
Aachen
Department of Computer Science

Technical Report

Achieving Highly Reliable Embedded

Software:

An empirical evaluation of different

approaches

Falk Salewski and Stefan Kowalewski

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2007-8

RWTH Aachen · Department of Computer Science · June 2007

The publications of the Department of Computer Science of RWTH Aachen

University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Achieving Highly Reliable Embedded Software:

An empirical evaluation of different approaches

Falk Salewski and Stefan Kowalewski

Lehrstuhl für Informatik 11
RWTH Aachen, Germany

Email: {salewski, kowalewski}@informatik.rwth-aachen.de

Abstract. Designing highly reliable embedded software is a challenge and sev-
eral approaches are known to improve the reliability of this software. However, all
approaches have their advantages and disadvantages which makes empirical evalu-
ations investigating their potentials necessary. In this paper, different approaches
of software reliability improvement for embedded systems were compared on ba-
sis of experiments conducted at our institute. The first approach is an instance
of N-version programming based on forced diversity. Two fundamentally diverse
hardware platforms (microcontroller and CPLD/FPGA) were used to force di-
versity. Another experiment was conducted in which participants designed their
software on one hardware platform only. The second half of this experiment was
used for review and testing. Based on our experiments, the potentials of our appli-
cation of N-version programming, review and testing are compared with respect
to different fault categories (specification, implementation, application) identified
during evaluation.

1 Introduction

Designing highly reliable embedded systems is a challenge. The greatest challenge
is seen by many developers in the software part of embedded systems [Sto96].
In the domain of embedded systems, more and more systems require certain
levels of reliability as for example future drive-by-wire systems in the automotive
industry. These embedded systems are subject to strong development constraints.
Aspects as low cost, variant management, and (hard) real-time requirements
have to be considered. In this context, applications of specific software reliability
improvement1 measures are needed. In this report2, we will have a closer look at
the application of three important approaches, namely N-version programming
(NVP)3, testing and review.

The approach of NVP, firstly introduced by [CA77] seems very promising,
but in the well known experiment of Knight and Leveson [KL86] it has been
shown that developers tend to make the same faults. Different approaches mod-
eling this dependency structure (e.g. [LM89]) and corresponding empirical stud-
ies [BBvdM04,CL04] are known which allow certain (model-based) predictions
of failure probabilities in NVP systems. Other approaches try to decrease the
dependencies between the different software versions. One of these approaches is
”forced diversity” introduced by [LM89] with an empirical evaluation in [LH93].
The basic assumption is that different development methodologies lead to di-
versity in decision and thus diversity in the behavior of the resulting product.

1 in this context reliability is usually achieved by functional correctness
2 A short version of this report has been published in [SK07a]
3 As a matter of course, testing and review are needed in NVP also, but we will analyze the

potentials of these approaches separately and discuss benefits of combinations afterwards.

However, recent publications [LPS99,SWK06] show, that even these improved
approaches can lead to undesired dependencies between the diverse software ver-
sions. The approach of diverse NVP used for the evaluation in this report is based
on different hardware platforms used in today’s embedded systems. Beside classi-
cal platforms as microcontrollers (MCU), nowadays programmable logic devices
(PLD) as CPLDs and FPGAs offer interesting alternatives for several applica-
tions which were not available before at reasonable conditions. Designing systems
on basis of PLDs differs a lot from designing the same task on MCUs which of-
fers possibilities to force a certain amount of diversity. Therefore, the effect of
this additional diversity on NVP has been analyzed with the help of experiments
conducted at our institute which are described in Section 2.

Testing, as the second approach investigated, can be applied at different
stages in the design cycle and is currently one of the most important means
of verification in embedded systems [PvSK90]. The disadvantage of all testing
approaches is that in typical applications not every possible input combination
can be checked. Embedded systems are often real-time systems which compli-
cates the testing process additionally. Not only the values and the timing of the
actual inputs but also previous inputs (values and timing) can affect the outputs
increasing the amount of test cases needed. Additionally, at least the system test
has to be done at hardware interfaces which makes particular test interfaces nec-
essary. Special approaches as for example design for testability [VWVW96] try to
overcome these problems, however, real-time properties are still a challenge for
many testing approaches. The evaluation in this report applies black box testing
with an automatic test environment designed for this purpose and focuses on the
general potentials of testing (see Section 2).

Different approaches of reviews are well known [Fag76,PvSK90] and applied
in industry. The idea is to inspect code, written by another person, to reveal
problems in the code (insufficient documentation, bad code structure, potential
risks as division by zero, undesired overflows, etc.) and to identify inconsistencies
with the specification. Reviews offer chances to identify problems with respect
to functional requirements, but also with respect to non-functional requirements
as maintainability and reliability. However, the result of each review process
depends a lot on the persons used as reviewers and their review performance is
hard to quantify. If real-time properties have to be considered, as often necessary
in embedded systems, additional challenges have to be met in the review process.
Especially the time, which is needed for the execution of sequential code, is hard
to determine not to speak of program parts which can be disrupted by interrupts
at any time. In this report we investigate the potentials of code inspection. Details
of the review-technique used can be found in Section 2.

The option of using as many of these approaches as possible seems promising
but is resulting in high costs (development time and human resources). Since in
many embedded applications reasonable costs of the resulting products have to be
achieved (as in the mentioned automotive domain), evaluations which investigate
the potentials of different approaches and their combinations to prevent failures
are needed. This investigation is done for example in [LPS00,PSL00] in which
an NVP approach is compared with one ”good version” based on a reliability
growth model. According to these results, both approaches could lead to better
results. To achieve further results with respect to these problems of software

4

reliability, we conducted controlled experiments based on an automotive real-
time application investigating applications of diverse hardware NVP, review and
testing and evaluated the potentials for reliability improvement of these different
approaches.

The remaining report is structured as follows: In Section 2, the designs of the
experiments used for the comparing analyses are presented while the following
Section 3 presents the results of these experiments. Based on these results, we
conducted a categorization of the faults handled with the different approaches
in Section 4 and discussed potentials of the different approaches. Finally, we
discussed the validity of the results in Section 5 and conclude with Section 6.

2 Design of Experiments

In this section, the experiments conducted at our institute are presented briefly.
They were used to obtain the empirical data needed for the comparing evalua-
tion of the different approaches of reliability improvement accomplished in later
sections of this report.

2.1 NVP-Experiments

A first experiment with respect to diverse hardware NVP has been conducted at
our institute and has been described in [SWK06]. In order to validate the results
and to investigate additional aspects, the experiment was replicated in a modified
form. This second experiment took place in winter term 2005/2006 with 24 com-
puter science students (5th semester or higher) forming 12 groups. In this experi-
ment, MCUs and FPGAs were used as diverse hardware platforms and each group
had to program both hardware platforms starting with a platform picked ran-
domly (6 groups started with MCUs, 6 groups started with FPGAs). While the
task of the first experiment was mainly the frequency measurement of four inde-
pendent speed signals and a communication via CAN bus (see [SWK05,SWK06]
for details), the task of the second experiment had been extended with 6 addi-
tional tasks in order to increase the complexity of the application. Those tasks
contained the generation and integration of additional information in the CAN
message (mark old values, identify certain scenarios) and interaction with the
user via three buttons (BTNA, BTNB, BTNC) resulting in an output of cer-
tain process values on LEDs in real-time (BTNA) or additional CAN messages
(BTNB: a test message including a test counter which had to be incremented
with each test message sent, BTNC: a message containing peak values of the
input signals). For more information, see also device under test in Fig. 1.

2.2 Test&Review Experiment

The aim of this experiment was to identify which types of faults could be identi-
fied by review and by testing respectively. The experiment took place in winter
term 2006/2007 during a lab course with 19 computer science students (5th
semester or higher) forming 12 groups. Each group had to program the same
task as used in the second NVP-experiment described above. However, only the
microcontroller hardware was used for implementation which took part in the
first half of the lab course. The second half of the lab course was used for review

5

and testing which was organized as follows: Randomly, each group was assigned a
version for review and another version for testing. The versions were anonymised
to avoid interaction between the implementation and the verification group and
it was assured that no group checked their own version. Half of the groups started
with review while the other half started with testing in order to mask out effects
of execution order and to reduce the number of test equipment needed for the
experiment. After three weeks (three appointments with 3h each) the groups
changed from testing to review and vice versa. In the last two weeks, all groups
had the chance to improve their own version on basis of the review and test
reports. In the following, the test and review process used in the experiment will
be presented briefly.

For testing, all six test groups were equipped with an own automated test
environment similar to the one used for evaluation (see Fig. 1 and Section 2.3).
In this case, the functions of the microcontroller (MCU) and the FPGA were
combined on a single FPGA and the test signal generation excluded the signals
for the three buttons (had to be activated manually) to allow a simpler hard-
ware platform for the test environment. Each group received a documentation
for the test environment and an empty test report form. Additionally, all test
groups received the machine code for testing and an empty test report form. The
following aspects had to be filled out in every test report:

– requirements tested + results

– requirements not tested + reasons

– scenarios identified which could lead to problems + results

– quality of version tested (range 1..5, subjective opinion of the reviewers)

– final remarks concerning implementation and specification

This given form of the report helped the students during test case creation and
eased the later analysis of all test reports for the evaluation.

As in the case of testing, every review group received an empty review report
form, a short review instruction and the source code to review. Additionally they
received the corresponding documentation which should help them to understand
the code if necessary. The review report form covered the same aspects as in case
of the test report and an additional grading of the reviewability.

2.3 Experiment Evaluation

Two different kinds of tests were applied during all experiments: acceptance tests
and evaluation tests.

In order to receive versions with a certain minimum level of quality, each
version had to pass an automated acceptance test. While this test consisted
of 20 frequencies generated randomly in the first experiment (equal values for
all inputs), a semi automated acceptance test was used for the second and third
experiment (8 different representative input combinations generated by an FPGA
programmed for this purpose). If a group failed this test, the group members had
the chance to improve their implementation and try another acceptance test.
However, an overall number of 5 groups did not pass the acceptance tests. For
this reason only 55 of the 60 overall versions were considered for the evaluations
presented in this report (see Fig. 2 for details).

6

The following comprehensive evaluation test was used to determine the fail-
ures in all accepted versions. The failures identified during this evaluation test
were used for the later reliability4 evaluation. The versions were tested by an
automatic real-time test environment designed for this purpose (see Fig. 1). The
basic function of the test environment was to generate the physical signals (re-
set, 4 individual frequencies and 3 button signals) needed as an input for the
device under test (DUT) and to record the CAN output of the DUT as shown in
Fig. 1. Different test cases based on the black-box approach (random values, ex-
treme values, values representing certain scenarios and environment conditions)
have been used during evaluation with an overall number of more than 54000
lines of test data5. The black box approach was used, since all versions had to
be treated in the same way to avoid external influences with respect to the ex-
periment results. Further details of the evaluation and challenges resulting from
real-time requirements and specific properties of embedded systems can be found
in [SK07c].

MCU

FPGA CAN CAN

Reset

MCU
OR

.

Device under Test

Test Bench

PC

Device programming

4x Frequ.

3x BTN FPGA

Fig. 1. Test environment used for evaluation

3 Experiment Results

As already mentioned before, all versions which passed the acceptance test were
evaluated by using the automatic test environment described in section 2.3. The
failures found during this evaluation are presented in the following.

3.1 First experiment (NVP)

The results of our first NVP experiment showed high numbers of dependent
failures [SWK06]. For the analysis in this report we took a closer look at the

4 in this application high reliability is resulting from functional correctness
5 one line of test data = one set of input values + time span these input values are present at

the inputs

7

most recent common mode failures6 and listed them in Fig. 2 (Exp.1). The first
failure mentioned in this table was present in the first messages after reset in
all MCU and one CPLD version. The behavior after reset was not explicitly
specified (resulting in the same requirements as during runtime) which could
have led to this failure. Another reason could be seen in improper initialization
methods, especially in case of the MCUs. According to the parallel structure of
the CPLD and the fact that less initializations are needed in case of this type of
hardware (no interrupt handlers, timers, etc have to be initialized) this specific
fault occurred only in one CPLD version. Therefore, forced diversity by different
hardware platforms was successful in this case.

The following failures (No. 2-4) result from not considering certain input
situations like very low, very high or changing inputs. These failures occurred in
many MCU and CPLD versions, however, differences can be seen between both
hardware platforms. In CPLD versions the use of different measurement intervals
was usually avoided (most probably because it was complicated to implement on
this hardware platform). For this reason, changes of the input frequencies were
handled faster with CPLDs (No. 4) coming at the cost that the accuracy in case
of low input frequencies is insufficient (No. 2).

Although these failures occurred in MCUs and CPLDs with different inten-
sity, it cannot be concluded that they guarantee diversity. Depending on the
combination of versions, any failure mentioned could occur on both hardware
platforms.

3.2 Second experiment (NVP, extended task)

A more complex task was used for the second NVP experiment as presented
in Section 2. To avoid the comparatively simple errors (overflows, etc.) found
in the first experiment, we conducted a stronger acceptance test in this second
experiment. The results can be seen clearly in Fig. 2 (Exp.2, No. 2 and 3): Over-
flows were detected by the acceptance test as well as most of the problems with
low frequency input. As before, a high number of dependent failures occurred as
presented in Fig. 2 (Exp.2, No. 4, 5, 6). It seems that the additional functional-
ity added increased the problems of response times and accuracy, especially in
FPGA versions (compared to CPLD, No. 4). Further on, a common mode fail-
ure could be identified in the additional tasks (No. 10). Several versions did not
implement the test message counter as specified starting with an incorrect value.
The second failure within the test message (No. 11) was hardware dependent
and occurred in FPGA versions only.

Obviously, some fault sources identified are implementation depended (No.
1, 6-12) while others are implementation independent (No. 2, 3-5). According
to our results, the NVP approach applied might be more suitable to mitigate
implementation specific faults. These issues will be looked at closer in Section 4.

3.3 Third experiment (Test & Review, extended task)

The failures, present in the majority of the versions created in the NVP exper-
iments, seem to be found easily as soon as they have been identified once. Fur-
thermore, we had added ambiguous statements to the specification which had

6 failure as a result of similar faults in different redundant modules [Sto96]

8

No. Failure describtion
Type of

problem

versions with this failure

Exp. 1* Exp. 2 Exp.3

MCU CPLD MCU FPGA MCU

1
Wrong or delayed CAN messages after reset, especially if the

input signal frequency is high.

Impl./

Spec.
100% 10% 36% 20% 25%

2

Wrong values in the CAN message as soon as input signals are

of very low frequency (<5Hz). measurement interval probably

too short

Appl. 33% 80% 18% 40% 25%

3

Wrong values in the CAN message as soon as input signals are

close above the maximum frequency explicilty specified.

Overflows or wrong determination of maximum output value

Impl./

Appl.
42% 20% 0% 0% 0%

4
Missing or delayed CAN messages or messages with wrong

values if subsequent input signal values change quickly.
Appl. 83% 40% 91% 100% 75%

5

Wrong or delayed results as soon as different values are fed

into the four measurement channels while changes of

subsequent input signal values are limited to ~3.5% (200Hz) of

the max. frequency et al.: faulty determination of the

measurement interval

Appl. n.a. n.a. 82% 90% 75%

6
Test cases with only equal test values at all inputs do not

always lead to 4 identical results (not necessarily a failure).
Impl. 33% 30% 64% 20% 42%

7
Device stops sending of CAN messages as soon as the input

frequency has been above a certain threshold**
Impl. 0% 0% 9% 0% 0%

8 No messages after reset if the input signal frequency is low Impl. 0% 0% 0% 0% 8%

9

Device stops sending of CAN messages as soon as two buttons

are pressed sequentially with high frequency probably

leading to an undefined state in state machine

Impl. n.a. n.a. 0% 10% 0%

10

Testmessage counter does not always start with 0 as specified

 at least in some cases: faulty interaction between

testmessage counter and sending method

Impl. n.a. n.a. 27% 60% 17%

11

Testmessage counter is not incremented correctly (is

incremented by more than 1) faulty interaction between

testmessage counter and sending method

Impl. n.a. n.a. 0% 60% 0%

12
User input via buttons changes the number of wrong values for

the worse real-time properties affected by user input
Impl. n.a. n.a. 27% 0% 8%

number of versions used for analysis: 12 10 11 10 12

* only elementary acceptance test

** close above the maximum input signal frequency explicitly specified if no button in pressed

Impl. = Implementation, Appl. = Application, Spec. = Specification

Exp.3: versions have been debugged according to individual test and review reports

Fig. 2. Failures found during Evaluation

by review by test by review by test

1
Spec.: Identify if one wheel is > 50% faster/slower than the other

wheel on the same axis: 50% faster 50% slower

ambigious

specification
1 0 1 1

2

Spec.: Send a CAN message containing the peak speed values

since the last request (…) : Not defined if values occuring during

test messages should be considered for peak value

determination

ambigious

specification
1 1 0 0

3
As above, but : Not defined if a second peak message must be

sent if the peak message process is interrupted

ambigious

specification
1 0 0 0

4
Spec: Displaying of values on LEDs : Not defined if LEDs must

be switched ON or OFF in case of a logic 1

ambigious

specification
2 0 0 0

5
Numbering of testmessage starts with 0x01 instead ot 0x00

(present in 5 versions, identified in 4 versions)

implementation

problem
3 1 0 0

6
Fast changes in the input frequencies lead to response times

longer than specified (present in all undebugged versions)

application

problem
8 9 0 0

7
CAN transmit LED is activated in cases in which no CAN

message is sent

implementation

problem
1 0 0 0

8
No CAN messages sent if input frequency is zero or very low

(present in at least two, identified in one version)

implementation

problem
1 1 0 0

ProblemNo.
identified directly identified indirectlyType of

problem

Fig. 3. Problems identified by review and test

9

not been identified by any experiment participant. For this reason we conducted
a third experiment including a verification part consisting of review and testing
as described above. The most common failures/problems identified during this
verification part are listed in Fig. 3. A high number of the failures result from
ambiguous statements in the specification (No. 1-4, Fig. 3). These problems oc-
curred in every review and testing process and one might wonder why they were
not identified by all of the groups. However, ambiguities were usually identified
only if the verification group understood the specification differently than the
implementation group which occurred only in the minority of the cases.

The problem according to fast changes of frequency values at the inputs
(No. 6) has been identified by 5 of the 6 initial review groups as well as by
5 of the 6 initial test groups. This results might have influenced the second
verification part, but surprisingly the problem was identified in less versions
in the second part of the verification (only 3/6 of review groups and 4/6 of test
groups identified the problem). However, it has to be mentioned that the resulting
failures according to this problem differ in intensity and might be easier to find
in some versions. Additionally, few review groups claimed that statements about
the timing behavior of the code were not possible by review.

Further implementation faults in one or more versions have been identified
(No. 5, 7, 8). Of special interest is problem No. 5, as it occurred in several versions:
A test counter should be realized starting with 0x00 and incrementing by 1 with
every CAN message sent. In 5 of the 12 undebugged versions the test counter did
not start with 0x00 but with 0x01. One reason for this failure was that the line
of code for the incrementation was placed incorrectly (incrementation took place
before the counter value was read the first time). This problem was identified in
4/5 of the versions, mostly by review.

In a last step, all experiment participants had the opportunity to improve
their versions. The results are listed in the last column of Fig. 2 (Exp.3). While
many failures were identified and removed, the mitigation of some failures (as No.
4 and 5 of Fig. 2) would have needed major changes in the software architecture.
According to limited time for these changes, many final versions of experiment 3
still contain faults (mostly: implementation cannot deal with fast changes of the
input values within the specified time).

4 Fault Classification & Potentials of the Approaches

During evaluation of the NVP experiment results, it became obvious that differ-
ent sources exist for the failures found. Those failure sources (faults) have been
identified as follows:

– Specification specific faults: the specification was misleading or ambigu-
ously.

– Application specific faults: application specific problems and challenges
have not been understood and thus have not been handled sufficiently (e.g.
forget to handle a certain scenario/input constellation).

– Implementation specific faults: specification and application specific prob-
lems have been identified correctly, but faults have been made during imple-
mentation (e.g. incomplete case structure).

10

The failures found in the NVP experiment have been analyzed with respect to
these fault categories and many implementation specific faults identified in Fig. 2
could be mitigated by diverse hardware NVP. However, even implementation
specific faults as No. 10 (test message counter, see Section 3.3) occurred in several
versions developed independently on diverse hardware platforms.

While it is stated in [BBvdM04] that the specification must be correct to allow
successful NVP, potentials of NVP to deal with specification problems are seen in
other publications [GR01]. Some specification specific faults could be tolerated by
diverse hardware NVP in our experiments, if one hardware platform was guiding
to the correct implementation, as it was the case for example in failure No.1
(Fig. 2) in the first experiment. Other specification specific faults can only be
found if different teams will interpret the specification differently. According to
our results, different developers interpret the specification differently, but we see
no hint that the majority of the resulting versions is correct. For this reason,
NVP might uncover specification problems, but redundancy concepts based on
majority voting, as for example a two out of three (2oo3, TMR) system, would
be probably no solution to mask the specification specific faults present in our
experiment data.

As a third fault category, we introduced application specific faults which
are, beside specification specific faults, a challenging problem in NVP. Despite
the immense effort put into different development processes, languages and pro-
gramming styles by using completely different hardware platforms in our NVP
experiments, several problems remained the same in all implementations leading
to identical wrong results in several cases. These problems (No. 2-5, Fig. 2) result
from the application itself, are implementation independent and thus cannot be
avoided by this approach of NVP. A solution might be functional diversity as de-
scribed in [LPS99] which offers higher independence of failure behavior according
to different functionalities implemented in the diverse software version (although
this approach still comprises certain risks of common mode failures [LPS99]).

In the following, the results of our application of NVP are compared with
those of the third experiment in which review and testing were applied for relia-
bility improvement. They were compared with the help of the failures presented
in Fig. 2 and Fig. 3 and the results, presented in Fig.4 qualitatively, are discussed
in the following.

As expected, diverse hardware NVP allowed to mitigate most of the imple-
mentation specific faults (e.g. No.7-9, 11, 12 in Fig. 2). One exception was the
implementation of the test counter (No. 10). This easy task was faulty in several
versions for the reasons already described. In case of review and testing, many,
but not all implementation specific problems were identified. In case of non real-
time tasks reviews uncovered more faults while testing was more successful in
case of real-time functionalities. For this reason, high potentials of implementa-
tion specific fault mitigation are assigned for NVP (not the best value according
to common mode failure described), closely followed by test and review, since
many implementation specific problems had not been identified by all review-
ers/testers.

Application specific faults were present in the majority of all versions, even in
those created on different hardware platforms. Some of these application specific
faults occurred less often on the first hardware while others were present less often

11

N
V

P

T
e
s
ti
n

g

R
e

v
ie

w

N
V

P

T
e
s
ti
n

g

R
e

v
ie

w

N
V

P

T
e

s
ti
n

g

R
e

v
ie

w

Low

Medium

High

Implementation

specific

Application

specific

Specification

specific

Fig. 4. Failure mitigation potentials of different approaches with respect to fault categories

on the other hardware. However, these differences were usually small (exceptions
are No.2, Exp.1 and No.6, Exp2. in Fig. 2). For this reason, only low to medium
potentials are seen for diverse hardware NVP to mitigate application specific
faults. On the other hand, testing and review discovered most application specific
problem as No.6 in Fig. 3. With respect to application specific faults, testing
showed a little more advantages in comparison to review since also unexpected
faults were identified during testing while reviewers typically concentrated on
finding known problems in the code.

Finally, specification specific faults were a problem for all three approaches.
In case of diverse hardware NVP, only few specification specific faults could be
avoided as described above. In case of testing and review, all known specification
problems had been identified, but in several cases only by a minority of the
groups (No.1-4 in Fig. 3). Review seemed to have the highest potentials to reveal
specification specific problems, since the specification had been analyzed closely
for review, while it was used only for test case generation in the test process.

Summarizing, diverse hardware NVP, review and testing showed different po-
tentials of fault mitigation with respect to the three categories of failure sources
as depicted in Fig. 4. While further empirical results are needed to help design-
ers of safety critical embedded software to apply the optimal combination of
reliability improvement approaches, the results of this report dealing with three
important approaches are a first step in this direction. Further on, the categoriza-
tion into specification specific, application specific and implementation specific
faults allows a useful and systematic comparison of the different approaches.

5 Threats on Validity

In the following two subsections, the results presented in this report were an-
alyzed with respect to internal and external validity. In this context, internal

validity represents the correctness of the experiment itself while external validity

represents portability of the results to other applications [WRH+00].

12

5.1 Threats on Internal Validity

With respect to the first two experiments (NVP) two threats on internal va-
lidity have to be considered. According to questionnaires, handed out at the
beginning and the end of all lab courses, students were more experienced in
C/microcontrollers than in VHDL/FPGAs. This different previous knowledge
was tried to adjust by a two day introductory course (described in [SWK05]) prior
to the experiment. The different skills in the programming languages might have
influenced the structure and complexity of the resulting codes and thus might
have influenced the results. Moreover, one compilation of VHDL code took up
to 2 min while C code was compiled in a few seconds. This aspect might have
influenced the development. Nevertheless, we do not see any threat on internal
validity since this is a given difference between FPGA and MCU programming.

Although the students were asked not to exchange information of their way
of review and test, this aspect could not be avoided completely and has to be
considered as threat on internal validity in the third experiment. Accordingly,
the number of groups which found a specific fault might have been smaller if
information exchange between the groups could have been avoided completely.

5.2 Threats on External Validity

As in any other experiment, the results could depend on the type and the com-
plexity of the task used. The task used in our experiments was an automotive
real-time application which, in our opinion had typical properties of small to
medium sized embedded applications. However, additional experiments are de-
sirable to minimize potential dependencies between the task and the results.

The faults found by review and testing might have been influenced by the
review technique used. In contrast to formalized reviews with several reviewers
as for example code inspection described in [Fag76] we used only two reviewers
and the guidelines for the reviewers were limited to the review report form.
For testing, black box testing was applied which is the most popular testing
technique for the verification of real-time systems, but other test techniques
might be possible. In both cases, review and testing, it has to be considered that
the students had implemented this application by themselves before and thus
had a good understanding of the problems which might have eased the review
and testing process.

Finally, an important point concerning external validity is the quality of
participants regarding experience and development knowledge. Although this
problem certainly is applicable on this experiment, the objective here was to
show a general difference of an effect. Using students for empirical evaluations is
a viable approach referring to [SAA+03]. In addition, in [BDW02] it is stated that
no difference of programming expertise between professional and non-professional
developers could be found, while [HRW00] states that at least last-year software
engineering students and professionals have a comparable assessment ability.

6 Conclusion and Future Work

6.1 Conclusion

Experiments have been conducted at our institute investigating the potentials of
applications of diverse hardware NVP, testing and reviews for embedded systems.

13

During the evaluation of our empirical results, three major fault categories were
identified, namely implementation specific, application specific and specification
specific faults. The three different approaches analyzed in this report showed
different potentials with respect to these three fault categories.

During the analysis of the two NVP experiments, high numbers of dependent
faults had been found which resulted from application specific faults. In other
words, the specification was correct and has been understood by the developer,
but during implementation similar or identical faults have been introduced into
many of the versions developed independently on different hardware platforms.
The reason for this common mode failures are application specific difficulties,
which exist independently from the implementation. A similar problem exists for
specification specific problems. Although often stated that a correct specification
is mandatory for the NVP approach, several ambiguities could be uncovered by
NVP, or even mitigated by an implementation on one hardware platform (No.1,
Exp1, Fig. 2). However, our results show no hint that the majority of implemen-
tations delivers correct results with respect to the intended behavior (leading to
the mentioned problem for approaches based on majority voting). For the third
fault category, namely implementation specific faults, it had been expected that
diverse hardware NVP would allow maximum diversity between the faults in the
different versions. However, even in this case in which the specification was cor-
rect and easy to understand and no application specific difficulties were present,
at least one common mode failure has been introduced in several versions (No.10
in Fig. 2). Review and testing showed medium to high potentials with respect
to all three fault categories. With respect to specification specific faults, reviews
showed the highest potentials. It seems that during review the specification is
read more intensely than during testing in which the specification is used only
for test case generation. In case of application specific faults, testing showed
the highest potentials. A reason might be that, while review focuses on finding
known problems in the code, testing could reveal unexpected faults. In the case
of implementation specific faults, testing and review showed lower potentials for
reliability improvement than our NVP approach. These implementation specific
faults were often related to real-time requirements which are comparatively hard
to detect by testing and review.

Finally, the results have been discussed with respect to internal and external
validity. According to this discussion, it has to be mentioned that the aim of this
report is to emphasize the special advantages and disadvantages of the different
approaches presented in this report with respect to different sources of faults.
However, additional experiments are needed to support the results presented in
this report and investigations of other constructive (design processes, functional
diversity, specific architectures, etc.) and analytical (specific testing approaches,
model checking, etc.) reliability measures are desirable.

Summarizing, diverse hardware NVP was able to mitigate many (but not
all) implementation specific faults present in our experiments while potentials
to mitigate application and specification specific faults were comparatively low.
Reviews were especially useful to uncover problems in the specification while
testing was especially useful to detect application specific faults. To apply the
results, each safety critical application has to be analyzed carefully to determine
the application specific needs and potentials of fault mitigation. Based on this

14

analysis, in combination with empirical results as those presented in this report,
a combination of suitable approaches can be applied to achieve highly reliable
embedded software.

6.2 Future Work

The potentials of review and testing might be different for FPGAs. Approaches
of testing and of formal verification could benefit from the program structure of
these devices (e.g. no problems according to interrupts). Reviews might benefit
from possible separation of concerns in FPGAs (parallel structure) on the one
hand, but interaction between several parallel units in real-time might be harder
to understand on the other hand. These potentials are currently analyzed at our
institute [SK07b].

With the application of automatic code generation in the automotive indus-
try, the idea of using this code generated automatically as one version in an NVP
approach is arising. The second version would be implemented manually allowing
certain diversity (approach with two fail silent units programmed with diverse
software to avoid shut down of both units according to a software fault). This
approach might have advantages and should be further evaluated.

References

[BBvdM04] J.G.W. Bentley, P.G. Bishop, and M.J.P. van der Meulen. An empirical exploration
of the difficulty function. In Computer Safety, Reliability and Security (Safecomp),
2004.

[BDW02] Jean-Marie Burkhardt, Françoise Deétienne, and Susan Wiedenbeck. Object-
oriented program comprehension: Effect of expertise, task and phase. Empirical
Software Engineering, 7:115–156, 2002.

[CA77] L. Chen and A. Avizienis. On the implementation of n-version programming for
software fault tolerance during program execution. In International Computer
Software and Applications Conference (COMPSAC), 1977.

[CL04] X. Cai and M. R. Lyu. An empirical study on reliability modeling for diverse soft-
ware systems. In 15th International Symposium on Software Reliability Engineering
(ISSRE), 2004.

[Fag76] Michael Fagan. Design and code inspections to reduce errors in program develop-
ment. Technical report, IBM, 1976.

[GR01] K. E. Grosspietsch and A. Romanovsky. An evolutionary and adaptive approach
for n-version programming. In IEEE Euromicro Conference, 2001.

[HRW00] Martin Höst, Björn Regnell, and Claes Wohlin. Using students as subjects - a
comparative study of students and professionals in lead-time impact assessment.
Empirical Software Engineering, 5:201–214, 2000.

[KL86] J. C. Knight and N. G. Leveson. An experimental evaluation of the assumption of
independence in multiversion programming. IEEE Trans. Softw. Eng., 12, 1986.

[LH93] M. R. Lyu and Yu-Tao He. Improving the n-version programming process through
the evolution of a design paradigm. IEEE Transactions on Reliability, 42, 1993.

[LM89] B. Littlewood and D. R. Miller. Conceptual modeling of coincident failures in
multiversion software. In IEEE Trans. Softw. Eng., 1989.

[LPS99] B. Littlewood, P. Popov, and L. Strigini. A note on modelling functional diversity.
In Reliability Engineering an System Safety, 1999.

[LPS00] Bev Littlewood, Peter Popov, and Lorenzo Strigini. N-version design versus on
good version. In International Conference on Dependable Systems & Networks
(DSN), 2000.

[PSL00] Peter Popov, Lorenzo Strigini, and Bev Littlewood. Choosing between fault-
tolerance and increased v&v for improving reliability. In International Confer-
ence on Parallel and Distributed Processing Techniques and Applications (PDPTA),
2000.

15

[PvSK90] David L. Parnas, John van Schouwen, and Shu Po Kwan. Evaluation of safety-
critical software. Communications of the ACM, 33:636–648, 1990.

[SAA+03] Dag I. K. Sjøberg, Bente Anda, Erik Arisholm, Tore Dyb̊a, Magne Jørgensen,
Amela Karahasanović, and Marek Vokáč. Challenges and recommendations when
increasing the realism of controlled software engineering experiments. ESERNET
2001-2003, LNCS 2765, pages 24–38, 2003.

[SK07a] Falk Salewski and Stefan Kowalewski. Achieving highly reliable embedded software:
an empirical evaluation of different approaches. In Proceedings of SafeComp 2007,
Lecture Notes in Computer Science, 2007.

[SK07b] Falk Salewski and Stefan Kowalewski. The effect of hardware platform selection
on safety-critical software in embedded systems: Empirical evaluations. In IEEE
Second International Symposium on Industrial Embedded Systems (SIES), 2007.

[SK07c] Falk Salewski and Stefan Kowalewski. Testing issues in empirical reliability evalua-
tion of embedded real-time systems. In IEEE Real-Time and Embedded Technology
and Applications Symposium, WiP session (RTAS), 2007.

[Sto96] Neil Storey. Safety-Critical Computer Systems. Prentice Hall, 1996.
[SWK05] Falk Salewski, Dirk Wilking, and Stefan Kowalewski. Diverse hardware platforms

in embedded systems lab courses: A way to teach the differences. In First Workshop
on Embedded System Education (WESE), volume 2. SIGBED Review, 2005.

[SWK06] Falk Salewski, Dirk Wilking, and Stefan Kowalewski. The effect of diverse hardware
platforms on n-version programming in embedded systems - an empirical evalua-
tion. In 3rd International Workshop on Dependable Embedded Sytems (WDES),
2006.

[VWVW96] H.P.E. Vranken, M.F. Witteman, and R.C. Van Wuijtswinkel. Design for testa-
bility in hardware software systems. IEEE Design & Test of Computers, 13:79–86,
1996.

[WRH+00] Claes Wohlin, Per Runeson, Martin Höst, Magnus Ohlson, Björn Regnell, and An-
ders Wesslén. Experimentation in Software Engineering. Kluwer Academic Pub-
lishers, 2000.

16

Aachener Informatik-Berichte

This is the list of all technical reports since 1987. To obtain copies of reports

please consult

http://aib.informatik.rwth-aachen.de/ or send your request to: Informatik-

Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email: biblio@informatik.rwth-aachen.de

1987-01 ∗ Fachgruppe Informatik: Jahresbericht 1986

1987-02 ∗ David de Frutos Escrig, Klaus Indermark: Equivalence Relations of Non-

Deterministic Ianov-Schemes

1987-03 ∗ Manfred Nagl: A Software Development Environment based on Graph

Technology

1987-04 ∗ Claus Lewerentz, Manfred Nagl, Bernhard Westfechtel: On Integration

Mechanisms within a Graph-Based Software Development Environment

1987-05 ∗ Reinhard Rinn: Über Eingabeanomalien bei verschiedenen Inferenzmod-

ellen

1987-06 ∗ Werner Damm, Gert Döhmen: Specifying Distributed Computer Archi-

tectures in AADL*

1987-07 ∗ Gregor Engels, Claus Lewerentz, Wilhelm Schäfer: Graph Grammar En-

gineering: A Software Specification Method

1987-08 ∗ Manfred Nagl: Set Theoretic Approaches to Graph Grammars

1987-09 ∗ Claus Lewerentz, Andreas Schürr: Experiences with a Database System

for Software Documents

1987-10 ∗ Herbert Klaeren, Klaus Indermark: A New Implementation Technique

for Recursive Function Definitions

1987-11 ∗ Rita Loogen: Design of a Parallel Programmable Graph Reduction Ma-

chine with Distributed Memory

1987-12 J. Börstler, U. Möncke, R. Wilhelm: Table compression for tree automata

1988-01 ∗ Gabriele Esser, Johannes Rückert, Frank Wagner Gesellschaftliche As-

pekte der Informatik

1988-02 ∗ Peter Martini, Otto Spaniol: Token-Passing in High-Speed Backbone

Networks for Campus-Wide Environments

1988-03 ∗ Thomas Welzel: Simulation of a Multiple Token Ring Backbone

1988-04 ∗ Peter Martini: Performance Comparison for HSLAN Media Access Pro-

tocols

1988-05 ∗ Peter Martini: Performance Analysis of Multiple Token Rings

1988-06 ∗ Andreas Mann, Johannes Rückert, Otto Spaniol: Datenfunknetze

1988-07 ∗ Andreas Mann, Johannes Rückert: Packet Radio Networks for Data Ex-

change

1988-08 ∗ Andreas Mann, Johannes Rückert: Concurrent Slot Assignment Protocol

for Packet Radio Networks

1988-09 ∗ W. Kremer, F. Reichert, J. Rückert, A. Mann: Entwurf einer Netzw-

erktopologie für ein Mobilfunknetz zur Unterstützung des öffentlichen

Straßenverkehrs

1988-10 ∗ Kai Jakobs: Towards User-Friendly Networking

1988-11 ∗ Kai Jakobs: The Directory - Evolution of a Standard

1988-12 ∗ Kai Jakobs: Directory Services in Distributed Systems - A Survey

17

1988-13 ∗ Martine Schümmer: RS-511, a Protocol for the Plant Floor

1988-14 ∗ U. Quernheim: Satellite Communication Protocols - A Performance

Comparison Considering On-Board Processing

1988-15 ∗ Peter Martini, Otto Spaniol, Thomas Welzel: File Transfer in High Speed

Token Ring Networks: Performance Evaluation by Approximate Analysis

and Simulation

1988-16 ∗ Fachgruppe Informatik: Jahresbericht 1987

1988-17 ∗ Wolfgang Thomas: Automata on Infinite Objects

1988-18 ∗ Michael Sonnenschein: On Petri Nets and Data Flow Graphs

1988-19 ∗ Heiko Vogler: Functional Distribution of the Contextual Analysis in

Block-Structured Programming Languages: A Case Study of Tree Trans-

ducers

1988-20 ∗ Thomas Welzel: Einsatz des Simulationswerkzeuges QNAP2 zur Leis-

tungsbewertung von Kommunikationsprotokollen

1988-21 ∗ Th. Janning, C. Lewerentz: Integrated Project Team Management in a

Software Development Environment

1988-22 ∗ Joost Engelfriet, Heiko Vogler: Modular Tree Transducers

1988-23 ∗ Wolfgang Thomas: Automata and Quantifier Hierarchies

1988-24 ∗ Uschi Heuter: Generalized Definite Tree Languages

1989-01 ∗ Fachgruppe Informatik: Jahresbericht 1988

1989-02 ∗ G. Esser, J. Rückert, F. Wagner (Hrsg.): Gesellschaftliche Aspekte der

Informatik

1989-03 ∗ Heiko Vogler: Bottom-Up Computation of Primitive Recursive Tree

Functions

1989-04 ∗ Andy Schürr: Introduction to PROGRESS, an Attribute Graph Gram-

mar Based Specification Language

1989-05 J. Börstler: Reuse and Software Development - Problems, Solutions, and

Bibliography (in German)

1989-06 ∗ Kai Jakobs: OSI - An Appropriate Basis for Group Communication?

1989-07 ∗ Kai Jakobs: ISO’s Directory Proposal - Evolution, Current Status and

Future Problems

1989-08 ∗ Bernhard Westfechtel: Extension of a Graph Storage for Software Doc-

uments with Primitives for Undo/Redo and Revision Control

1989-09 ∗ Peter Martini: High Speed Local Area Networks - A Tutorial

1989-10 ∗ P. Davids, Th. Welzel: Performance Analysis of DQDB Based on Simu-

lation

1989-11 ∗ Manfred Nagl (Ed.): Abstracts of Talks presented at the WG ’89 15th

International Workshop on Graphtheoretic Concepts in Computer Sci-

ence

1989-12 ∗ Peter Martini: The DQDB Protocol - Is it Playing the Game?

1989-13 ∗ Martine Schümmer: CNC/DNC Communication with MAP

1989-14 ∗ Martine Schümmer: Local Area Networks for Manufactoring Environ-

ments with hard Real-Time Requirements

1989-15 ∗ M. Schümmer, Th. Welzel, P. Martini: Integration of Field Bus and

MAP Networks - Hierarchical Communication Systems in Production

Environments

1989-16 ∗ G. Vossen, K.-U. Witt: SUXESS: Towards a Sound Unification of Ex-

tensions of the Relational Data Model

18

1989-17 ∗ J. Derissen, P. Hruschka, M.v.d. Beeck, Th. Janning, M. Nagl: Integrat-

ing Structured Analysis and Information Modelling

1989-18 A. Maassen: Programming with Higher Order Functions

1989-19 ∗ Mario Rodriguez-Artalejo, Heiko Vogler: A Narrowing Machine for Syn-

tax Directed BABEL

1989-20 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Graph-based Implementation of a Functional Logic Language

1990-01 ∗ Fachgruppe Informatik: Jahresbericht 1989

1990-02 ∗ Vera Jansen, Andreas Potthoff, Wolfgang Thomas, Udo Wermuth: A

Short Guide to the AMORE System (Computing Automata, MOnoids

and Regular Expressions)

1990-03 ∗ Jerzy Skurczynski: On Three Hierarchies of Weak SkS Formulas

1990-04 R. Loogen: Stack-based Implementation of Narrowing

1990-05 H. Kuchen, A. Wagener: Comparison of Dynamic Load Balancing Strate-

gies

1990-06 ∗ Kai Jakobs, Frank Reichert: Directory Services for Mobile Communica-

tion

1990-07 ∗ Kai Jakobs: What’s Beyond the Interface - OSI Networks to Support

Cooperative Work

1990-08 ∗ Kai Jakobs: Directory Names and Schema - An Evaluation

1990-09 ∗ Ulrich Quernheim, Dieter Kreuer: Das CCITT - Signalisierungssystem

Nr. 7 auf Satellitenstrecken; Simulation der Zeichengabestrecke

1990-11 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Lazy Narrowing in a Graph Machine

1990-12 ∗ Kai Jakobs, Josef Kaltwasser, Frank Reichert, Otto Spaniol: Der Com-

puter fährt mit

1990-13 ∗ Rudolf Mathar, Andreas Mann: Analyzing a Distributed Slot Assign-

ment Protocol by Markov Chains

1990-14 A. Maassen: Compilerentwicklung in Miranda - ein Praktikum in funk-

tionaler Programmierung (written in german)

1990-15 ∗ Manfred Nagl, Andreas Schürr: A Specification Environment for Graph

Grammars

1990-16 A. Schürr: PROGRESS: A VHL-Language Based on Graph Grammars

1990-17 ∗ Marita Möller: Ein Ebenenmodell wissensbasierter Konsultationen - Un-

terstützung für Wissensakquisition und Erklärungsfähigkeit

1990-18 ∗ Eric Kowalewski: Entwurf und Interpretation einer Sprache zur Beschrei-

bung von Konsultationsphasen in Expertensystemen

1990-20 Y. Ortega Mallen, D. de Frutos Escrig: A Complete Proof System for

Timed Observations

1990-21 ∗ Manfred Nagl: Modelling of Software Architectures: Importance, No-

tions, Experiences

1990-22 H. Fassbender, H. Vogler: A Call-by-need Implementation of Syntax Di-

rected Functional Programming

1991-01 Guenther Geiler (ed.), Fachgruppe Informatik: Jahresbericht 1990

1991-03 B. Steffen, A. Ingolfsdottir: Characteristic Formulae for Processes with

Divergence

1991-04 M. Portz: A new class of cryptosystems based on interconnection net-

works

19

1991-05 H. Kuchen, G. Geiler: Distributed Applicative Arrays

1991-06 ∗ Ludwig Staiger: Kolmogorov Complexity and Hausdorff Dimension

1991-07 ∗ Ludwig Staiger: Syntactic Congruences for w-languages

1991-09 ∗ Eila Kuikka: A Proposal for a Syntax-Directed Text Processing System

1991-10 K. Gladitz, H. Fassbender, H. Vogler: Compiler-based Implementation

of Syntax-Directed Functional Programming

1991-11 R. Loogen, St. Winkler: Dynamic Detection of Determinism in Func-

tional Logic Languages

1991-12 ∗ K. Indermark, M. Rodriguez Artalejo (Eds.): Granada Workshop on the

Integration of Functional and Logic Programming

1991-13 ∗ Rolf Hager, Wolfgang Kremer: The Adaptive Priority Scheduler: A More

Fair Priority Service Discipline

1991-14 ∗ Andreas Fasbender, Wolfgang Kremer: A New Approximation Algorithm

for Tandem Networks with Priority Nodes

1991-15 J. Börstler, A. Zündorf: Revisiting extensions to Modula-2 to support

reusability

1991-16 J. Börstler, Th. Janning: Bridging the gap between Requirements Anal-

ysis and Design

1991-17 A. Zündorf, A. Schürr: Nondeterministic Control Structures for Graph

Rewriting Systems

1991-18 ∗ Matthias Jarke, John Mylopoulos, Joachim W. Schmidt, Yannis Vassil-

iou: DAIDA: An Environment for Evolving Information Systems

1991-19 M. Jeusfeld, M. Jarke: From Relational to Object-Oriented Integrity

Simplification

1991-20 G. Hogen, A. Kindler, R. Loogen: Automatic Parallelization of Lazy

Functional Programs

1991-21 ∗ Prof. Dr. rer. nat. Otto Spaniol: ODP (Open Distributed Processing):

Yet another Viewpoint

1991-22 H. Kuchen, F. Lücking, H. Stoltze: The Topology Description Language

TDL

1991-23 S. Graf, B. Steffen: Compositional Minimization of Finite State Systems

1991-24 R. Cleaveland, J. Parrow, B. Steffen: The Concurrency Workbench: A

Semantics Based Tool for the Verification of Concurrent Systems

1991-25 ∗ Rudolf Mathar, Jürgen Mattfeldt: Optimal Transmission Ranges for Mo-

bile Communication in Linear Multihop Packet Radio Networks

1991-26 M. Jeusfeld, M. Staudt: Query Optimization in Deductive Object Bases

1991-27 J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem

1991-28 J. Knoop, B. Steffen: Unifying Strength Reduction and Semantic Code

Motion

1991-30 T. Margaria: First-Order theories for the verification of complex FSMs

1991-31 B. Steffen: Generating Data Flow Analysis Algorithms from Modal Spec-

ifications

1992-01 Stefan Eherer (ed.), Fachgruppe Informatik: Jahresbericht 1991

1992-02 ∗ Bernhard Westfechtel: Basismechanismen zur Datenverwaltung in struk-

turbezogenen Hypertextsystemen

1992-04 S. A. Smolka, B. Steffen: Priority as Extremal Probability

1992-05 ∗ Matthias Jarke, Carlos Maltzahn, Thomas Rose: Sharing Processes:

Team Coordination in Design Repositories

20

1992-06 O. Burkart, B. Steffen: Model Checking for Context-Free Processes

1992-07 ∗ Matthias Jarke, Klaus Pohl: Information Systems Quality and Quality

Information Systems

1992-08 ∗ Rudolf Mathar, Jürgen Mattfeldt: Analyzing Routing Strategy NFP in

Multihop Packet Radio Networks on a Line

1992-09 ∗ Alfons Kemper, Guido Moerkotte: Grundlagen objektorientierter Daten-

banksysteme

1992-10 Matthias Jarke, Manfred Jeusfeld, Andreas Miethsam, Michael Gocek:

Towards a logic-based reconstruction of software configuration manage-

ment

1992-11 Werner Hans: A Complete Indexing Scheme for WAM-based Abstract

Machines

1992-12 W. Hans, R. Loogen, St. Winkler: On the Interaction of Lazy Evaluation

and Backtracking

1992-13 ∗ Matthias Jarke, Thomas Rose: Specification Management with CAD

1992-14 Th. Noll, H. Vogler: Top-down Parsing with Simultaneous Evaluation on

Noncircular Attribute Grammars

1992-15 A. Schuerr, B. Westfechtel: Graphgrammatiken und Graphersetzungssys-

teme(written in german)

1992-16 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Forschungsprojekte

des Graduiertenkollegs Informatik und Technik

1992-17 M. Jarke (ed.): ConceptBase V3.1 User Manual

1992-18 ∗ Clarence A. Ellis, Matthias Jarke (Eds.): Distributed Cooperation in

Integrated Information Systems - Proceedings of the Third International

Workshop on Intelligent and Cooperative Information Systems

1992-19-00 H. Kuchen, R. Loogen (eds.): Proceedings of the 4th Int. Workshop on

the Parallel Implementation of Functional Languages

1992-19-01 G. Hogen, R. Loogen: PASTEL - A Parallel Stack-Based Implementation

of Eager Functional Programs with Lazy Data Structures (Extended

Abstract)

1992-19-02 H. Kuchen, K. Gladitz: Implementing Bags on a Shared Memory MIMD-

Machine

1992-19-03 C. Rathsack, S.B. Scholz: LISA - A Lazy Interpreter for a Full-Fledged

Lambda-Calculus

1992-19-04 T.A. Bratvold: Determining Useful Parallelism in Higher Order Func-

tions

1992-19-05 S. Kahrs: Polymorphic Type Checking by Interpretation of Code

1992-19-06 M. Chakravarty, M. Köhler: Equational Constraints, Residuation, and

the Parallel JUMP-Machine

1992-19-07 J. Seward: Polymorphic Strictness Analysis using Frontiers (Draft Ver-

sion)

1992-19-08 D. Gärtner, A. Kimms, W. Kluge: pi-Redˆ+ - A Compiling Graph-

Reduction System for a Full Fledged Lambda-Calculus

1992-19-09 D. Howe, G. Burn: Experiments with strict STG code

1992-19-10 J. Glauert: Parallel Implementation of Functional Languages Using

Small Processes

1992-19-11 M. Joy, T. Axford: A Parallel Graph Reduction Machine

1992-19-12 A. Bennett, P. Kelly: Simulation of Multicache Parallel Reduction

21

1992-19-13 K. Langendoen, D.J. Agterkamp: Cache Behaviour of Lazy Functional

Programs (Working Paper)

1992-19-14 K. Hammond, S. Peyton Jones: Profiling scheduling strategies on the

GRIP parallel reducer

1992-19-15 S. Mintchev: Using Strictness Information in the STG-machine

1992-19-16 D. Rushall: An Attribute Grammar Evaluator in Haskell

1992-19-17 J. Wild, H. Glaser, P. Hartel: Statistics on storage management in a lazy

functional language implementation

1992-19-18 W.S. Martins: Parallel Implementations of Functional Languages

1992-19-19 D. Lester: Distributed Garbage Collection of Cyclic Structures (Draft

version)

1992-19-20 J.C. Glas, R.F.H. Hofman, W.G. Vree: Parallelization of Branch-and-

Bound Algorithms in a Functional Programming Environment

1992-19-21 S. Hwang, D. Rushall: The nu-STG machine: a parallelized Spineless

Tagless Graph Reduction Machine in a distributed memory architecture

(Draft version)

1992-19-22 G. Burn, D. Le Metayer: Cps-Translation and the Correctness of Opti-

mising Compilers

1992-19-23 S.L. Peyton Jones, P. Wadler: Imperative functional programming (Brief

summary)

1992-19-24 W. Damm, F. Liu, Th. Peikenkamp: Evaluation and Parallelization of

Functions in Functional + Logic Languages (abstract)

1992-19-25 M. Kesseler: Communication Issues Regarding Parallel Functional Graph

Rewriting

1992-19-26 Th. Peikenkamp: Charakterizing and representing neededness in func-

tional loginc languages (abstract)

1992-19-27 H. Doerr: Monitoring with Graph-Grammars as formal operational Mod-

els

1992-19-28 J. van Groningen: Some implementation aspects of Concurrent Clean on

distributed memory architectures

1992-19-29 G. Ostheimer: Load Bounding for Implicit Parallelism (abstract)

1992-20 H. Kuchen, F.J. Lopez Fraguas, J.J. Moreno Navarro, M. Rodriguez

Artalejo: Implementing Disequality in a Lazy Functional Logic Language

1992-21 H. Kuchen, F.J. Lopez Fraguas: Result Directed Computing in a Func-

tional Logic Language

1992-22 H. Kuchen, J.J. Moreno Navarro, M.V. Hermenegildo: Independent

AND-Parallel Narrowing

1992-23 T. Margaria, B. Steffen: Distinguishing Formulas for Free

1992-24 K. Pohl: The Three Dimensions of Requirements Engineering

1992-25 ∗ R. Stainov: A Dynamic Configuration Facility for Multimedia Commu-

nications

1992-26 ∗ Michael von der Beeck: Integration of Structured Analysis and Timed

Statecharts for Real-Time and Concurrency Specification

1992-27 W. Hans, St. Winkler: Aliasing and Groundness Analysis of Logic Pro-

grams through Abstract Interpretation and its Safety

1992-28 ∗ Gerhard Steinke, Matthias Jarke: Support for Security Modeling in In-

formation Systems Design

1992-29 B. Schinzel: Warum Frauenforschung in Naturwissenschaft und Technik

22

1992-30 A. Kemper, G. Moerkotte, K. Peithner: Object-Orientation Axiomatised

by Dynamic Logic

1992-32 ∗ Bernd Heinrichs, Kai Jakobs: Timer Handling in High-Performance

Transport Systems

1992-33 ∗ B. Heinrichs, K. Jakobs, K. Lenßen, W. Reinhardt, A. Spinner: Euro-

Bridge: Communication Services for Multimedia Applications

1992-34 C. Gerlhof, A. Kemper, Ch. Kilger, G. Moerkotte: Partition-Based Clus-

tering in Object Bases: From Theory to Practice

1992-35 J. Börstler: Feature-Oriented Classification and Reuse in IPSEN

1992-36 M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, Y. Vassiliou: Theories Un-

derlying Requirements Engineering: An Overview of NATURE at Gen-

esis

1992-37 ∗ K. Pohl, M. Jarke: Quality Information Systems: Repository Support for

Evolving Process Models

1992-38 A. Zuendorf: Implementation of the imperative / rule based language

PROGRES

1992-39 P. Koch: Intelligentes Backtracking bei der Auswertung funktional-

logischer Programme

1992-40 ∗ Rudolf Mathar, Jürgen Mattfeldt: Channel Assignment in Cellular Radio

Networks

1992-41 ∗ Gerhard Friedrich, Wolfgang Neidl: Constructive Utility in Model-Based

Diagnosis Repair Systems

1992-42 ∗ P. S. Chen, R. Hennicker, M. Jarke: On the Retrieval of Reusable Soft-

ware Components

1992-43 W. Hans, St.Winkler: Abstract Interpretation of Functional Logic Lan-

guages

1992-44 N. Kiesel, A. Schuerr, B. Westfechtel: Design and Evaluation of GRAS,

a Graph-Oriented Database System for Engineering Applications

1993-01 ∗ Fachgruppe Informatik: Jahresbericht 1992

1993-02 ∗ Patrick Shicheng Chen: On Inference Rules of Logic-Based Information

Retrieval Systems

1993-03 G. Hogen, R. Loogen: A New Stack Technique for the Management of

Runtime Structures in Distributed Environments

1993-05 A. Zündorf: A Heuristic for the Subgraph Isomorphism Problem in Ex-

ecuting PROGRES

1993-06 A. Kemper, D. Kossmann: Adaptable Pointer Swizzling Strategies in

Object Bases: Design, Realization, and Quantitative Analysis

1993-07 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Graduiertenkolleg In-

formatik und Technik

1993-08 ∗ Matthias Berger: k-Coloring Vertices using a Neural Network with Con-

vergence to Valid Solutions

1993-09 M. Buchheit, M. Jeusfeld, W. Nutt, M. Staudt: Subsumption between

Queries to Object-Oriented Databases

1993-10 O. Burkart, B. Steffen: Pushdown Processes: Parallel Composition and

Model Checking

1993-11 ∗ R. Große-Wienker, O. Hermanns, D. Menzenbach, A. Pollacks, S. Repet-

zki, J. Schwartz, K. Sonnenschein, B. Westfechtel: Das SUKITS-Projekt:

A-posteriori-Integration heterogener CIM-Anwendungssysteme

23

1993-12 ∗ Rudolf Mathar, Jürgen Mattfeldt: On the Distribution of Cumulated

Interference Power in Rayleigh Fading Channels

1993-13 O. Maler, L. Staiger: On Syntactic Congruences for omega-languages

1993-14 M. Jarke, St. Eherer, R. Gallersdoerfer, M. Jeusfeld, M. Staudt: Con-

ceptBase - A Deductive Object Base Manager

1993-15 M. Staudt, H.W. Nissen, M.A. Jeusfeld: Query by Class, Rule and Con-

cept

1993-16 ∗ M. Jarke, K. Pohl, St. Jacobs et al.: Requirements Engineering: An In-

tegrated View of Representation Process and Domain

1993-17 ∗ M. Jarke, K. Pohl: Establishing Vision in Context: Towards a Model of

Requirements Processes

1993-18 W. Hans, H. Kuchen, St. Winkler: Full Indexing for Lazy Narrowing

1993-19 W. Hans, J.J. Ruz, F. Saenz, St. Winkler: A VHDL Specification of a

Shared Memory Parallel Machine for Babel

1993-20 ∗ K. Finke, M. Jarke, P. Szczurko, R. Soltysiak: Quality Management for

Expert Systems in Process Control

1993-21 M. Jarke, M.A. Jeusfeld, P. Szczurko: Three Aspects of Intelligent Co-

operation in the Quality Cycle

1994-01 Margit Generet, Sven Martin (eds.), Fachgruppe Informatik: Jahres-

bericht 1993

1994-02 M. Lefering: Development of Incremental Integration Tools Using Formal

Specifications

1994-03 ∗ P. Constantopoulos, M. Jarke, J. Mylopoulos, Y. Vassiliou: The Software

Information Base: A Server for Reuse

1994-04 ∗ Rolf Hager, Rudolf Mathar, Jürgen Mattfeldt: Intelligent Cruise Control

and Reliable Communication of Mobile Stations

1994-05 ∗ Rolf Hager, Peter Hermesmann, Michael Portz: Feasibility of Authenti-

cation Procedures within Advanced Transport Telematics

1994-06 ∗ Claudia Popien, Bernd Meyer, Axel Kuepper: A Formal Approach to

Service Import in ODP Trader Federations

1994-07 P. Peters, P. Szczurko: Integrating Models of Quality Management Meth-

ods by an Object-Oriented Repository

1994-08 ∗ Manfred Nagl, Bernhard Westfechtel: A Universal Component for the

Administration in Distributed and Integrated Development Environ-

ments

1994-09 ∗ Patrick Horster, Holger Petersen: Signatur- und Authentifikationsver-

fahren auf der Basis des diskreten Logarithmusproblems

1994-11 A. Schürr: PROGRES, A Visual Language and Environment for PRO-

gramming with Graph REwrite Systems

1994-12 A. Schürr: Specification of Graph Translators with Triple Graph Gram-

mars

1994-13 A. Schürr: Logic Based Programmed Structure Rewriting Systems

1994-14 L. Staiger: Codes, Simplifying Words, and Open Set Condition

1994-15 ∗ Bernhard Westfechtel: A Graph-Based System for Managing Configura-

tions of Engineering Design Documents

1994-16 P. Klein: Designing Software with Modula-3

1994-17 I. Litovsky, L. Staiger: Finite acceptance of infinite words

24

1994-18 G. Hogen, R. Loogen: Parallel Functional Implementations: Graphbased

vs. Stackbased Reduction

1994-19 M. Jeusfeld, U. Johnen: An Executable Meta Model for Re-Engineering

of Database Schemas

1994-20 ∗ R. Gallersdörfer, M. Jarke, K. Klabunde: Intelligent Networks as a Data

Intensive Application (INDIA)

1994-21 M. Mohnen: Proving the Correctness of the Static Link Technique Using

Evolving Algebras

1994-22 H. Fernau, L. Staiger: Valuations and Unambiguity of Languages, with

Applications to Fractal Geometry

1994-24 ∗ M. Jarke, K. Pohl, R. Dömges, St. Jacobs, H. W. Nissen: Requirements

Information Management: The NATURE Approach

1994-25 ∗ M. Jarke, K. Pohl, C. Rolland, J.-R. Schmitt: Experience-Based Method

Evaluation and Improvement: A Process Modeling Approach

1994-26 ∗ St. Jacobs, St. Kethers: Improving Communication and Decision Making

within Quality Function Deployment

1994-27 ∗ M. Jarke, H. W. Nissen, K. Pohl: Tool Integration in Evolving Informa-

tion Systems Environments

1994-28 O. Burkart, D. Caucal, B. Steffen: An Elementary Bisimulation Decision

Procedure for Arbitrary Context-Free Processes

1995-01 ∗ Fachgruppe Informatik: Jahresbericht 1994

1995-02 Andy Schürr, Andreas J. Winter, Albert Zündorf: Graph Grammar En-

gineering with PROGRES

1995-03 Ludwig Staiger: A Tight Upper Bound on Kolmogorov Complexity by

Hausdorff Dimension and Uniformly Optimal Prediction

1995-04 Birgitta König-Ries, Sven Helmer, Guido Moerkotte: An experimental

study on the complexity of left-deep join ordering problems for cyclic

queries

1995-05 Sophie Cluet, Guido Moerkotte: Efficient Evaluation of Aggregates on

Bulk Types

1995-06 Sophie Cluet, Guido Moerkotte: Nested Queries in Object Bases

1995-07 Sophie Cluet, Guido Moerkotte: Query Optimization Techniques Ex-

ploiting Class Hierarchies

1995-08 Markus Mohnen: Efficient Compile-Time Garbage Collection for Arbi-

trary Data Structures

1995-09 Markus Mohnen: Functional Specification of Imperative Programs: An

Alternative Point of View of Functional Languages

1995-10 Rainer Gallersdörfer, Matthias Nicola: Improving Performance in Repli-

cated Databases through Relaxed Coherency

1995-11 ∗ M.Staudt, K.von Thadden: Subsumption Checking in Knowledge Bases

1995-12 ∗ G.V.Zemanek, H.W.Nissen, H.Hubert, M.Jarke: Requirements Analy-

sis from Multiple Perspectives: Experiences with Conceptual Modeling

Technology

1995-13 ∗ M.Staudt, M.Jarke: Incremental Maintenance of Externally Materialized

Views

1995-14 ∗ P.Peters, P.Szczurko, M.Jeusfeld: Oriented Information Management:

Conceptual Models at Work

25

1995-15 ∗ Matthias Jarke, Sudha Ram (Hrsg.): WITS 95 Proceedings of the 5th

Annual Workshop on Information Technologies and Systems

1995-16 ∗ W.Hans, St.Winkler, F.Saenz: Distributed Execution in Functional Logic

Programming

1996-01 ∗ Jahresbericht 1995

1996-02 Michael Hanus, Christian Prehofer: Higher-Order Narrowing with Defi-

nitional Trees

1996-03 ∗ W.Scheufele, G.Moerkotte: Optimal Ordering of Selections and Joins in

Acyclic Queries with Expensive Predicates

1996-04 Klaus Pohl: PRO-ART: Enabling Requirements Pre-Traceability

1996-05 Klaus Pohl: Requirements Engineering: An Overview

1996-06 ∗ M.Jarke, W.Marquardt: Design and Evaluation of Computer–Aided Pro-

cess Modelling Tools

1996-07 Olaf Chitil: The Sigma-Semantics: A Comprehensive Semantics for Func-

tional Programs

1996-08 ∗ S.Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics

1996-09 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP96 - Fifth

International Conference on Algebraic and Logic Programming

1996-09-0 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP 96 -

Fifth International Conference on Algebraic and Logic Programming:

Introduction and table of contents

1996-09-1 Ilies Alouini: An Implementation of Conditional Concurrent Rewriting

on Distributed Memory Machines

1996-09-2 Olivier Danvy, Karoline Malmkjær: On the Idempotence of the CPS

Transformation

1996-09-3 Vı́ctor M. Guĺıas, José L. Freire: Concurrent Programming in Haskell

1996-09-4 Sébastien Limet, Pierre Réty: On Decidability of Unifiability Modulo

Rewrite Systems

1996-09-5 Alexandre Tessier: Declarative Debugging in Constraint Logic Program-

ming

1996-10 Reidar Conradi, Bernhard Westfechtel: Version Models for Software Con-

figuration Management

1996-11 ∗ C.Weise, D.Lenzkes: A Fast Decision Algorithm for Timed Refinement

1996-12 ∗ R.Dömges, K.Pohl, M.Jarke, B.Lohmann, W.Marquardt: PRO-

ART/CE* — An Environment for Managing the Evolution of Chemical

Process Simulation Models

1996-13 ∗ K.Pohl, R.Klamma, K.Weidenhaupt, R.Dömges, P.Haumer, M.Jarke: A

Framework for Process-Integrated Tools

1996-14 ∗ R.Gallersdörfer, K.Klabunde, A.Stolz, M.Eßmajor: INDIA — Intelligent

Networks as a Data Intensive Application, Final Project Report, June

1996

1996-15 ∗ H.Schimpe, M.Staudt: VAREX: An Environment for Validating and Re-

fining Rule Bases

1996-16 ∗ M.Jarke, M.Gebhardt, S.Jacobs, H.Nissen: Conflict Analysis Across Het-

erogeneous Viewpoints: Formalization and Visualization

1996-17 Manfred A. Jeusfeld, Tung X. Bui: Decision Support Components on the

Internet

26

1996-18 Manfred A. Jeusfeld, Mike Papazoglou: Information Brokering: Design,

Search and Transformation

1996-19 ∗ P.Peters, M.Jarke: Simulating the impact of information flows in net-

worked organizations

1996-20 Matthias Jarke, Peter Peters, Manfred A. Jeusfeld: Model-driven plan-

ning and design of cooperative information systems

1996-21 ∗ G.de Michelis, E.Dubois, M.Jarke, F.Matthes, J.Mylopoulos, K.Pohl,

J.Schmidt, C.Woo, E.Yu: Cooperative information systems: a manifesto

1996-22 ∗ S.Jacobs, M.Gebhardt, S.Kethers, W.Rzasa: Filling HTML forms simul-

taneously: CoWeb architecture and functionality

1996-23 ∗ M.Gebhardt, S.Jacobs: Conflict Management in Design

1997-01 Michael Hanus, Frank Zartmann (eds.): Jahresbericht 1996

1997-02 Johannes Faassen: Using full parallel Boltzmann Machines for Optimiza-

tion

1997-03 Andreas Winter, Andy Schürr: Modules and Updatable Graph Views for

PROgrammed Graph REwriting Systems

1997-04 Markus Mohnen, Stefan Tobies: Implementing Context Patterns in the

Glasgow Haskell Compiler

1997-05 ∗ S.Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-

tische Spezifikation inkrementeller Integrationswerkzeuge

1997-06 Matthias Nicola, Matthias Jarke: Design and Evaluation of Wireless

Health Care Information Systems in Developing Countries

1997-07 Petra Hofstedt: Taskparallele Skelette für irregulär strukturierte Prob-

leme in deklarativen Sprachen

1997-08 Dorothea Blostein, Andy Schürr: Computing with Graphs and Graph

Rewriting

1997-09 Carl-Arndt Krapp, Bernhard Westfechtel: Feedback Handling in Dy-

namic Task Nets

1997-10 Matthias Nicola, Matthias Jarke: Integrating Replication and Commu-

nication in Performance Models of Distributed Databases

1997-11 ∗ R. Klamma, P. Peters, M. Jarke: Workflow Support for Failure Manage-

ment in Federated Organizations

1997-13 Markus Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs

1997-14 Roland Baumann: Client/Server Distribution in a Structure-Oriented

Database Management System

1997-15 George Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms

1998-01 ∗ Fachgruppe Informatik: Jahresbericht 1997

1998-02 Stefan Gruner, Manfred Nagel, Andy Schürr: Fine-grained and

Structure-Oriented Document Integration Tools are Needed for Devel-

opment Processes

1998-03 Stefan Gruner: Einige Anmerkungen zur graphgrammatischen Spezifika-

tion von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und

Schürr

1998-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments

1998-05 Martin Leucker, Stephan Tobies: Truth - A Verification Platform for

Distributed Systems

27

1998-06 ∗ Matthias Oliver Berger: DECT in the Factory of the Future

1998-07 M. Arnold, M. Erdmann, M. Glinz, P. Haumer, R. Knoll, B. Paech, K.

Pohl, J. Ryser, R. Studer, K. Weidenhaupt: Survey on the Scenario Use

in Twelve Selected Industrial Projects

1998-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am

Beispiel intraoraler Radiographien

1998-10 ∗ M. Nicola, M. Jarke: Performance Modeling of Distributed and Repli-

cated Databases

1998-11 ∗ Ansgar Schleicher, Bernhard Westfechtel, Dirk Jäger: Modeling Dynamic

Software Processes in UML

1998-12 ∗ W. Appelt, M. Jarke: Interoperable Tools for Cooperation Support using

the World Wide Web

1998-13 Klaus Indermark: Semantik rekursiver Funktionsdefinitionen mit Strik-

theitsinformation

1999-01 ∗ Jahresbericht 1998

1999-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version

1999-03 ∗ R. Gallersdörfer, M. Jarke, M. Nicola: The ADR Replication Manager

1999-04 Maŕıa Alpuente, Michael Hanus, Salvador Lucas, Germán Vidal: Spe-

cialization of Functional Logic Programs Based on Needed Narrowing

1999-05 ∗ W. Thomas (Ed.): DLT 99 - Developments in Language Theory Fourth

International Conference

1999-06 ∗ Kai Jakobs, Klaus-Dieter Kleefeld: Informationssysteme für die ange-

wandte historische Geographie

1999-07 Thomas Wilke: CTL+ is exponentially more succinct than CTL

1999-08 Oliver Matz: Dot-Depth and Monadic Quantifier Alternation over Pic-

tures

2000-01 ∗ Jahresbericht 1999

2000-02 Jens Vöge, Marcin Jurdzinski A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-03 D. Jäger, A. Schleicher, B. Westfechtel: UPGRADE: A Framework for

Building Graph-Based Software Engineering Tools

2000-04 Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 Mareike Schoop: Cooperative Document Management

2000-06 Mareike Schoop, Christoph Quix (eds.): Proceedings of the Fifth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2000-07 ∗ Markus Mohnen, Pieter Koopman (Eds.): Proceedings of the 12th Inter-

national Workshop of Functional Languages

2000-08 Thomas Arts, Thomas Noll: Verifying Generic Erlang Client-Server Im-

plementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

28

2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

29

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

30

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

31

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling

Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,

Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli

Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI

Work Group “Requirements Management Tools for Product Line Engi-

neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical

sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for

Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-

ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-

ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, Jan Borchers: coJIVE: A Sys-

tem to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal

2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking

2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

32

