP and D a gm-scheduler on C. For n ≥ 0, we inductively define the
probability measures Prn

ν,D on the measurable space (Pathsn,FPaths
n):

Pr0
ν,D : F

Paths
0 → [0, 1] : Π 7→

∑

s∈Π

ν ({s}) and for n > 0

Prn
ν,D : FPaths

n → [0, 1] : Π 7→

∫

Paths
n−1
Prn−1

ν,D (dπ)

∫

Ω

IΠ(π ◦ m) µD(π, dm).

Intuitively, Prn
ν,D measures a set of paths Π of length n by multiplying the

probabilities Prn−1
ν,D (dπ) of path prefixes π (of length n−1) with the probability

µD(π, dm) of a combined transition m ∈ M which extends π to a path in Π. To-
gether, the measures Prn

ν,D extend to a unique measure on FPaths
ω : if B ∈ FPaths

n

is a measurable base and C = Cyl(B), we define Prω
ν,D(C) = Prn

ν,D(B). Due to
the inductive definition of Prn

ν,D, the Ionescu–Tulcea extension theorem [1] is ap-
plicable and yields a unique extension of Prω

ν,D from cylinders to sets in FPaths
ω .

3 A fixed point characterization for timed reachability

Reasoning about a CTMDP’s behaviour is relative to an a priori fixed class of
schedulers. In this paper, we aim at computing the upper (and lower) bounds
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on the probability to reach a set of goal states G within a given time bound z
(denoted ♦[0,z]G) w.r.t. the class of GM -schedulers. As proved in [13], the class
of GM -schedulers is the most general one:

Definition 7 (Maximum timed reachability). Let C = (S,Act ,R, ν) be a
locally uniform CTMDP, G ⊆ S, s ∈ S and z ∈ R≥0. Then

pG
max : S × R≥0 → [0, 1] : (s, z) 7→ sup

D∈GM

Prω
νs,D

(

♦[0,z]G
)

is the maximum timed reachability for the set of goal states G and time bound z.

A scheduler D ∈ GM is optimal for the set of goal states G and time bound z
iff Prω

νs,D

(
♦[0,z]G

)
= pG

max (s, z) for all s ∈ S. Further, for ε > 0, D ∈ GM is

ε-optimal for G and z iff
∣
∣Prω

νs,D

(
♦[0,z]G

)
− pG

max (s, z)
∣
∣ ≤ ε for all s ∈ S.

We now construct an optimal TTPD scheduler which computes pG
max ; this is

possible, as for timed reachability, we only need to consider TTPD schedulers:

Definition 8 (Optimal TTPD scheduler). Let C = (S,Act ,R, ν) be a locally
uniform CTMDP, G ⊆ S a set of goal states and z ∈ R≥0 a time bound. We call
a TTPD scheduler Dz optimal iff it satisfies for all s ∈ S, t ≤ z and α ∈ Act
that

Dz(s, t) = α =⇒ ∀β ∈ Act(s). f(s, z − t, β) ≤ f(s, z − t, α),

where

f(s, z′, γ) :=
∑

s′∈S

P(s, γ, s′) sup
D′∈GM

Prω
νs′ ,D

′

(

♦[0,z′]G
)

.

We use f(s, z− t, β) to express the maximum probability to reach G via action β
when the sojourn time t in state s has already expired and z − t time units
remain.

Theorem 1 (Optimality). Let C = (S,Act ,R, ν) be a locally uniform CT-
MDP, G ⊆ S a set of goal states and z ∈ R≥0 a time bound. Then

pG
max (s, z) = Prω

νs,Dz

(

♦[0,z]G
)

.

Proof. We split the event ♦[0,z]G into disjoint subsets as follows: Let Π(z, n) =
{
π ∈ Pathsω | π[n] ∈ G∧π[i] /∈ G for i < n∧

∑n−1
i=0 δ(π, i) ≤ z

}
. Then Π(z, n)∩

Π(z,m) = ∅ for n 6= m and ♦[0,z]G =
⊎∞

n=0 Π(z, n). Hence, for all ν ∈ Distr(S)
and D ∈ GM it holds that

Prω
ν,D

(
♦[0,z]G

)
= Prω

ν,D

( ∞⊎

n=0

Π(z, n)
)

=

∞∑

n=0

Prω
ν,D

(
Π(z, n)

)
.

By induction on the number n of transitions needed to reach G, it can be proved
that Prω

ν,Dz

(
Π(z, n)

)
≥ Prω

ν,D

(
Π(z, n)

)
for all n ∈ N, z ∈ R≥0, ν ∈ Distr(S)

and D ∈ GM : For the base case n = 0, it holds that Prω
ν,Dz

(
Π(z, n)

)
= ν(G) =
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Prω
ν,D

(
Π(z, n)

)
and the claim follows. In the induction step, the induction hy-

pothesis yields

Prω
ν,Dz

(
Π(z, n + 1)

)

=
∑

s∈S

ν(s)

∫ z

0
λ(s)e−λ(s)t

∑

s′∈S

P
(
s,Dz(s, t), s′

)
· Prω

νs′ ,D
z−t

(
Π(z − t, n)

)
dt

≥
∑

s∈S

ν(s)

∫ z

0
λ(s)e−λ(s)t

∑

s′∈S

P
(
s,Dz(s, t), s′

)
· Prω

νs′ ,D
′

(
Π(z − t, n)

)
dt

for all schedulers D′ ∈ GM . Hence

Prω
ν,Dz

(
Π(z, n + 1)

)

≥
∑

s∈S

ν(s)

∫ z

0
λ(s)e−λ(s)t

∑

s′∈S

P
(
s,Dz(s, t), s′

)
sup

D′∈GM

Prω
νs′ ,D

′

(
Π(z − t, n)

)
dt

=
∑

s∈S

ν(s)

∫ z

0
λ(s)e−λ(s)t max

α∈Act

∑

s′∈S

P(s, α, s′) sup
D′∈GM

Prω
νs′ ,D

′

(
Π(z − t, n)

)
dt

≥
∑

s∈S

ν(s)

∫ z

0
λ(s)e−λ(s)t max

α∈Act

∑

s′∈S

P(s, α, s′) · Prω

νs′ ,D(s
t,α
−−→·)

(
Π(z − t, n)

)
dt

≥
∑

s∈S

ν(s)

∫ z

0
λ(s)e−λ(s)t

∑

α∈Act

D(s, t, {α})
∑

s′∈S

P
(
s, α, s′

)

· Prω

νs′ ,D(s
t,α
−−→·)

(
Π(z − t, n)

)
dt

= Prω
ν,D

(
Π(z, n + 1)

)

holds for all D ∈ GM . This implies that for all D ∈ GM

Prω
ν,D

(
♦[0,z]G

)
=

∞∑

n=0

Prω
ν,D

(
Π(z, n)

)
≤

∞∑

n=0

Prω
ν,Dz

(
Π(z, n)

)
= Prω

ν,Dz

(
♦[0,z]G

)
.

Thus supD∈GM Prω
νs,D

(
♦[0,z]G

)
≤ Prω

νs,Dz

(
♦[0,z]G

)
. As Dz ∈ GM , the other

direction is trivial and the claim follows. ⊓⊔

Corollary 1. The class of TTPD schedulers suffices to optimize time-bounded
reachability probabilities in locally uniform CTMDPs.

Based on the class of TTPD schedulers, we are now ready to derive a fixed
point characterization of the maximum timed reachability probability in locally
uniform CTMDPs. A similar technique has been used in [2, Thm. 1] to derive
the probability of time-bounded until formulas in CTMCs.

Theorem 2 (Fixed point characterization of timed reachability). Let
C = (S,Act ,R, ν) be a locally uniform CTMDP and G ⊆ S a set of goal states.
Then pG

max is the least fixed point of the higher-order operator Ω : (S × R≥0 → [0, 1]) →
(S × R≥0 → [0, 1]) which is defined for all s ∈ S and z ∈ R≥0 such that if s /∈ G,

Ω(F )(s, z) =

∫ z

0
max
α∈Act

λ(s)e−λ(s)t
∑

s′∈S

P(s, α, s′) · F (s′, z − t) dt (2)

and Ω(F )(s, z) = 1, otherwise.
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Proof. First, we prove that pG
max is a fixed point of Ω: If s ∈ G, then pG

max (s, z) =
1 = Ω

(
pG
max

)
(s, z) and the claim follows. If s /∈ G, we proceed as follows:

Ω
(
pG
max

)
(s, z) =

∫ z

0
max
α∈Act

λ(s)e−λ(s)t
∑

s′∈S

P(s, α, s′) · pG
max (s′, z − t) dt

=

∫ z

0
λ(s)e−λ(s)t max

α∈Act

∑

s′∈S

P(s, α, s′) · pG
max (s′, z − t)

︸ ︷︷ ︸

f(s′,z−t,α)

dt

=

∫ z

0
λ(s)e−λ(s)t

∑

s′∈S

P(s,Dz(s, t), s′) · sup
D∈GM

Prω
νs′ ,D

(
♦[0,z−t]G

)
dt

=

∫ z

0
λ(s)e−λ(s)t

∑

α∈Act

Dz(s, t, {α})
∑

s′∈S

P(s, α, s′) · sup
D∈GM

Prω
νs′ ,D

(
♦[0,z−t]G

)
dt

= sup
D∈GM

Prω
νs,D

(
♦[0,z]G

)
= pG

max (s, z).

It remains to show that pG
max is the least fixed point of Ω: Let Π(s, z, n) ⊆

Π(z, n) be the set of all infinite paths π = s0
t0,α0
−−−→ s1

t1,α1
−−−→ · · · such that

s0 = s, sn ∈ G, si /∈ G for all i < n and
∑n−1

i=0 ti ≤ z. Further, let pG,n
max (s, z) =

supD∈GM Prω
νs,D (

⊎n
i=0 Π(s, z, i)) be the upper bound for timed reachability of G

within time bound z and with at most n transitions. From the first part, we
know that pG

max is a fixed point of Ω; further, from the definition of Ω, it follows
that pG,n+1

max (s, z) = Ω(pG,n
max )(s, z). Therefore, limn→∞ pG,n

max = pG
max . Now, let

F : S × R≥0 → [0, 1] be another fixed point of Ω. By induction on n, we show

that pG,n
max (s, z) ≤ F (s, z) for all n ∈ N. For the base case pG,0

max (s, z) = 1 = F (s, z)
if s ∈ G and pG,0

max (s, z) = 0 ≤ F (s, z), otherwise. Further,

pG,n+1
max (s, z) =

∫ z

0
λ(s)e−λ(s)t max

α∈Act

∑

s′∈S

P(s, α, s′) · pG,n
max (s′, z − t) dt

≤

∫ z

0
λ(s)e−λ(s)t max

α∈Act

∑

s′∈S

P(s, α, s′) · F (s′, z − t) dt = F (s, z).

Hence, F (s, z) ≥ limn→∞ pG,n
max (s, z) = pG

max (s, z) and the claim follows. ⊓⊔

3.1 Piecewise constant schedulers

In Def. 4, the upper bound pG
max on timed reachability of a set of goal states G is

defined w.r.t. the class of GM schedulers. Corollary 1 allows us to only consider
the subclass of TTPD schedulers to compute pG

max , i.e. we restrict to schedulers
of the form D : S × R≥0 → Act . Note however, that also TTPD schedulers are
continuous in their second argument, i.e. they may yield different actions D(s, t)
for any point in time t ∈ R≥0. Thus, the set TTPD is still uncountable.

Definition 9 (Piecewise constant TTPD scheduler). Let C = (S,Act ,R, ν)
be a CTMDP and D : S×R≥0 → Act a TTPD scheduler. D is piecewise constant
iff for all s ∈ S and α ∈ Act(s) there exist disjoint intervals A0

s,α, A1
s,α, A2

s,α, · · · ⊆
R≥0 such that D(s, t) = α ⇐⇒ t ∈

⋃∞
i=0 Ai

s,α. A piecewise constant scheduler D
is non-Zeno iff for all z ∈ R≥0, s ∈ S and α ∈ Act:

∣
∣
{
Ai

s,α | z > inf Ai
s,α

}∣
∣ < ∞.

10



We use PCD to denote the set of all piecewise constant and non-Zeno TTPD
schedulers. Intuitively, for state s ∈ S and a given time-bound z, a PCD-
scheduler changes its decision for an action only finitely many times: The in-
tervals Ai

s,α in Def. 9 exactly describe the time-periods in which the scheduler
constantly chooses action α. The non-Zeno assumption implies that only finitely
many decision epochs occur up to time z.

Theorem 3 (PCD schedulers suffice for timed reachability). Let C =
(S,Act ,R, ν) be a CTMDP, G ⊆ S and z ∈ R≥0. Then

sup
D∈PCD

Prω
ν,D

(

♦[0,z]G
)

= sup
D∈TTPD

Prω
ν,D

(

♦[0,z]G
)

.

Proof. We prove that the TTPD scheduler Dz from the proof of Thm. 1 can be
approximated arbitrarily closely by PCD schedulers: Let s ∈ S, α ∈ Act and
define As,α = Dz(s, ·)−1(α). By definition, Dz is a measurable scheduler. Hence
As,α ∈ B. Now let B0 be a field of subsets of R≥0 that generates the σ-field B,
i.e. let σ(B0) = B. By the Approximation Theorem [1, Thm. 1.3.11], given ε > 0,
we can approximate the set As,α by a set Bs,α ∈ B0 up to an error of ε. More
precisely, let θ : B → R≥0 be the Lebesgue measure defined by the distribution
function Θ

(
x
)

= x for x ∈ R≥0 and let A △ B = (A \ B) ∪ (B \ A) denote set
difference. Then θ (As,α △ Bs,α) < ε.

For B0, we choose the set of finite disjoint unions of right semi-closed inter-
vals; as B0 is a field and σ(B0) = B, this is a valid choice (see also [1, Ex. 1.2.4]).
As Bs,α ∈ B0, there exist ns,α ∈ N and disjoint intervals B0

s,α, . . . , B
ns,α
s,α such

that Bs,α =
⊎ns,α

i=0 Bi
s,α. Now we are ready to construct a scheduler Dz

ε which ap-

proximates Dz up to an error of ε as follows: Dz
ε(s, t) = α ⇐⇒ t ∈

⊎ns,α

i=0 Bi
s,α. By

definition, Dz
ε is a piecewise constant and a non-Zeno scheduler. Thus Dz

ε ∈ PCD
for all ε > 0; further, as θ ({t ∈ R≥0 | Dz(s, t) 6= Dz

ε(s, t)}) < ε, we obtain that
limε→0 µDz

ε
= µDz (cf. Def. 5). Hence

lim
ε→0

Prω
νs,Dz

ε

(

♦[0,z]G
)

= Prω
νs,Dz

(

♦[0,z]G
)

= sup
D∈TTPD

Prω
νs,Dz

(

♦[0,z]G
)

.

Therefore, we derive

sup
D∈TTPD

Prω
ν,D

(

♦[0,z]G
)

= Prω
ν,Dz

(

♦[0,z]G
)

=
∑

s∈S

ν(s) · Prω
νs,Dz

(

♦[0,z]G
)

=
∑

s∈S

ν(s) · lim
ε→0

Prω
νs,Dz

ε

(

♦[0,z]G
)

= lim
ε→0

Prω
ν,Dz

ε

(

♦[0,z]G
)

.

Now the claim follows, as Dz
ε ∈ TTPD for all ε > 0. ⊓⊔

In order to derive our discretization for CTMDPs, we restrict to a subclass
of piecewise constant non-Zeno schedulers, called τ -schedulers:

Definition 10 (τ-scheduler). Let C = (S,Act ,R, ν) be a CTMDP, τ ∈ R>0

and D ∈ PCD a non-Zeno scheduler. D is a τ -scheduler iff for all s ∈ S, k ∈ N:

∃α ∈ Act(s). ∀t ∈ [kτ, (k + 1)τ) . D(s, t) = α.

11



Intuitively, a PCD scheduler is a τ -scheduler if its choices remain constant on
intervals of length τ . We now prove that for τ → 0, the probabilities of PCD and
τ -schedulers coincide:

Theorem 4 (Limiting τ-scheduler). Let C = (S,Act ,R, ν) be a CTMDP,
z ∈ R≥0 and G ⊆ S. For any D ∈ PCD, there exist τ -schedulers Dτ such that

lim
τ→0

Prω
ν,Dτ

(

♦[0,z]G
)

= Prω
ν,D

(

♦[0,z]G
)

.

Proof. As D ∈ PCD, there exists ns,α ∈ N and disjoint intervals B0
s,α, . . . , B

ns,α
s,α

for all s ∈ S and α ∈ Act such that D(s, t) = α iff t ∈ Bi
s,α for some i ≤ ns,α.

If τ → 0, we can approximate those intervals arbitrarily closely, that is, there
exist schedulers Dτ such that Dτ (s, ·)−1(α) → D(s, ·)−1(α). Similar to the proof
of Thm. 3, this implies that limτ→0 µDτ = µD and therefore

lim
τ→0

Prω
ν,Dτ

(

♦[0,z]G
)

= Prω
ν,D

(

♦[0,z]G
)

proving the claim. ⊓⊔

4 Discretization for CTMDPs

In this section, we discuss how to compute the maximum time-bounded reach-
ability probability for CTMDPs using discretization. Moreover, we also dis-
cuss how to bound the error induced during discretization. Given a CTMDP
C = (S,Act ,R, ν), a set G ⊆ S of goal states, a starting state s and a time-
bound z ∈ R≥0, let pG

max (s, z) be defined as in Def. 7. Then, pG
max is the least fixed

point of the higher-order operator Ω : (S × R≥0 → [0, 1]) → (S × R≥0 → [0, 1]),
as defined in Thm. 2. The case that s ∈ G is trivial, as pG

max (s, z) = 1 for all
z ∈ R≥0. To derive pG

max (s, z) for s /∈ G, we consider the first sub-interval [0, τ ]
of the integral in Eq. (2) and split it accordingly:

pG
max (s, z) =

∫ τ

0
λ(s)e−λ(s)t max

α∈Act

∑

s′∈S

P(s, α, s′) · pG
max (s′, z − t) dt

+

∫ z

τ

λ(s)e−λ(s)t max
α∈Act

∑

s′∈S

P(s, α, s′) · pG
max (s′, z − t) dt.

(3)

Now, let A(s, z) and B(s, z) denote the first, resp. second summand in (3). Shift-
ing the range of integration in B(s, z) by (−τ), we derive

B(s, z) =

∫ z−τ

0
λ(s)e−λ(s)(t+τ) max

α∈Act

∑

s′∈S

P(s, α, s′) · pG
max (s′, z − (t + τ)) dt

=

∫ z−τ

0
λ(s)e−λ(s)te−λ(s)τ max

α∈Act

∑

s′∈S

P(s, α, s′) · pG
max (s′, z − (t + τ)) dt

= e−λ(s)τ

∫ z−τ

0
λ(s)e−λ(s)t max

α∈Act

∑

s′∈S

P(s, α, s′) · pG
max (s′, (z − τ) − t) dt

︸ ︷︷ ︸

pG
max

(s,z−τ)

= e−λ(s)τ · pG
max (s, z − τ).

12



Thus, B(s, z) is the maximum probability of the event that starting from
state s, the set G is reached within z time units while no transition occurs
in the time interval [0, τ ]. To be more precise, let #[0,τ ] : Pathsω → N be
the random variable for the number of transitions that occur in interval [0, τ ].
Then, it holds that B(s, z) = supD∈TTPD Prω

νs,D

(
♦[0,z]G ∩ #[0,τ ] = 0

)
. With the

same reasoning, the first summand A(s, z) of (3) is the maximum probability to
reach G within time z with at least one transition taking place in [0, τ ]. Hence,
A(s, z) = supD∈TTPD Prω

νs,D

(
♦[0,z]G ∩ #[0,τ ] ≥ 1

)
.

In the next step, we decompose the underlying event of A(s, z) as follows:

(

♦[0,z]G ∩ #[0,τ ] ≥ 1
)

=
∞⊎

n=1

(

♦[0,z]G ∩ #[0,τ ] = n
)

.

Now let An(s, z) be the maximum probability to reach G in z time units with
exactly n transitions occurring in the first time slice [0, τ ]. If we maximize each
of the events

(
♦[0,z]G ∩ #[0,τ ] = n

)
separately, we obtain the probability

An(s, z) = sup
D∈TTPD

Prω
νs,D

(

♦[0,z]G ∩ #[0,τ ] = n
)

. (4)

To relate A(s, z) with the probabilities An(s, z), observe that

A(s, z) = sup
D∈TTPD

Prω
νs,D

(

♦[0,z]G ∩ #[0,τ ] ≥ 1
)

= sup
D∈TTPD

Prω
νs,D

(
∞⊎

n=1

(

♦[0,z]G ∩ #[0,τ ] = n
)
)

≤
∞∑

n=1

(

sup
D∈TTPD

Prω
νs,D

(

♦[0,z]G ∩ #[0,τ ] = n
))

=

∞∑

n=1

An(s, z).

(5)

For our discretization, we approximate A(s, z) from below via A1(s, z): Intu-
itively, for small τ , the probability that more than one transition occurs in in-
terval [0, τ ] is negligibly small. We prove that A1(s, z) converges to A(s, z) for
τ → 0:

– First, note that A1(s, z) ≤ A(s, z). Thus A1(s, z) is a lower bound on A(s, z).
– To establish an upper bound, first recall that for an exponential distribution

with rate λ and a time interval [0, τ ], the Poisson distribution ρ (n, λτ) =

e−λτ · (λτ)n

n! expresses the probability that n transitions occur within [0, τ ].
If λ = maxs∈S λ(s) is the maximum exit rate over all states, this allows to
derive an upper bound for An(s, z):

An(s, z) = sup
D∈TTPD

(

♦[0,z]G ∩ #[0,τ ] = n
)

≤ sup
D∈TTPD

Prω
νs,D

(
#[0,τ ] = n

)

≤ ρ(n, λτ) = e−λτ ·
(λτ)n

n!
.

(6)

Moreover, by maximality of λ, the probability that more than n transitions
occur in any state s ∈ S within time interval [0, τ ] is at most

∞∑

i=n+1

ρ(i, λτ) = e−λτ
∞∑

i=n+1

(λτ)i

i!
= e−λτ · Rn

(
λτ
)
, (7)
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where Rn(x) =
∑∞

i=n+1
xi

i! is the remainder term of the Taylor expansion of
f(x) = ex for the point a = 0. By Taylor’s Theorem, there exists ξ ∈ [0, λτ ]
such that

Rn

(
λτ
)

=
f (n+1)(ξ)

(n + 1)!
· (λτ)n+1 =

eξ

(n + 1)!
· (λτ)n+1 . (8)

Hence, we obtain an upper bound for the error that is induced by approxi-
mating A(s, z) by only considering A1(s, z):

A(s, z)
(5)

≤
∞∑

n=1

An(s, z)
(6)

≤ A1(s, z) +

∞∑

n=2

ρ(n, λτ)
(7)
= A1(s, z) + e−λτR1

(
λτ
)
.

By Eq. (8), there exists ξ ∈ [0, λτ ] such that R1(λτ) = eξ

2 · (λτ)2. To derive
an upper bound, choose ξ maximal in [0, λτ ]. Then

A1(s, z) + e−λτR1

(
λτ
)
≤ A1(s, z) + e−λτ ·

eλτ

2
(λτ)2 = A1(s, z) +

(λτ)2

2
.

Therefore, we have that A(s, z) ≤ A1(s, z) + (λτ)2

2 .

Taking the lower and upper bound together, we finally obtain

A1(s, z) ≤ A(s, z) ≤ A1(s, z) +
(λτ)2

2
. (9)

Therefore, we may approximate A(s, z) from below via A1(s, z), allowing for an

error of at most (λτ)2

2 . Exploiting the fact that in this approximation, there is
exactly one transition within [0, τ ], the following lemma simplifies A1(s, z):

Lemma 1. Let C = (S,Act ,R, ν) be a locally uniform CTMDP, G ⊆ S a set of
goal states and z ∈ R≥0 a time bound. For A1(s, z) as defined in Eq. (4), it holds

A1(s, z) =
(

1 − e−λ(s)τ
)

max
α∈Act

∑

s′∈S

P(s, α, s′) · pG
max (s′, z − τ). (10)

Proof. First, let Dz ∈ TTPD be the optimal TTPD scheduler as defined in
Def. 8. By Thm. 1, it holds that Prω

νs,Dz

(
♦[0,z]G

)
= pG

max (s, z). As Dz is measur-
able, there exists a countable sequence 0 = τ0 < τ1 < · · · ∈ R≥0 with τi → τ and
actions α0, α1, . . . such that Dz(s, t) = αi for all t ∈ [τi, τi+1) and i ∈ N. Hence,
we can split the integral in A(s, z) as follows:

A(s, z) =
∞∑

i=0

∫ τi+1

τi

λ(s)e−λ(s)t
∑

s′∈S

P(s, αi, s
′) · pG

max (s′, z − t) dt

=

∞∑

i=0

∫ τi+1

τi

λ(s)e−λ(s)t max
α∈Act

∑

s′∈S

P(s, α, s′) · pG
max (s′, z − t) dt.

Recall that A1(s, z) is the maximum probability to reach G in z time units with
exactly one transition occurring in [0, τ ]. Therefore, we obtain A1(s, z) from the
term above, by replacing pG

max (s′, z − t) with pG
max (s′, z − τ) (cf. Eq. (3)):

A1(s, z) =
∞∑

i=0

∫ τi+1

τi

λ(s)e−λ(s)t max
α∈Act

∑

s′∈S

P(s, α, s′) · pG
max (s′, z − τ) dt.
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Now, the term maxα∈Act

∑

s′∈S P(s, α, s′) · pG
max (s′, z − τ) is independent of i

and t; thus, it can be taken out of the sum and the integral:

A1(s, z) =

(

max
α∈Act

∑

s′∈S

P(s, α, s′) · pG
max (s′, z − τ)

)

·
∞∑

i=0

(

e−λ(s)τi − e−λ(s)τi+1

)

=
(

1 − e−λ(s)τ
)

max
α∈Act

∑

s′∈S

P(s, α, s′) · pG
max (s′, z − τ).

⊓⊔

Based on A1(s, z) and B(s, z) we are now ready to derive a discretization for
pG
max (s, z) on CTMDPs with respect to a step duration τ :

Definition 11 (Discretization). Let C = (S,Act ,R, ν) be a locally uniform
CTMDP, and let τ be a step duration. The induced MDP Cτ = (S,Act ,Pτ , ν) is
defined such that for all s, s′ ∈ S and α ∈ Act(s):

Pτ (s, α, s′) =

{(
1 − e−λ(s)τ

)
· P(s, α, s′) if s 6= s′

(
1 − e−λ(s)τ

)
· P(s, α, s′) + e−λ(s)τ if s = s′.

(11)

Further, for all α /∈ Act(s), we define Pτ (s, α, s′) = 0.

s0

s1 s2

s3
α, 2

3
−

2
3
e−3τ

γ, 1

γ, 1

α,
1
3
−

1
3
e
−
3τ

β
,
1
−

e
−

3
τ

β, 1−e−τ

α, e−3τ
β, e−3τ

β, e−τ

Fig. 2. Discretization of Fig. 1.

In the resulting MDP Cτ , each step corre-
sponds to one time slice of length τ in the orig-
inal CTMDP. For a single step and a fixed suc-
cessor state s′ 6= s, Pτ (s, α, s′) equals the prob-
ability that a transition to s′ occurs within τ
time units, given that α is chosen. In case of
s′ = s, the first summand of Pτ (s, α, s) is the
probability to take the loop back to s; the sec-
ond summand denotes the probability that no
transition occurs within time τ and thus s = s′.

Example 2. Reconsider the locally uniform CTMDP C in Fig. 1. To compute the
maximum probability to reach G = {s2} within z time units up to a precision of

ε, choose k ∈ N such that ε ≥ (λz)2

2k
. The discretization step τ = z

k
then induces

the discretized MDP Cτ which is depicted in Fig. 2 where λ = maxs∈S λ(s) = 3.

Let pCτ
max (s, k) be the maximum probability to reach G starting from s in at

most k steps in the MDP Cτ . Therefore, pCτ
max (s, k) = 1 if s ∈ G and pCτ

max (s, 0) = 0
if s /∈ G. Further, for s /∈ G and k > 0, pCτ

max is defined recursively:

pCτ
max (s, k) = max

α∈Act

∑

s′∈S

Pτ (s, α, s′) · pCτ
max (s′, k − 1). (12)

The next theorem proves that the probabilities in Cτ to reach G from state s
within at most k = z

τ
steps converge from below (for τ → 0) to the corresponding

time-bounded reachability probability in C:

Theorem 5. Let C = (S,Act ,R, ν) be a CTMDP, G ⊆ S a set of goal states,
z ∈ R≥0 a time bound and k > 0 the number of time steps, i.e. τ = z

k
. For all

s ∈ S, it holds:

pCτ
max (s, k) ≤ pG

max (s, z) ≤ pCτ
max (s, k) +

(λz)2

2k
. (13)
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Proof. Firstly, recall it holds that pG
max (s, z) = A(s, z) + B(s, z) and A1(s, z) ≤

A(s, z) ≤ A1(s, z) + (λτ)2

2 (see Eq. (9)). The Inequality (13) follows by induction
on k. For k = 1, we have z = τ . If s ∈ G, then pCτ

max (s, 1) = 1 = pG
max (s, τ) and

Inequality 13 follows. If s /∈ G, the lower bound is established as pCτ
max (s, 1) =

maxα∈Act

(
1 − e−λ(s)τ

)
·P(s, α,G) = A1(s, τ) ≤ pG

max (s, τ). For the upper bound,

note that s /∈ G implies B(s, τ) = 0, thus pG
max (s, τ) ≤ (λτ)2

2 + A1(s, τ) =

pCτ
max (s, τ) + (λτ)2

2 . For the induction step, together with Lemma 1 and the defi-
nition of Cτ , we have that:

A1(s, z) + B(s, z) = max
α∈Act

∑

s′∈S

Pτ (s, α, s′) · pG
max (s′, z − τ). (14)

First we consider the lower bound on the left part of Inequality 13: By induction
hypothesis it holds that pCτ

max (s′, k − 1) ≤ pG
max (s′, z − τ) for all s′ ∈ S. Thus

pG
max (s, z) ≥ A1(s, z) + B(s, z)

(14)
= max

α∈Act

∑

s′∈S

Pτ (s, α, s′) · pG
max (s′, z − τ)

i.h.
≥ max

α∈Act

∑

s′∈S

Pτ (s, α, s′) · pCτ
max (s′, k − 1) = pCτ

max (s, k).

For the upper bound: A(s, z) ≤ A1(s, z) + (λτ)2

2 and Eq. (14) imply that

pG
max (s, z) ≤

(λτ)2

2
+ max

α∈Act

∑

s′∈S

Pτ (s, α, s′) · pG
max (s′, z − τ).

Applying the induction hypothesis, we obtain

pG
max (s, z)

i.h.
≤

(λτ)2

2
+ max

α∈Act

∑

s′∈S

Pτ (s, α, s′)

(

pCτ
max (s′, k − 1) +

(λ(z − τ))2

2(k − 1)

)

.

By inspection, the right part can be simplified to pCτ
max (s, k) + (λz)2

2k
, completing

the proof for the upper bound. ⊓⊔

4.1 Algorithm and complexity

Let C = (S,Act ,R, ν) be a locally uniform CTMDP, G a set of goal states
and z a time bound. For some accuracy ε > 0, let k be the number of steps

needed to satisfy ε ≥ (λz)2

2k
. Then τ = z

k
induces the discretized MDP Cτ of C

with discretization step τ . By Thm. 13, the maximum probability to reach G
within z time units in C can be approximated (up to ε) by maximizing the step-
bounded reachability of G in Cτ within k steps. In Cτ , this probability can easily
be computed by the well-known value iteration approach [4]. Briefly, it starts
with a probability vector v0 with v0(s) = 1 if s ∈ G and 0, otherwise. In each
iteration, vi is obtained from vi−1 according to Eq. 12. In each round, i denotes
the number of steps in the MDP Cτ ; hence, vi(s) equals pCτ

max (s, i).
The value iteration approach yields the following complexity. For s ∈ S and

α ∈ Act(s), let post (s, α) = {s′ ∈ S | R(s, α, s′) > 0} be the set of α-successors
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of state s. The size of C is denoted by m =
∑

s∈S

∑

α∈Act
|post(s, α)|. In the

worst case, the discretized MDP Cτ is obtained by adding a self-loop for each
state s ∈ S and action α ∈ Act(s). Thus, the size of Cτ is bounded by 2m. For
a given accuracy ε, it is easy to derive the number k of value-iteration step: By

Thm. 5,
∣
∣pG

max (s, z) − pCτ
max (s, k)

∣
∣ ≤ (λz)2

2k
. Letting (λz)2

2k
≤ ε, we conclude that the

smallest k to guarantee ε is (λz)2

2ε
. In each step of the value iteration, the update

of the vector vi takes time 2m. Thus, the time complexity of our approach is
O(m · (λz)2/ε).

4.2 Generation of ε-optimal schedulers

Let C, G, z, τ and Cτ be as before. A byproduct of the value iteration on the
discretized MDP is an ε-optimal scheduler for the set of goal states G and
time bound z. More precisely, in any of the i value iteration steps, for each
state s ∈ S, an action αs,i is chosen according to Eq. 12. In this way, we obtain a
history dependent (or step dependent) scheduler in Cτ . This scheduler induces a
τ -scheduler of the original CTMDP C, denoted Dτ , as follows: Dτ (s, t) = αs,k if
t ∈ [kτ, (k+1)τ). The following theorem shows that Dτ is an ε-optimal scheduler:

Theorem 6 (ε-optimal scheduler). The scheduler Dτ is an ε-optimal sched-
uler for C w.r.t. the maximum timed reachability probability.

Proof. Let C = (S,Act ,R, ν) be a locally uniform CTMDP, G a set of goal
states and z a time bound. For some accuracy ε > 0, let k be the number of

steps needed to satisfy ε ≥ (λz)2

2k
. Let Cτ be the induced MDP with τ = z

k
, and

Dτ be the τ -scheduler as described. To show Dτ is an ε-optimal scheduler for C
w.r.t. the maximum timed reachability probability, we show for all state s ∈ S,
it holds that

∣
∣
∣Prω

νs,Dτ

(

♦[0,z]G
)

− pCτ
max (s, k)

∣
∣
∣ ≤ ε.

It is sufficient to show the following Inequality:

pCτ
max (s, k) ≤ Prω

νs,Dτ

(

♦[0,z]G
)

≤ pCτ
max (s, k) + ε. (15)

By Theorem 5, the upper bound can be shown directly:

Prω
νs,Dτ

(

♦[0,z]G
)

≤ pG
max (s, z) ≤ pCτ

max (s, k) +
(λz)2

2k
≤ pCτ

max (s, k) + ε.

Now we discuss how to show the lower bound of Inequality (15). Firstly, we
observe that under any TTPD scheduler D the CTMDP C is totally stochastic,
and for s /∈ G, the probability Prω

νs,D

(
♦[0,z]G

)
can be computed by:

Prω
νs,D

(

♦[0,z]G
)

=

∫ z

0
λ(s)e−λ(s)t

∑

s′∈S

P(s,D(s, t), s′) · Prω
νs′ ,D

(

♦[0,z−t]G
)

dt

Note Dτ is a TTPD scheduler, thus it holds that

Prω
νs,Dτ

(

♦[0,z]G
)

=

∫ z

0
λ(s)e−λ(s)t

∑

s′∈S

P(s,Dτ (s, t), s′) · Prω
νs′ ,Dτ

(

♦[0,z−t]G
)

dt
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(a) Fragment of the CTMDP model.
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Fig. 3. Modelling and analysis of the stochastic job scheduling problem.

This integral can then be split into two parts A(s, z) and B(s, z) at time t = τ :
it follows in a similar way as Eq. (3) with the difference of taking the action
Dτ (s, t) instead of the maximum over all α ∈ Act . The lower bound can then
be established by induction on k, by adapting the lower bound proof of Inequal-
ity (13) of Theorem 5 appropriately. ⊓⊔

5 Case study

To show the applicability of our approach, we consider the stochastic job schedul-
ing problem (sJSP) from [5]. In their paper, the authors analyze the expected time
to complete a set of stochastic jobs on a number of identical processors under a
preemptive scheduling policy. An instance of the sJSP is a tuple (m,n, µ) where
m ≥ 2 is the number of processors, n is the number of stochastic jobs and
µ(i) ∈ R≥0 specifies the rate of job i. Each time a job finishes, the preemptive
scheduling allows to assign each processors one of the k remaining jobs, giving
rise to

(
k
m

)
nondeterministic choices.

Let Xk (k = 1, . . . , n) be the time spent between decision epochs k and k+1.
In [5], the authors prove that the longest expected processing time first (LEPT)
policy optimizes the expectation of the sum

∑n
k=1 Xk. In the following we show

how to model the sJSP as a locally uniform CTMDP. Applying the results from
Sec. 4, we are now able to algorithmically compute the upper and lower proba-
bility bounds to finish all jobs within some time bound z.

A configuration of the sJSP is a tuple (R,W ) ∈ 2J×2J , where R and W are
the sets of running, resp. waiting jobs. When a job j ∈ R completes, the decision
which jobs to schedule next is nondeterministic. An action α ∈ Act ((R,W )) is
a preemptive schedule: If job j ∈ R finishes first and α : R → 2R∪W is chosen,
the set α(j) defines the jobs to execute next. In each configuration (R,W ), let
Act ((R,W )) =

{
α : R → 2R∪W |∀j ∈ R.j /∈ α(j) ∧ |α(j)| ≤ m ∧ α(j) maximal

}
.

For α ∈ Act ((R,W )), we define the α(j)-successor (R′,W ′) of (R,W ), denoted

(R,W )
α(j)
−−→ (R′,W ′), such that R′ = α(j) and W ′ = (R ∪ W ) \ ({j} ∪ α(j)):

Definition 12 (Modelling the sJSP as a CTMDP). Let J = (m,n, µ) be a
sJSP and (R,W ) a configuration. The induced CTMDP (S,Act ,R, ν) is defined
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such that S = 2J× 2J , ν = {(R,W ) 7→ 1}, Act =
⋃

(R,W )∈S Act ((R,W )) and

R
(
(R,W ), α, (R′,W ′)

)
=

{

µ(j) if (R,W )
α(j)
−−→ (R′,W ′) and

0 otherwise.

Thus, given configuration (R,W ), for every job j ∈ R and action α, there ex-
ists an α-transition with the rate µ(j) of job j that leads to the α(j)-successor
(R′,W ′).

Lemma 2 (The sJSP is locally uniform). For any sJSP J = (m,n, µ) and
initial configuration (R,W ), the induced CTMDP is locally uniform.

Proof. From the definition of the induced CTMDP, it directly follows

E ((R,W ), α) =
∑

(R′,W ′)∈S

R
(
(R,W ), α, (R′,W ′)

)

=
∑

(R,W )
α(j)
−−→(R′,W ′)

R
(
(R,W ), α, (R′,W ′)

)
=
∑

j∈R

µ(j).

Hence, E ((R,W ), α) = E ((R,W ), β) for all α, β ∈ Act ((R,W )). ⊓⊔

Fig. 3(a) depicts a fragment of the CTMDP induced by the (2, 4, µ) sJSP with
initial configuration (R,W ) where R is given by the underlined process identifiers
(i.e. R = {1, 3}) and W = {2, 4}. Action α1 represents a replacement strategy
where jobs {3, 4} are executed next if job 1 ∈ R finishes first and otherwise, the
next jobs are {2, 4}. In Fig. 3(b), we plot the upper and lower probability bounds
to finish jobs {1, . . . , 4} over a time bound z ∈ [0, 15] for different values of µ.
Clearly, for equally distributed job durations, i.e. if µ(i) = µ(k) for all i, k, the
upper and lower probability bounds coincide. However, if µ(i) 6= µ(k) for some
i, k, the probabilities clearly depend on the scheduling policy.

6 Conclusion

We propose a discretization which reduces the problem of computing time bounded
reachability probabilities in locally uniform CTMDPs to the problem of step
bounded reachability in discrete-time MDPs. Future work includes the extension
of our results towards reward reachability as well as the open problem of com-
puting timed reachability probabilities for early schedulers in CTMDPs that are
not locally uniform.
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