RWTH Aachen

Department of Computer Science
Technical Report

Transforming structures by set
Interpretations

Thomas Colcombet and Christof Loding

ISSN 0935-3232 . Aachener Informatik Berichte . AlIB-2006-07

RWTH Aachen - Department of Computer Science . May 22, 2006

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Transforming structures by set interpretations

Thomas Colcombet! and Christof Loding?

! Cors-Irisa
Irisa, Campus de Beaulieu
35042 Rennes, France
Thomas.Colcombet@irisa.fr
2 Christof Loding
RWTH Aachen

loeding@informatik.rwth-aachen.de

Abstract. We consider a new kind of interpretation over relational structures:
finite sets interpretations. Those interpretations are defined by weak monadic
second-order (WMSO) formulas with free set variables. They transform a given
structure into a structure with a domain consisting of finite sets of elements
of the orignal structure. The definition of these interpretations directly implies
that they send structures with a decidable WMSO theory to structures with a
decidable first-order theory. In this paper, we investigate the expressive power
of such interpretations applied to infinite deterministic trees. The results can be
used in the study of automatic and tree-automatic structures.

1 Introduction

Computational model theory is concerned with the study of algorithmic proper-
ties of classes of infinite structures (cf. [BG04]), where the focus is on the problem
of model checking such structures against specifications written in some logic,
i.e., deciding for a given structure and logical formula if the formula holds in this
structure. This problem setting has been studied for various instantiations of the
two parameters, i.e., the way to represent the structures, and the logic to write
the specifications. The most prominent logics in this context are first-order (FO)
logic and monadic second-order (MSO) logic, and they have led to two tracks of
research trying to identify classes of structures for which the respective logic is
decidable.

One way of defining such classes uses, e.g., words or trees for representing
the elements of the structure and uses simple transformations based on trans-
ducers or rewriting to define the relations of the structure. In this way, one
obtains, e.g., the classes of automatic [Hod83,KN95,BG00] and tree-automatic
[DT90,BGO00] structures, for which the FO-theory is decidable, and the classes of
pushdown-graphs [MS85] and prefix recognizable graphs [Cau96] with decidable
MSO-theory.

In the case of automatic structures, the decidability results are based on
the strong closure properties of finite automata, which are used to define the
relations. Other techniques, e.g. in [KL02] for rewriting in trace monoids, are
based on Gaifman’s locality theorem.

The decidability results for MSO logic on pushdown and prefix recognizable
graphs are derived from the results of Biichi and Rabin establishing the equiv-
alence of monadic second-order logic with certain families of finite automata
accepting infinite trees (cf. [Tho97]). These results are also underlying the more

recent work [CT02] and [KNUWO5] showing the decidability of MSO logic over
certain classes of infinite words and infinite trees, respectively.

A different and more systematic approach for defining and studying classes of
infinite structures is to use operations for transforming structures. An important
operation of this kind is the model-theoretic interpretation. Such an interpreta-
tion defines a new structure ‘inside’ a given one by means of logical formulas
describing the domain and the new relations. Depending on whether these defin-
ing formulas are FO or MSO one speaks of FO- and MSO-interpretations. An
important property of these interpretations is that decidability results easily
transfer from the given structure to the resulting structure, i.e., applying an FO-
interpretation to a structure with a decidable FO-theory results in a structure
with decidable FO-theory, and similarly for MSO.

As mentioned in [BGO04], this suggests a new way of defining interesting
classes of infinite structures: fix an underlying structure (with good algorithmic
properties) and consider all structures that can be obtained by applying inter-
pretations of a certain kind. In this way, one obtains the automatic structures
by FO-interpretations from, e.g., a suitable extension of Presburger arithmetic
[Blu99], and the prefix recognizable structures by MSO-interpretations from the
infinite binary tree [Blu01]. This idea has been pursued further in [Cau02], where
MSO-interpretations and unravelling of graphs are iterated, leading to an infinite
hierarchy of graphs (or structures) with a decidable MSO-theory.

All the methods and results described so far can be separated into those con-
cerned with FO logic (sometimes extended by a reachability relation [DT90,Col02])
and those dealing with MSO logic (sometimes with only restricted kind of set
quantification as in [Mad03]). To our knowledge, there has been no systematic
work on relating these two areas. In this paper, we bridge this gap by studying
a new kind of interpretation, named finite sets interpretation, allowing to define
classes of structures with decidable FO-theory from structures with decidable
MSO-theory. To be more precise, we are considering weak MSO (WMSO) logic,
i.e., MSO logic where quantification is restricted to finite sets. The idea for these
interpretations is rather simple: the domain of the new structure does not consist
of elements of the old structure but of finite sets of elements of the old structure.
The relations are specified by WMSO-formulas with free set variables (the num-
ber of which corresponds to the arity of the relation). In this way, FO-formulas
over the new structure can directly be translated into WMSO-formulas over the
old structure.

Using the equivalence of WMSO logic and finite automata (over finite words
and trees) it is not difficult to see that the classes of automatic and tree automatic
structures can be obtained by finite sets interpretations from the naturals with
successor relation, and from the infinite binary tree, respectively (see [Col04],
and [Rub04] for the result on automatic structures).

This raises the question of what happens when we apply finite sets inter-
pretations to other structures with decidable WMSO-theory, e.g., the structures
from the hierarchy defined in [Cau02]. Though this hierarchy is strict, it is not
a priori clear whether this is also true for the hierarchy obtained after apply-
ing finite sets interpretations. To answer questions of this kind one has to study
the expressiveness of finite sets interpretations and to provide tools for showing
that a structure cannot be obtained by such an interpretation applied to a given

structure. By the relations mentioned above, results of this kind then also allow
to answer questions on automatic structures.

The main result of this paper is of the above kind. It allows to reduce
questions on definability by finite sets interpretations to questions on WMSO-
interpretability, a notion that has already been studied intensively and is well
understood. A precise formulation of our main result (in its simplest form) reads
as follows: If the class of structures definable by finite sets interpretations from
a structure S is included in the class of structures definable by finite sets inter-
pretations from a tree ¢, then & is WMSO-interpretable in t.

This means that if we can show that S is not WMSO-interpretable in ¢, then
there are structures that cannot be obtained by a finite sets interpretation from
S but from t. A more technical formulation of the main result also explicitly
gives such a structure.

We demonstrate the use of this result by showing some non-definability re-
sults, the strictness of the hierarchy mentioned above, and a result on intrinsic
definability of relations related to similar questions studied for automatic struc-
tures (cf. [Bar06]).

The remainder of the paper is structured as follows. In Section 2 we give the
basic definitions and introduce finite sets interpretations, and in Section 3 we
give the connection to automatic structures. Section 4 is devoted to the study
of finite sets interpretations applied to trees. In particular, the main result is
stated in this section. In Section 5 we present some applications of our results,
and Section 6 is devoted to the proof of the main result.

2 Definitions and elementary results

In this section we provide the basic definitions used in the paper, i.e., relational
structures, trees, logic, automata, and finally interpretations, the main subject
of this work. We end this section by giving some elementary results on finite sets
interpretations.

2.1 Structures and trees

We consider (relational) structures S = (U, Ry, ..., Ry) where U is the universe
of the structure and for each i, R; C U™ is a relation of arity r; for a natural
number r;. The names of the R; together with their arities form the vocabulary
(or signature) of the structure. Trees, as defined below, can be seen in a natural
way as particular instances of such structures.

We will be dealing with infinite binary labeled trees. From now, we simply
write ‘trees’. Formally, a tree labeled by a finite alphabet X' is a partial mapping
t:{0,1}* — X with prefix closed domain dom(t), and such that if ul € dom(t)
then also u0 € dom(t). The elements of the domain are called nodes. A node u
such that 0 is also a node is called an inner node, else it is called a leaf. By C we
denote the prefix ordering on nodes, also called the ancestor order. For technical
simplifications we will mostly consider purely binary trees, i.e. such that every
node is either a leaf or has two sons.

Seen as a structure a tree labeled by X has as universe the domain of the
tree and contains the following relations: the unary relations Sy and S; meaning

‘being a left successor (resp. a right successor)’ (for ¢ € {0,1}, S;(u,v) holds
if v = wi) and for each a € X a unary relation a interpreted as the set of
elements sent to a by t.

We will be considering two particular infinite trees, namely A; and As. The
tree Aj is the unlabeled tree of domain 0*. We will identify in a natural way
this tree with the structure (N, succ). The tree As is the unlabeled tree of do-
main {0,1}*, also called the infinite binary tree.

2.2 Logic and automata

We use the standard definitions for first-order (FO) and weak monadic second-
order (WMSO) logic. FO-formulas are built up from atomic formulas using first-
order variables (interpreted by elements of the structure and usually denoted by
letters x, y, z) and the relation symbols from the vocabulary under consideration.
Complex formulas are constructed using boolean connectives and quantification
over first-order variables.

For WMSO-formulas one can additionally use monadic second-order variables
(interpreted by finite sets of elements of the structure and usually denoted by
capital letters X, Y, Z), quantification over such variables, and the membership
relation x € X. If the variables are interpreted by arbitrary sets instead of finite
sets, then we speak of MSO.

In order to deal with WMSO-formulas on trees, we use automata. Those
automata are more general than WMSO-formulas since they have the expres-
siveness of full monadic second-order logic on trees. But for our purpose this
doesn’t harm because we only use the translation in one direction, namely from
formulas to automata.

Technically, we use nondeterministic parity automata (or simply automata),
which are tuples (X, Q, ¢™, 0, 2) with a finite set Q of states, initial state q™,
transition relation § € Q x Q x X x QW X x Q, and priority mapping §2 :
@ — N. Given a tree t and an automaton, a run of this automaton on ¢ is a
mapping p : dom(t) — @ such that (p(u0), p(ul),t(u), p(u)) € J for each inner
node u, and (t(v), p(v)) € d for every leaf v. A run is accepting if p(e) = ¢ and
for all infinite branches (maximal totally ordered sequences of nodes) vy, vg, ...,
liminf; £2(p(v;)) is even. We say that a tree ¢ is accepted by an automaton if
there is an accepting run of this automaton on t. For basic properties of such
automata (such as closure under the Boolean operations) and their relation to
logic, we refer the reader to [Tho97].

We are interested here in automata running on a fixed underlying tree ¢t with
additional markings representing (tuples of) subsets of its domain. To mark a
certain subset X of dom(t) we can put additional labels on the tree. Formally,
the tree t labeled by X is the tree with the same domain as ¢ and labels from
XY x {0,1}, where a node w is labeled by the pair (¢(u),0) if v ¢ X and (¢(u), 1)
if u € X. In the same way one can also label a tree by tuples of subsets of its
domain using a separate {0, 1}-component for each set.

If tis fixed and X7, ..., X,, are subsets of dom(t), then we say that an automa-
ton accepts the tuple (X1,...,X,) if it accepts ¢ with the additional labelings
corresponding to the tuple (X7,. .., X,,) as explained above. If we consider all the
tuples accepted by an automaton, we obtain a relation over the subsets of dom(t).
We call this relation the relation recognized or accepted by the automaton.

A WMSO-formula with free set variables X, ..., X, also defines a relation
over the subsets of dom(t). Throughout the paper we make use of the following
result stating that for each WMSO-formula there is an equivalent automaton.
The proof of this can easily be inferred from the equivalence of MSO and au-
tomata over trees and from the fact that over trees each WMSO-formula can be
translated into an equivalent MSO-formula.

Theorem 1 (cf. [Tho97]) For each WMSO-formula there is an automaton such
that for each tree t the relation over subsets of dom(t) defined by the formula is
the same as the one accepted by the automaton.

2.3 Interpretations

Interpretations are a standard tool in logic allowing to define transformations of
structures by means of logical formulas. This technique allows easy transfer of
theories from one structure onto another.

Definition 2 An interpretation is a tuple (0, Pg,, ..., Pry) with formulas 6 and
PRr,,.-.,Pry. The formula 6 has only one free variable, and each formula Pg,
has r; free variables. By our convention, for weak monadic variables we use
capital letters X and Xy, ..., X,,, and small letters x and 1, ...,x,, in the case
of first-order variables.

An interpretation is FO if the formulas are first-order (and hence the free
variables are also of first-order). An interpretation is WMSO if the formulas are
weak monadic and the free variables are first-order. An interpretation is finite
sets if the formulas are weak monadic and the free variables are weak monadic.

The application of an interpretation to a structure is defined in the standard
way. The only difference is that for finite sets interpretations the elements of
the obtained structure are subsets of the universe of the original structure in-
stead of elements of the original structure. Formally, given a structure S and an
interpretation Z = (9, Pg,,...,Pry), the structure Z(S) has for universe

—{ueclU® : Sk=6(u)}if I is a FO or WMSO interpretation,
— {U CU® : U finite, S |z §(U)} if T is a finite sets interpretation,

and the interpretation of each symbol R; is defined by
R; = {(Ulv ceey Um) € (uI(S))Ti : 8 |: éi(Ula ceey Un)}

One can note at this point that natural sets interpretations can as well be defined
in a similar way, simply by removing the finiteness hypothesis on sets and using
monadic second-order logic. This tool turns out to contain significant extra sub-
tleties. We prefer in this work to concentrate on the finite sets interpretations,
though some of the result presented here can be directly transfered to the more
general framework of sets interpretations.

Ezample 1. We show how to obtain the structure ({0, 1}*, Sp, S1,C, el), i.e., the
infinite binary tree extended with the prefix and equal level relations, by a finite
sets interpretation from the infinite unary tree Ay, i.e., from the natural numbers
with successor A; = (N, succ). To realize this we have to code the nodes of the
tree by finite sets of natural numbers and to describe the relations Sy (for left

successor), S (for right successor), C (for prefix), and el (for equal level) by
means of WMSO formulas.

The coding of the nodes is depicted in Figure 1. A node u € {0,1}* is rep-
resented by the set of positions corresponding to letter 1 in v and additionally
by its length. For example, the node 100 is coded by {0,3} because its length is
3 and only position 0 is labeled 1. We now define the finite sets interpretation

/{0}\
{1} {0,1}
/
{2} {1,2} {0, 2} {0,1,2}
Y\ YN\ YN\ Y\

{3} {2,3} {1,3} {1,2,3} {0,3} {0,2,3} {0,1,3} {0,1,2,3}

Fig. 1. The nodes of the infinite binary tree Az coded by sets of natural numbers

T = (6,Ps,,Ps,,Pc, D) such that T(A;) yields the binary tree depicted in Fig-
ure 1 together with the relations C and el. In the formulas we use abbreviations
like < and max that can easily be defined by WMSO-formulas in A;.

— §(X) :=Jz(x € X) (all finite sets except () are used in the coding).

- @E(XI,XQ) = max(Xl) < maX(Xg) /\V.I‘(.f < max(Xl) — (1‘ € X1 —x€
X)).

— @SO(Xl,Xg) = QSE(Xla X2) AN maX(XQ) = maX(Xl) +1A maX(Xl) ¢ Xo.

— @31 (Xl,Xg) = @E(Xla XQ) A maX(Xg) = maX(Xl) + 1A maX(Xl) € Xo.

- djel(Xl,XQ) = maX(Xl) = maX(Xg)

Let us proceed with some elementary considerations. Obviously, finite sets
interpretations are not closed under composition. But, as stated in the follow-
ing proposition, applying an FO-interpretation after, or a WMSO-interpretation
before a finite sets interpretation, does not give more expressive power.

Proposition 3 Let 77 be a FO-interpretation, Zo be a WMSO-interpretation,
and I be a finite sets interpretation. Then Iy o T and I o Iy are effectively finite
sets interpretations.

Proof. As for standard interpretations. a

A straightforward as well as essential consequence of this is expressed in the
following corollary.

Corollary 4 The image of a structure of decidable WMSO-theory by a finite
sets interpretation has a decidable FO-theory.

To finish our elementary considerations on finite sets interpretations, we
present Proposition 6 which is a form of converse to Proposition 3. It states that
every finite sets interpretation can be described as the composition of a specific
one, called the weak powerset interpretation, and a first-order interpretation.

Definition 5 Let PV be the finite sets interpretation that sends every struc-
ture S of signature X onto a structure of signature XU {=} where < is a new
binary symbol, such that

— the universe is the set of finite subsets of the universe of S,

— each symbol R in X has the same interpretation as in S but over singletons
instead of elements,

— the interpretation of < corresponds to the subset ordering.

The interpretation PV is called the weak powerset interpretation.

This interpretation allows to reconstruct all other finite sets interpretations as
stated in the following proposition which is obtained by a simple syntactic trans-
lation of formulas.

Proposition 6 For each finite sets interpretation T there exists a FO-interpre-
tation I; such that I; o PV =1T.

We can remark that the adaption to MSO instead of WMSO of all the results
from this section is straightforward.

3 Automatic-like structures

The line of research that has inspired finite sets interpretations is the one of au-
tomatic structures. Automatic structures in their common acceptation are struc-
tures with a universe consisting of a regular languages of words, and the relations
defined by half-synchronized transducers. The key reason for introducing such
structures is that — thanks to the good closure properties of finite automata —
they naturally possess decidable first-order theories.

Classical variants of those structures consider universes consisting of infinite
words (w-automatic structures), or consisting of trees, finite or infinite (namely
the tree-automatic and w-tree-automatic structures). Some definitions also al-
low to quotient the structure by a congruence (that is defined in the same way
as the other relations). This extension does not increase the expressiveness of
automatic nor tree-automatic structures (cf. Corollary 9 below). The question
whether quotienting increases the expressive power of w-automatic and w-tree-
automatic structures is open.

Historically, automatic as well as w-automatic structures have been intro-
duced by Hodgson [Hod83]. Khoussainov and Nerode introduce the notion of au-
tomatically presentable theory [KN95], starting the study of definability in auto-
matic structures. The extension to tree-automatic structures can be traced back,
in a different framework, to the work of Dauchet and Tison [DT90]. Blumensath
and Gradel [Blu99,BG00] then formalize the notion of tree-automatic structure
and add to it the family of w-tree-automatic structures. Independently, the study
of 3-manyfolds lead to the particular case of automatic groups [ECH"92].

3.1 Word-automatic structures

In the case of words a relation R C (X*)" is automatic if there is a finite automa-
ton accepting exactly the tuples (wq,...,w,) € R, where the automaton reads
all the words in parallel with the shorter words padded with a dummy symbol
o. Formally, for wy,...,w, € X* we define

alll alln

W R Qw, = 6(2:;)*

a"/rl a',rn
where X, = YU{¢}, n is the maximal length of one of the words w;, and a;; is the
jth letter of w; if j < |w;| and ¢ otherwise. A language L C ((X'U{¢})")* defines
arelation Ry, C (X*)" in the obvious way: (w1, ...,w,) € Ry if w1 ®---®@w, € L.
A tuple (L, Ly, ..., Ly,) of languages L C X* and L; C (X7")* defines a structure
of universe L with the relations Ry, of arity r;. A structure S = (U, Ry, ..., R,) is
automatic if it is isomorphic to a structure of the above kind for regular languages
L,Lqy,...,Ly.

The class of w-automatic structures is defined in the same way with infinite

words instead of finite ones. In this case the definition is even simpler as there is
no need for padding shorter words.

3.2 Tree-automatic structures

To define tree-automatic structures we need a way to code tuples of finite trees,
i.e., we need an operation ® for finite trees. For a tree t : dom(t) — X let ¢© :
{0,1}* — X be defined by t°(u) = t(u) if u € dom(t), and t°(u) = ¢ otherwise.
For finite Y-labeled trees t1,...,t, we define the X7-labeled treet =t ®--- ® 1,
by dom(t) = dom(t;)U---Udom(t,) and t(u) = (t$(u), ..., t2(u)). When viewing
words as unary trees, this definition corresponds to the operation ® as defined
for words. As in the case of words a set T of finite X -labeled trees defines the
relation Ry by (t1,...,t,) € Rp iff t; ® --- ®t, € T. A structure is called tree-
automatic if it is isomorphic to a structure given by a tuple (7,71,...,T,) of
regular tree languages in the same way as for words.

Again, the definitions for w-tree-automatic structures are the same with w-
trees, i.e., trees of domain {0, 1}* instead of finite trees.

One should note here that we only consider so called injective presentations of
automatic structures. A more general definition as, e.g., in [Blu99] additionally
uses a regular language L. C (X2)* defining an equivalence relation identify-
ing words representing the same element of the structure (and similarly for the
other variants of automatic structures). It is known that injective presentations
are sufficient for automatic structures [KN95] meaning that all structures that
are automatic in the more general sense are also automatic according to our
definition. The corresponding result for tree-automatic structures is established
below, see Corollary 9.

3.3 Automaticity via interpretations

Recall that A; is the (unlabeled) infinite unary tree, i.e., the natural numbers
with successor, and that Ay is the (unlabeled) infinite binary tree. The following

10

fact is a straightforward consequence of the definition of automatic structures
and of the equivalences between WMSO-logic and automata. The first claim also
appears in [Rub04].

Proposition 7 The following holds up to isomorphism

— A structure is automatic iff it is finite sets interpretable in Aq.
— A structure is tree-automatic iff it is finite sets interpretable in As.

Note that the w-automatic and w-tree-automatic structures satisfy the same
equivalences where finite sets interpretations are replaced by sets interpretations.

4 Finite sets interpretations on trees

The power of finite sets interpretations makes it difficult to obtain results for the
general case where such interpretations are applied to arbitrary structures. We
consider here the special case of finite sets interpretations applied to deterministic
trees.

This restriction can be justified in two ways. The first justification is that
on trees there are specific tools suitable for treating WMSO questions: their au-
tomata equivalents. The second justification is that if Seese’s conjecture [See91]
holds — stating that all structures of decidable weak monadic second-order the-
ory are WMSO-interpretations of trees — then the only structures that we can
prove to have decidable first-order theory using Corollary 4 are finite sets inter-
pretations of trees (for recent work on Seese’s conjecture see [CO06]).

We give here two results concerning finite sets interpretations applied to
deterministic trees. The first one — in Subsection 4.1 — shows that finite sets
interpretations on deterministic trees followed by a quotient are simply finite sets
interpretations. The second result — subject of Subsection 4.2 — concerns finite
sets interpretations applied to trees leading to powerset lattices. The technical
core of the proof is given in Section 6.

4.1 Quotienting finite sets interpretations on trees

We show here that if a structure is finite sets interpretable in a deterministic
tree containing a symbol interpreted as a congruence on the structure, then it is
possible to directly obtain the quotiented structure by a finite sets interpretation.

A congruence on a structure S is an equivalence relation ~ such that for
every symbol R of arity n and all elements x1,...,xn,y1,...,yn of St if x1 ~
Yly- .. Tp ~ Yn, then RE(zy,...,2,) iff R(y1,...,yn). We say that a symbol
is a congruence if its interpretation in the structure is a congruence. For a con-
gruence ~ over a structure S, we denote by S/ the quotient structure, i.e., the
structure which has as elements the equivalence classes of ~, and the relations of
which are the images of the relations on § under the canonical surjection induced
by ~.

Note that the operation of quotienting preserves the decidability of the first-
order theory. For this reason we may wonder if constructing a structure by a finite
sets interpretation followed by a quotient is more powerful than solely using a
finite sets interpretation. Theorem 8 below shows that it is not the case when
the original structure is a deterministic tree.

11

Theorem 8 Given a finite sets interpretation I, there exists a finite sets in-
terpretation I' such that for every deterministic tree t, if the symbol ~ is a
congruence in Z(t), then I'(t) is isomorphic to Z(t)/~.

Proof. Let A be a nondeterministic parity automaton corresponding to the for-
mula @.. describing ~ in Z. This automaton works on ¢ additionally labeled by
a pair (X,Y) of sets of nodes. We say that the automaton reads (X,Y).

For S a prefix closed subset of dom(t), call its frontier the set of minimal
nodes not in S. Let X be an element of the structure Z(¢), i.e., a finite set of
nodes of t. Let us call its shadow S(X) to be the least set of nodes containing X
that is closed by prefix and such that no element of its frontier is the root of a
finite subtree. This set happens to be finite. Now, let us consider an equivalence
class ¢ for ~. Define the shadow S(c) of the class ¢ to be the intersection of the
shadows of all the elements in the class. This is also a finite set of nodes of t.
Let us call frontier of the class the frontier of its shadow. Denote by F'(c) the
frontier of the class c.

Given an element X, its description is the triple (F,Y, f), where F' = F\(c)
for the class c of X, Y is X N S(c), i.e., X restricted to the shadow of its class,
and f maps each node x € F' to the set of states ¢ such that there is an accepting
run of A on the subtree rooted in x starting with state ¢ and reading (0, X).

We claim that if two elements X and X’ share the same description — say
(F,Y, f) — then those elements are equivalent for ~. Using the transitivity of ~
and the finiteness of F' it is sufficient to consider the case of elements coinciding
everywhere but below one x in F. Since x is in the frontier of the class of X,
there is an element Z equivalent to X such that Z does not contain any node
below x. Since Z is equivalent to X, there is an accepting run p of A on ¢ labeled
by (Z,X). We aim at constructing a run of 4 witnessing the equivalence of Z
and X', i.e., a run accepting t labeled by (Z, X'). This new run is constructed
in the following way. On every element not below x, it coincides with p. This
is a valid part of run since X and X’ do coincide on this area. On the subtree
rooted in x, Z coincides with (). Hence, as (F,Y, f) is a description of X, p(x)
belongs to f(x). But as the same description holds also for X', there is a piece
of run below z starting with p(x) and accepting @), X’. We complete our new run
by this piece of run. This new run witnesses as expected that Z ~ X’. It follows
by symmetry and transitivity of ~ that X ~ X’. This concludes the proof of the
claim.

Let us remark now that a description (F,Y, f) can be encoded uniquely by
a set of nodes: this set is F'UY U Coding(f) where Coding(f) contains exactly
one element for each element z of the frontier, and this element is located in
a place uniquely describing the value of f(z) (e.g. the only node at distance
g(f(x)) of x on the leftmost infinite branch below x where g is a numbering
of 2% starting from 1). This is possible since the subtree rooted in z is infinite,
and consequently, there is “room” below x for coding the information f(x).

Note that associating to an element X the coding of its description is doable
by means of a WMSO-formula. Note also that given a class ¢ there is only a
finite number of descriptions for the elements it contains. Hence we can chose
the smallest description — smallest for a suitable total order — as unique rep-
resentative for the class. From here, it is not difficult to reconstruct Z(¢)/.. . O

12

In combination with Proposition 7 we obtain the following.
Corollary 9 Tree-automatic structures are effectively closed under quotient.

In the terminology of [Blu99], this result is rephrased as “every tree-automatic
structure admits an injective presentation.” Let us remark that this result is
announced in [Blu99], but unfortunately the proof proposed there contains an
unrecoverable error.

4.2 Finite sets interpretations of powerset lattices

In this section we present our main result. For this, let S be a structure of signa-
ture <, we say that S is a finite powerset lattice if it is isomorphic to (P¥(E), C)
for some set E, where P¥(E) represents the finite subsets of E. Such a finite
powerset lattice can be seen as a particular case of weak powerset generator ap-
plied to a vocabulary-free structure. We call atoms the elements corresponding
to singletons in this isomorphic structure, i.e., the elements which have exactly
one element strictly smaller with respect to <.

Theorem 10 For every finite sets interpretation T = (6(X), p<(X,Y)), there
exists a WMSO-formula Code(X,x) such that, whenever for some tree t, Z(t) is
a finite powerset lattice, then Code(X,x) evaluates on t to an injection mapping
the atoms of Z(t) to nodes of t.

The proof of this result is long. Section 6 is dedicated to it.
We rarely use the theorem in this form. We rather use weakened versions of
it, namely Corollary 11 and Corollary 12.

Corollary 11 For every finite sets interpretation I, there exists a WMSO-in-
terpretation Iy such that whenever for some structure S and some tree t, I(t) is
isomorphic to PV (S) then To(t) is isomorphic to S.

Proof. If we remove all relations other than =<, the weak powerset generator is
nothing but a finite powerset lattice. Hence we can obtain a formula Code(X, x)
by application of Theorem 10. It is then easy to transfer all relations defined on
singletons to their image by Code.

Formally, we define the WMSO-interpretation Zy = (0, @rg,,...,Pr,) as fol-
lows:

— 0(z) = 3X.Code(X, z),
— for each symbol R of arity r from the signature, @r(z1,...,z,) is defined as

.
X1, Xp WR(X, ., X)) A)\ Code (X, ;)
i=1

where each ¥y is the WMSO-formula in 7 defining the interpretation of the
symbol R.

As Code maps each element of Atoms to a unique node, this interpretation indeed
maps ¢ to a structure isomorphic to S. O

A weaker yet more readable formulation of the above corollary is provided in
the following one.

13

Corollary 12 If for a structure S and a tree t the class of structures that can be
obtained by finite sets interpretations from S is contained in the class of struc-
tures that can be obtained by finite sets interpretations from t, then S is WMSO-
interpretable in t.

Proof. Assume that the hypothesis of the corollary holds. In particular, the struc-
ture PV (S) is isomorphic to Z(t) for some finite sets interpretation Z. By apply-
ing Corollary 11, the structure S is WMSO-interpretable in . O

5 Applications

We present here several applications of the results above, ordered by level of
complexity. The two first ones, showing that the free monoid is not obtainable
by a finite sets interpretation of a tree (Section 5.1) and that a natural hierarchy
of structures is strict (Section 5.2), are paradigmatic applications of Theorem 10.
Section 5.3 establishes that the random graph is not finite sets interpretable in a
tree, extending the known result for automatic structures. Finally, in Section 5.4,
we study intrinsically definable relations in generators of the automatic struc-
tures.

Some of those results are known in the weaker context of automatic struc-
tures. We would like to underline here the fundamental methodological difference
of our approach: in none of the applications below we perform a combinatorial
analysis of finite sets interpretations. Instead, we systematically reduce the prob-
lem to a much easier one of WMSO-definability in trees.

5.1 The free monoid

We consider the free monoid as a structure ({a,b},-,a,b) — the set of words
over {a,b} together with the ternary relation corresponding to the concatenation
and the two words a and b identified by unary predicates — and want to answer
the question whether this structure is isomorphic to a finite sets interpretation
of a tree.

One should note that the FO theory of the free monoid is undecidable and
hence we can directly conclude that it cannot be obtained by a finite sets inter-
pretation from a tree with a decidable WMSO theory. However, this reasoning
does not include trees with an undecidable WMSO theory.

The negative answer we give here to the above question is the simplest and
in some sense the purest application of the results presented above and should
be considered for this reason as a key example.

The following result was obtained in a discussion with Olivier Ly.

Proposition 13 The free monoid over a two letter alphabet is not isomorphic
to any finite sets interpretation of a tree.

Proof. We first show how to obtain P" (N, +) from the free monoid by an FO-
interpretation followed by a quotient. Then, assuming that our claim is false, we
invoke the two results from the previous section and obtain a contradiction.
Let f be the function which to each word of the form ba™'ba™b...ba"*b
over {a, b} associates the set of naturals {ni,ng,...,ng}. The domain of f is the

14

set of elements satisfying dom(z) = Jy.z = byb. The relation of inclusion is also

first-order definable: f(u) C f(v) iff sub(u,v) holds with sub(u,v) =

Vo € a*. 3y, z. u=ybrbz — Iy, 2/ v = y'bxbs |
where z € a* stands for V y, z.x # ybz .

Let ~ be the symmetric closure of sub, it is also first-order definable and is
an equivalence relation. Finally the addition over singletons is definable. More
precisely, f(u) = {i}, f(v) = {j} and f(w) = {i + j} iff add(u,v,w) holds with
add(u,v,w) =

dzr €a*,y €a’.u~bxbANv~bybA\w~ bryb.

Using those formulas, one can first-order interpret in the free monoid a structure
which, when quotiented by ~, is isomorphic to P (N, +).

Assume now that the free monoid can be finite sets interpreted in some
tree t. Since structures obtainable by finite sets interpretations from ¢ are closed
under first-order interpretations (Proposition 3) and quotient (Theorem 8), this
implies that PV (N, +) is finite sets interpretable in ¢. By Corollary 11 we deduce
that (N, +) is WMSO-interpretable in ¢. This yields a contradiction since (N, +)
is not of bounded clique width. A direct argument to obtain a contradiction
roughly looks as follows.

Assume that (N, +) is WMSO-interpretable in ¢ and let U denote the set
of nodes of ¢ that represent N in a corresponding interpretation. We first note
that for each node of ¢ at most one of its subtrees contains infinitely many
elements from U. Otherwise, if the two subtrees of a node u contain both infinitely
many elements from U, the successor relation on N (which is addition with one
argument fixed to 1) would infinitely often jump between these two subtrees.
If A is an automaton with n transitions accepting the successor relation, and
if zg,...,x, € U are in the left subtree of u, yg,...,y, € U are in the right
subtree of u, and all x;,y; are in the successor relation, then A also accepts a
pair x;,y; with 7 # j by a simple counting argument on the transitions used at
u in accepting runs of A.

By starting at the root and always proceeding to the unique subtree contain-
ing infinitely many elements from U we obtain an infinite branch B of t.

Now let A4 be an automaton with n transitions accepting the relation + on
t and let xg,...,z, € U. For each z; there are infinitely many w;, z; such that
the triple (x;,yi, z;) is accepted by A;. Choose a node v on B such that none of
the x; is below v and for each ¢ choose y;, z; as above that are below v. Counting
the possible transitions that are used at v in accepting runs of A, on the tuples
(i, yi, zi) we obtain that Ay also accepts (x;,y;, 2;) for some i # j. This gives a
contradiction. O

5.2 A hierarchy of structures of decidable first-order theory

Caucal [Cau02] introduces a hierarchy of graphs/structures of decidable MSO-
theory. Level 0 consists of finite structures, and level n+1 is defined as the MSO-
interpretations of the unraveling of graphs of level n. As both MSO-interpretation
and unraveling are transformations preserving the decidability of the MSO-
theory, each structure of this hierarchy has a decidable MSO-theory. In [CW03],

15

this hierarchy is shown to be strict. If in these definitions the MSO-interpretations
are replaced by WMSO-interpretations, we obtain the same hierarchy. Hence, the
WMSO-theory is decidable for each structure of this hierarchy.

From this hierarchy, it is easy to construct a corresponding tree-automatic
hierarchy. The tree-automatic structures of level n are the image of the structures
of level n of the Caucal hierarchy by finite sets interpretations. Let us denote the
nth level of this tree-automatic hierarchy by TAuT,,. Since the trees on the first
level of the Caucal hierarchy are regular, we can deduce from Proposition 7 that
TAuT; coincide with the class of tree-automatic structures.

Furthermore, from Corollary 4 and the above considerations we can conclude
the following decidability result.

Remark 14 For each n, every structure in TAUT, has a decidable FO theory.

A simple application of our result is the strictness of this tree-automatic
hierarchy.

Theorem 15 For each n > 0 the class TAUT,, of structures on the nth level of
the automatic hierarchy is strictly contained in TAUT, 1.

Proof. We know that each level n of the Caucal hierarchy contains a tree gener-
ator Gy, i.e., each structure of level n is WMSO-interpretable in G,, [Cau02].
Let us suppose that the automatic hierarchy collapses at some level n, i.e.,
TAuT, = TAUT,1. This would imply that the structure P"(G,1) can be
obtained by a finite sets interpretation from G,. Then, by Corollary 12, we ob-
tain Gp41 as a WMSO-interpretation of G,, and hence G, 41 is in the nth level
of the hierarchy. This contradicts the strictness of the Caucal hierarchy. O

5.3 Random graph

The random graph is a non-oriented unlabeled countable graph with the following
fundamental property: for any two disjoint finite set of vertices ' and F, there
exists a vertex v that is connected to all the elements of F and to none of the
elements of F'. For the existence and basic properties of such a graph see, e.g.,
[Hod93]. We do not give in this work a more precise definition of the random
graph. Anyhow, a direct consequence of the fundamental property stated above
is that the random graph satisfies the quantifier elimination property, and the
decidability of its first-order theory follows.

Since the random graph has a decidable first-order theory and since finite sets
interpretations define a large number of structures also having this property, it is
interesting to consider the question whether the random graph can be obtained
by a finite sets interpretation from a tree. A partial answer to this question
has been studied: one knows that the random graph is not isomorphic to any
word-automatic structure [KNRS04].

In this section, we show that there is no tree from which the random graph
can be generated by a finite sets interpretation. This proof was obtained in a
discussion with Vince Barany.

Theorem 16 The random graph is not finite sets interpretable in a tree.

16

Proof. Heading for contradiction, let us assume that there exists a finite sets
interpretation Zp = (0(X),?(X,Y)) and a binary tree tg such that Zr(tr) is
(isomorphic to) the random graph. Then, the following fact would hold.

Claim: There exists a finite sets interpretation Z' such that for any finite non-
oriented graph G there exists a tree tg such that Z’(¢¢) is isomorphic to PV (G).

Before we prove this claim we demonstrate how to use it to show Theorem 16. Let
us apply Corollary 11 on the interpretation Z’. We obtain a WMSO-interpretation
7" with the property that for any non-oriented unlabeled graph G, the graph
7" (te) is isomorphic to G for a suitably chosen tree tg. As trees have bounded
clique-width and WMSO-interpretations applied to a class of graphs of bounded
clique-width yield also a class of graphs of bounded clique-width (see e.g. [Cou97]),
we obtain a contradiction to the fact that there exists non-oriented graphs of ar-
bitrary high clique-width

Proof of the claim: Let us show first how we can encode any finite set of elements
of Zr(tr) by a pair of finite sets of nodes of i in such a way that the membership
relation is “definable”.

Let E be a finite set of vertices of Zr(tr). Each vertex of Zr(tg) is a finite set
of nodes of tp and therefore it makes sense to define Dy as the union of all the
elements in E. Furthermore, let us chose I to be an element of Zp(tr) which is
connected to all elements of £ and to none of the elements of P(Dg)/E (such
an element exists since Zr(tg) is the random graph). From Dg and I one can
easily reconstruct the set E. More precisely, let X be an element of Zr(tr). Then
X belongs to E if and only if tg models 6(X) A X C Dp AV (X, IE).

Let now G be a non-oriented finite graph. Since Zg(tr) is the random graph,
the graph G appears as an induced subgraph of Zg(tg) (cf. [Hod93]). Let V be
the set of vertices of Zr(tr) inducing this subgraph.

For each subset F' of V, one can construct an element vy of Zr(tr) which
is connected to all the vertices in F' and to no vertex in V/F. Knowing V/, this
element vp completely characterizes F. Let now V'’ be the set of all the vg’s for
all subsets F' of V.

Let tg be the tree tg extended with markings describing Dy, Iy, Dy and Iy.
Using the trick mentioned above, we can define the formula X € V' (similarly X €
V') tobe §(X)AX C Dy A¥(X, Iy). We now want to finite sets interpret PV (G)
in . Obviously, we can identify the elements of P" (G) with the elements of V.
Pursuing this idea, we define the interpretation 7’ = (¢'(X), ¥ (X,Y), P (X,Y))
in the following way. The universe is defined by §'(X) = X € V’. The subset
relation is defined by ¢c(X,Y) = VZ € V¥ (Z,X) — ¥(Z,Y). Finally the
edge relation is defined by ¥/'(X,Y) = Singleton(X) A Singleton(Y) A3X')Y' €
V(X' X)ANU (Y, Y)AN(P(X',Y")) where Singleton(Z) stands for Z € V'AJY €
VU (Y,Z) and 3! abbreviates “there exists one and only one”.

Using the properties linking V' and V', it is not difficult to see that Z'(tg)
is (up to isomorphism) PW(G). Furthermore, Z' does not depend on G. This
finishes the proof of the claim and hence the proof of the theorem. O

5.4 Intrinsic definability

Our last application of Theorem 10 concerns “intrinsic definability” of relations.
In analogy to intrinsic regularity for automatic structures ([KRS04], [Bar06]),

17

intrinsic definability considers relations that are definable in every possible pre-
sentation of a structure by a finite sets interpretation from a fixed tree t. Hence,
in contrast to the previous sections, we now explicitly consider the presenta-
tions of elements of a structure, i.e., we distinguish different codings of the same
structure.

Definition 17 Given a structure T, a T -presentation of a structure S of uni-
verse U is an injection f from U to the finite subsets of T such that the set f(U)
as well as the image by f of each relation R of S are WMSO-definable on T.
That is, there is a formula gi)zj;(X) over T defining the image of U under f, and

for each relation R of S there is a formula ¢£(X1, ..., X)) using the signature
of T such that for all uy,...,ur €U

(ur,..cvw) €R - iff T dp(fw),.... flw),
where r denotes the arity of R.

Given such a 7-presentation f of S, it might be possible to add relations to &
such that f is still a 7-presentation of this extended structure. Such relations
are called definable in f, i.e., R is called definable in f if f is a 7-presentation
of S extended by the relation R'.

Note that to a 7-presentation f of a structure S we can directly associate a
finite sets interpretation Zy sending 7 to S up to isomorphism (the isomorphism
being f). An additional relation R’ is definable in f if we can add to Zy a formula
defining R'.

If S is the weak powerset structure P (7') of 7, then there is a canonical
T -presentation given by the identity mapping. We refer to this 7-presentation
as the standard presentation of PV (T).

The following lemma states that the “intrinsically definable” relations of
PW(t) for a tree t are exactly those that are regular in the standard presen-
tation of PW(t).

Lemma 18 Let t be a tree and R be a relation over PV (t). If R is definable in
the standard presentation of P (t), then R is definable in all t'-presentations f
of PV (t) for all trees t'.

Proof. Let R be arelation of arity r that is definable in the standard presentation
of PY(t) and let ®r(X71,...,X,) be the defining formula, i.e., g is a formula
over the signature of ¢ such that ¢ = @g(Uy,...,U,) iff (Uy,...,U,) € R for
all Uy, ...,U, C dom(t). According to Proposition 6 we can construct an FO-
interpretation Z; such that Z;(P"(¢)) is the structure PV (t) augmented with
the relation R.

Let now f be a ¢-presentation of PV (¢) and let Z; be the finite sets interpre-
tation sending ¢ to PW(¢). Then Z; o Zy sends ' to Z; (P (t)), witnessing the
definability of R in the #-presentation f of P (t). O

The symmetric of Lemma 18, where definable is replaced by not definable, is not
true in general. This is already the case for instance for t = t' = Ay, i.e., there is
a relation R which is not definable in the standard presentation of P" (As) but
is definable in some As-presentation of PV (Ay).

18

However, in the particular case of t = A; and ¢/ = Ay such a converse of
Lemma 18 does hold as expressed in the following theorem. And here Theorem 10
comes into the play.

Theorem 19 If R is definable in some Ag-presentation f of PV (A1), it is
definable in every As-presentation of PV (Ay).

As we can expect, by application of Theorem 10, we will obtain a WMSO-in-
terpretation sending As to A;. The two following lemmas study this kind of
interpretations and how they preserve definability.

Lemma 20 Let Iy be a WMSO-interpretation sending Ay to Ay and fo be the
injection from N to {0,1}* witnessing the isomorphism. Then there exists nat-
urals m,n > 0 and words w,v,wy, ..., wy—1 € {0,1}* such that for any natu-
rals k >0 and p € {0,...,n — 1},
fo(m+kn+p) = uv"kwp)

Proof. The general idea behind the proof is that the elements from the image of
fo cannot be spread arbitrarily in Ao because the successor relation from A; has
to be definable in WMSO and hence must be recognizable by an automaton.

We denote by U C {0, 1}* the image of fo and by V' the closure of U by prefix.
The set V' defines a subtree of As. We now augment V' by markings containing
information on the successor relation in such a way that these markings are defin-
able in WMSO. Hence, the marked tree is regular, i.e., it has only finitely many
non-isomorphic subtrees (see [Tho97] for more information on regular trees).
From this regular tree we can define the words u, v, wo, ..., Wnp_1.

Let @gyce(,y) be the formula of Z that defines the successor relation suce of
Aq, and let Ay, be the equivalent tree automaton.

As succ is deterministic, one can easily show that V' contains only one infinite
branch B. Otherwise, the relation succ has to jump infinitely often between two
infinite branches leading to a contradiction as Agyu.. would also accept pairs of
nodes that are not in succ. Furthermore, this branch B is WMSO-definable.

Consider two nodes x,y € U such that @g,..(z,y) is satisfied, i.e., f;l(y) is
the successor of f5 1(3:) We can describe how to get from x to y by a pair of
words (2, z,) over {0,1} meaning that = 2’2, and y = 2’2/, for the greatest
common ancestor ' of x and y. Again, using the determinism of succ one can
show that the length of these words z,, 2/, is bounded by some constant derived
from the size of Agyc.. Hence, we can mark the vertices from U by this information
(using sets X, »» with z € X, ./ iff (24, 2,) = (2,2')). Obviously, this marking is
WMSO-definable.

The last information that we attach to V is for each node z € B the word
by € {0,1}* such that the node xb, is the smallest node in U (smallest referring
to the position in A;) such that all nodes bigger than xb, are below z, i.e., for
all y e U, if f{l(xbx) < f{l(y), then x C y. The length of these b, is bounded
because the relation that associates to each x the node b, is WMSO-definable
and deterministic. Hence, the marking of the nodes in B by using sets X; with
r € X iff b, = b is WMSO-definable.

The resulting tree t, consisting of the nodes in V with the markings described
above is WMSO-definable and hence regular. Let u,v € {0,1}* such that u, uv €

19

B and the subtrees of ¢ rooted at u and uwv are isomorphic. Let m = f{l(ubu),
m' = f5 ! (uvby,), and define n = m’ —m. For p € {0,...,n — 1} let w, € {0,1}*
be such that fo(m + p) = uw,. By the choice of m, such a w), always exists. In
particular, wg = by,.

By the choice of v, we know that fo(m + kn) = wv*™wg for all k& > 0.
Furthermore, as t is marked by the information on how to get from one node
in U to its successor, we know that the ways to get from fa(m + kn + p) to
fa(m+ kn +p+1) are the same for all k. Hence, fa(m + kn +p) = uwokw,. O

Lemma 21 Let Zo be a WMSO-interpretation sending Ay to Ay and fo be the
injection from N to {0,1}* witnessing the isomorphism. If R is a relation over
finite subsets of fa(N) WMSO-definable in Ag, then its inverse image under fa
is WMSO-definable in A;.

Proof. The formula ¥r(X1,...,X,) defining R can be represented by a tree
automaton Ag with state set Qr. Using Lemma 20, this automaton can be
simulated by an automaton A% on A; as we show in the following. On A;
automata and WMSO have the same expressive power and hence the construction
of A%, suffices to prove the lemma. Let u, v, wo, . .., w,—1 be as in Lemma 20. The
states of A%, correspond to partial runs on a finite subtree of Ay that

— is rooted at € and induced by the elements f2(0),..., fa(m — 1) for the first
segment of Aq,

— rooted at wv® and induced by the words v, wy,...,w,_1 for the following
segments of Aj.

For this purpose, let Uy be the set of all nodes that are prefix of u or of some
fa(i) for 0 < i < m, and let U; be the set of all nodes that are prefix of v or one
of wo, - -5 Wn—1-

The automaton A%, reads a word o € ({0,1}")¥ and has to decide if this
labeling transferred by fo to As corresponds to a tuple of sets in R.

The automaton starts by guessing a pair (pg, Ao) with mappings pg : Up — Qr
and Ao : {f2(0),..., fa(m — 1)} — {0,1}" such that py corresponds to a partial
run of Agr on Uy with labels corresponding to Ag. In the next steps, A%, verifies
if the guessed labeling is correct, i.e., if a(i) = Ag(f2(7)). When reaching position
m, Ay guesses a new pair (pi, A1), now with mappings p; : Uy — Qg and
A1 {wo, ..., wp—1} — {0, 1}" such that p; is a possible continuation of py on the
subtree rooted at u that is induced by v and wy, ..., w,—1 and labeled according
to A1. The guessed labeling is again verified on the segment m,...,m +n — 1
and then a pair (p2, A2) of the same type as (p1, A1) is guessed, and so on. The
automaton accepts if the concatenation of the guessed partial runs on the path
uv¥ satisfies the acceptance condition of Ag. For this to work, the guessed partial
runs have to be such that they can be continued to accepting runs on the “blank
parts” of As, i.e., those infinite subtrees that do not contain a node from the
image of fs. a

Using this Lemma we can prove Theorem 19.

Proof (Theorem 19). Assuming a As-presentation f of PV (A;) and T the cor-
responding interpretation, one obtains by Corollary 11 a WMSO-interpretation

20

Zy sending Az to Aj. Let fo : N — {0,1}* be the injection witnessing this
isomorphism and let fg be its extension to sets.

We now have two ways to obtain isomorphic copies of P (A;) from As: by
applying Z and by applying Z followed by P" . These two ways yield isomorphic
structures and hence there is an isomorphism h sending Z(Az) to PV (Zo(Az)).
We obtain the following picture, where dashed arrows represent interpretations,
while normal arrows are for isomorphisms:

/

I(A2) h PW(IQ(AQ)) ~ PW(Al)
T ? w f2 ? w
T P F P
3 I, ,To(As) 22 A
AQ --

We now show that we can define the isomorphism h on As by a WMSO-formula.
To understand this consider a finite set U of naturals, i.e., an element of P (A;).
This set U corresponds to two sets X and Y of nodes of Ay, namely X = f(U)
and Y = fo(U). The isomorphism h relates these two sets, ie., h(X) = Y.
This relation can be defined in WMSO using the formula Code that we obtain
from Theorem 10 and that is used to construct Zs in Corollary 11. The formula
Code(X,) itself already defines h restricted to atoms of P (A;). It is easy to
extend this to sets:

on(X,Y) =Vy(y € Y < 3Z(Dc(Z, X) A Code(Z,y)))-

Let now R be a relation over P"(A;) which is definable in f. This means
that f(R) is WMSO-definable in Aj. Since h is WMSO-definable, it follows
that h(f(R)) is also WMSO-definable in As. Finally, by Lemma 21 we obtain
that fgil(h(f(R))) is WMSO-definable in A;. Since fgil o ho f is obtained
as a composition of isomorphisms, it is an automorphism of P" (A;). Remark
now that the identity is the only automorphism of PV (A;) (a property inher-
ited from Aj). It follows that fgil(h(f(R))) equals R. And consequently R is
definable in the standard presentation. By Lemma 18 it is definable in every
presentation. O

A similar result has been shown in [Bar06] for all A;-presentations of (Ag, C,el),
i.e., the infinite binary tree with binary relations for prefix and equal level. Our
result is a bit stronger because we consider all Ao-presentations, i.e., all tree-
automatic presentations of P (A;) and not only the word-automatic presenta-
tions.

6 Proof of the main result

The proof of Theorem 10 is rather complex and split into several parts. In Sub-
section 6.1, we introduce the key notions used afterwards while we make the
scheme of the proof more precise. This will also be the occasion for explaining
the content of Subsections 6.2, 6.3, 6.4, 6.5. In Subsection 6.6, things are put
together and the proof of Theorem 10 is finally given.

21

6.1 First definitions and presentation of the proof

We assume from now that a finite sets interpretation Z = (6(X), ¢<(X,Y)) is
fixed. Along the whole proof we use a tree t together with a set £ and the
isomorphism f that are assumed to satisfy the equality

FPE(E)) =1(t) .

The reader must keep in mind that none of the constructions we perform makes
use of ¢, E, or f. Hence, the result will hold for any such tree, set, and isomor-
phism. This lightens the presentation of the proof by avoiding to systematically
quantify over those objects. As mentioned above, for simplicity reasons, we as-
sume that all the nodes of a tree ¢ have either 2 successors or no successors, i.e.,
for all nodes u we have u0 € dom(t) iff ul € dom(t). The general case is not
different.

We consider Atoms, the set of finite subsets of ¢ representing atoms of the
powerset lattice, i.e.,

Atoms = {f({u}) : we E}.

The set Atoms can be defined as the set of finite subsets of ¢ which are minimal
— for the ¢< formula seen as an ordering — and distinct from the minimal
element itself (which is f(()). This description can be done in weak monadic
second-order logic. Hence Atoms is regular in ¢ and there exists an automaton

Adtoms :(QAtomS7 qglltomsv 0 Atoms 'QAtOms)

accepting the language Atoms. We also consider the binary relation Mem over Z(t)
defined as the image under f of the € relation in P¥(E), i.e.,

Mem = {(f({u}), f(V)) : weV CE}.

This Mem relation is also definable in weak monadic second-order logic, and
consequently is regular. We fix

AMem = (QMemv qi]\r}em’ 5Mema QMem)

to be an automaton recognizing the relation Mem.

Recall that the theorem we want to prove claims the existence of a formula
Code(X, x) such that the corresponding relation is an injection from Atoms into
dom(t).

Our goal in the construction of Code is to uniquely attach to each X in Atoms
an element in dom(t) in a WMSO-definable way. As a first approximation, in
Sections 6.2, 6.3 and 6.4, we define a mapping Indexr which assigns to each X
in Atoms a node in dom(t). Though the Indexr mapping is not in general an
injection from Atoms into dom(t), it does not either concentrate a lot of indices
in the same area of the tree ¢. Formally, if you set D(z) for = € ¢ to be the
cardinal of Indexil(x), then by Lemmas 27 and 33, D happens to be a sparse
distribution (see Definition 22 below). Subsection 6.5 is dedicated to the study of
sparse distributions. The central lemma, of this part, Lemma 38, establishes that,
given elements concentrated according to a sparse distribution, we can uniformly

22

redistribute them in dom(t) in a unique WMSO-definable way. Applied to our
case, this means that the Indexr mapping can be transformed into an injection by
use of WMSO-formulas. And this last step is used in Section 6.6 for terminating
the proof of Theorem 10.

The key definition connecting the two main parts of the proof (definition of
the Index mapping and turning it into an injection) is the notion of sparsity. This
definition requires the notion of zone. A zone Z in t is a connected — where ¢ is
seen as an non-oriented graph — subset of dom(t). That is, whenever x C y C 2
for x,z in Z, then also y € Z. A zone Z is completely characterized by its least
element z, and by the minimal elements z1,...,x, that are below z and not
in Z. The elements {x,z1,...,x,} are called the frontier of the zone. Given
nodes x,x1,...,2T, of t such that the x; are pairwise incomparable and z C z;
for all i, we define N;”"*"" to be the set of nodes y such that x C y and z; £ y
for all ¢ € [n] where [n] denotes the set {1,...n}. By construction N;"*""" is
the sole zone which has frontier {x,z1,...,z,}.

Definition 22 A distribution D is a mapping from dom(t) to N. For Z a finite
zone, D(Z) stands for) ., D(x). A distribution D is K -sparse for some K € N
if for every finite zone Z of frontier F, D(Z) < |Z| + K|F|. A distribution is
strongly K -sparse if for any finite zone Z of frontier F', D(Z) < K|F]|.

Sparsity tells us that no finite zone contains more indices than its size plus a
factor linearly depending on the size of the frontier.

6.2 Important nodes

In order to construct the mapping Index, given an element X of Atoms, we
first define the set I(X) C dom(t) of its important nodes via combinatorial
constraints. Essentially we try to locate the places where “important coding
decisions” are made by the automaton A gsms when reading X. In the present
section, we provide the key combinatorial lemmas concerning important nodes.

Then, depending on the shape of the set I(X) two cases are separated and
two distinct definitions of Index are given. The first kind of indices are called
standard indices — noted SIndez(X) — and are the subject of Section 6.3. The
others are called branch indices — noted BlIndex(X) — and are the subject of
Section 6.4.

Let us first introduce a convenient notation for studying the behavior of the
automata Aatoms and Apzem over zones: For a zone Z = N,V and states
4 q1s- - qn € Q Atoms, we denote by Atoms(q, Z,q1,-..,qn) the set of all X C Z
such that there exists X’ C dom(t) with

- X=X'NnZ, and
— X' is accepted by Aatoms With a run p such that p(x) = ¢ and p(x;) = ¢; for
all i € [n].

Similarly, for ¢, q1, ..., qn € Qpem we denote by Mem(q, Z, q1, ..., qn) the set of
all pairs (X,Y) with X, Y C Z such that there are X' Y’ C dom(t) with

X=X'NZY=Y'NZ and
— (X',Y”) is accepted by Apzem with a run p such that p(z) = ¢ and p(x;) = ¢;
for all i € [n].

23

The definition of important nodes is then the following.

Definition 23 Let Kiyy = (2|Qmem|+1)|Q Atoms|. Given X € Atoms, a node x €
dom(t) is called important for X if

HY C N/ : (X = N/)UY € Atoms}| > Kin -
We denote by 1(X) the set of important nodes for X .

Hence a node z is important for X if there are many — i.e., more than Kj,,
— ways to modify X below z while remaining in Atoms. Intuitively, without
knowing how X looks like below x, we cannot say much about which atom is
coded because there are too many possibilities left. Remark that the set I(X) is
by definition prefix closed. The fundamental property that we show in Lemma 25
is that for an important node = of X, the part of X that is not below x comes
from a set of small size. To prove this lemma we need its combinatorial core
stated in the following lemma.

Lemma 24 Let K. = 2|Qpem| + 1. For any two disjoint zones Z and Z' of
respective frontiers F = {x,x1,...,x,} and F' = {a',2},..., 2]}, and all ac-
cepting runs p of Astoms

either |Atoms(p(z), Z, p(z1),-..,p(xn))| < Kc ,
or |Atoms(p(z'), Z', p(x}), ..., p(z))| < K. .

Proof. 1t is sufficient for us to prove the result for two complementary zones.
This comes from the fact that increasing a zone also increases the number of
possible projections w.r.t. a fixed run, i.e., |[Atoms(p(x), Z, p(x1),...,p(xy))] <
|Atoms(p(y), Z", p(y1), ..., p(ye))| for a zone Z" of frontier {y,yi,...,ye} with
Z C Z". Hence, we will assume Z to be N;'* and Z’ to be Ni for some node z.

Let us assume that for some K > K. we have distinct sets Xq,..., Xk in
Atoms(p(e), Z, p(x)) and distinct sets X7, ..., X} in Atoms(p(z),Z"). Then, for
every i,j € [K], let Y;; be X; U X}. As the union of Z and Z’ gives the whole
domain of ¢, we have Y; ; € Atoms for all i, j € [K].

Let us now consider the set Comb of possible combinations of the Y; ;, combi-
nation in the sense of the relation Mem. More precisely, A C dom(t) is in Comb
if whenever (Y, A) € Mem holds for some atom Y, then Y =Y ; for some 1, j.
The cardinality of Comb is 2% *. We now show by a combinatorial argument that
Aprem cannot distinguish all the elements from Comb because the amount of
information that can be passed between the two zones Z and Z’ is limited by
the number of states in Q pzem,.

For this purpose, we define for each A € Comb, fa : [K] X Qumem — {0,1}
and g4 : Qmem X [K] — {0,1} by

1 if (Xi,ANZ) € Mem(q'., . Z,q),
0 else,
1 if (X}, ANZ') € Mem(q,2"),

0 else.

24

It is obvious that if two sets A, B € Comb are such that f4 = fp and g4 = g5,
then (Y;;, A) € Mem iff (Y;;,B) € Mem for all i,j € [K]. This means, by
definition of Comb, that A = B.

However, there are only 2219mem!K different possible values for the pair fa, ga.
Hence we obtain |Comb| < 22@umen!K This contradicts |Comb| = 2K°. O

The following lemma shows that the possibilities to code an atom ‘above’ an
important node are bounded.

Lemma 25 For each node x we have [{X N N;* : X € Atoms andx €
I(X)}| < Kim-

Proof. We are aiming at a contradiction to Lemma 24 for Z = N;"* and Z' = N}'.

For each X with x € I(X) there are more than Kj, many ¥ C N/ such
that Xy, := (X — Nf)UY is in Atoms. Since Kim = [Q atoms| - Kc (with K.
from Lemma 24), we can choose a state ¢x,z € Q atoms such that more than K,
of these Xy, are accepted by Aaioms with a run that labels x with gx .. This
means that |Atoms(gx o, N})| > K.

Now, assume that there are Kjy, different X € Atoms with z € I(X) that
differ on N;*. Then there are at least K. such sets Xi,..., X, with ¢x, , =
©+* = (Xy,,« = ¢- In particular, we obtain |Atoms(q'y,,,. ., N, q)| > K.. Together
with |Atoms(q, Nj¥)| > K. from above we obtain the desired contradiction. O

6.3 Standard indices

We now address the problem of computing Index(X) for some atom X under the
assumption that I(X) is not an infinite branch (the case when I(X) is an infinite
branch is treated in Section 6.4). Since we call this case the standard case, we
will denote the index defined for such atoms X by SIndez(X). The simplest case
is that I(X) is totally ordered by C, i.e., I(X) is a finite path starting from
the root. We simply define SIndez(X) to be the last node on this path. The
other case corresponds to I(X) not being a finite path nor an infinite branch.
This corresponds to I(X) not being totally ordered by C. In this situation, we
define SIndex(X) to be the first node at which (X)) splits into two paths. Those
two cases are unified in the following definition.

Definition 26 For X € Atoms such that 1(X) is not an infinite branch, the
index of X, written SIndex(X), is the maximal element in 1(X) which is com-
parable to every element in I(X).

As already mentioned, the intention of this definition is that SIndez(X)
roughly locates in the tree where the main information concerning the atom
coded by X lies. This location is far from being precise, and many elements of
Atoms may have the same index. However, we will see that it is possible to obtain
a good understanding of the repartition of the standard indices. The following
lemma gives precise bounds on the quantity of indices that may occur in a zone,
i.e., it states that the distribution assigning to each node z the number of X
such that SIndex(X) = x is sparse.

Lemma 27 (sparsity) There is a constant K such that |SIndex™(Z)| < | Z|+
K| F| for every finite zone Z of frontier F'.

25

Proof. Denote the elements of the frontier of Z by x and x1,...,x,, ie., Z =
Nt The proof of the lemma consists of two steps. We first show that for
atoms X such that SIndex(X) is inside Z, the amount of information located
outside Z is bounded. More precisely, we first show for M := Ky, - |Q Atoms|

(a) {XNN;* : X € Atoms and SIndez(X) € Z}| < M and
(b) {X NN/ : X € Atoms and SIndex(X) € Z}| < M for all ¢ € [n].

For (a) note that from SIndex(X) € Z, the definition of SIndez, and the prefix
closure of I(X) we obtain that x € I(X). Therefore,

{XNNS" : X € Atoms and SIndex(X) € Z}
C{XNN/* : X € Atoms and x € I(X)}

and (a) follows from Lemma 25.

For (b) we show that for each X € SIndez~'(Z) and each z; there is a state
q € Qatoms such that X N N, € Atoms(q, N;}'") and |Atoms(q, N;)| < Kin.
From this, (b) follows because each X N N;" comes from one of at most |Q Azoms|
many sets of size less than Kj,,. We distinguish two cases.

If ; ¢ I(X), then we take ¢ to be the state at x; in an accepting run of
Astoms on X. From the definition of I(X) we immediately obtain the desired
property.

Else, if z; € I(X), by definition of standard indices there must some y € I(z)
incomparable to x;, the index of X being the deepest common ancestor of x;
and y. From the definition of important nodes for X and from Ki,, = |Q atoms| Kc
we obtain that there exists a set Y C N/ such that (X — N/) UY is in Atoms
and is accepted with a run of Asms that labels y by a state ¢’ such that
|Atoms(q', N/)| > K.. Let q be the state assumed at node z; by this run. From
Lemma 24 applied to the zones N}, N/, and to the aforementioned run, we can
conclude that |Atoms(q, N;")| < K. The desired property follows from K. <
Kip,. This finishes the proof of (b).

Let us now turn ourselves to the conclusion of the lemma. We denote the
elements from {X N N" : SIndex(X) € Z} by X!,..., X and the elements
from {X NN/ : SIndex(X) € Z} by X},..., XM (the same element can be
represented more than once, what is important is that all elements are repre-
sented).

Now, consider the set Comb of all combinations of atoms from SIndexz™*(Z)
(in the same sense as in the proof of Lemma 24). A combination A € Comb is
entirely characterized by the following objects

— the set AN Z,
— the mapping faz : [M] X Qumem — {0, 1} with

1 if (X7, ANN;") e Mem(q%, ,Ni*,q),

faz(j,q) = {0 lse.

— and the mapping fa .z, : Qmem % [M] — {0,1} with

1 if (X/,ANN) e Mem(q, NT),

0 else.

fA,zi(ij) = {

26

Thus, | Comb| < 2121 . 2MIQuem| . TT2_ 21QuemIM | For K = |Q pem|M we obtain

olSIndex™"(2)| _ |Comb| < 2lZIHIFIK:

and hence |SIndexz 1 (Z)| < |Z| + K| F)|. 0

6.4 Treatment of infinite branches

It is possible that for some X € Atoms the set I(X) of important nodes is an
infinite branch. For these X we also develop a notion of index, called BIndex(X),
and show that the distribution obtained in this way is strongly sparse. Since the
sum of a K-sparse distribution and of a strongly K’-sparse distribution is a K +
K'-sparse distribution, we can add the indices corresponding to infinite branches
to the other indices without affecting the sparsity of the induced distribution.
In this section, we call important branches the infinite branches equal to
I(X) for some atom X. We start with the helpful observation that the number
of elements of Atoms corresponding to the same important branch is bounded.

Lemma 28 For every important branch B, |I~Y(B)| < Kin.

Proof. If there are Ky, different sets in 1~1(B), then we can pick a node x on B
such that all these sets differ on the zone N;™. Since z is important for all X in
I71(B), we obtain a contradiction to Lemma 25. O

Our goal is to associate to every important branch B a node VInd(B) on B
such that

(1) at most Kjy, branches are mapped to the same node by ViInd, and
(2) if some VInd(B') is above VInd(B), then VInd(B) is not in B’.

Those two properties are established in Lemma 32. Then Lemma 33 uses those

sole properties for concluding that VInd o I has a strongly sparse distribution.
Our main tool for constructing VInd is to produce a well-founded order for

branches. For this, we define RInd(B) for every important branch B by

RInd(B) = min{zx € B:3X C NJ*, I(X) = B}.

Since we consider finite sets interpretations, RInd(B) is always defined. Lemma 25
applied to the node RInd(B) directly leads to the following lemma.

Lemma 29 For all nodes x, |RInd ™! ()| < Kipy.
The well-foundedness argument announced above is then the following.

Lemma 30 For every important branch B, there are finitely many important

branches B’ such that RInd(B') C RInd(B).

Proof. One has that RInd(B') C RInd(B) iff B’ belongs to UxERInd(B)RIndfl(:L').
Lemma 29 shows that this set is finite. a

Now, we can define for a branch B the index VInd(B) as being the first node
in B below RInd(B) which is not lying on an important branch strictly inferior
with respect to comparing the RInd values. Formally

VInd(B) = min{zr € B : RInd(B) C z, VB'. RInd(B') C RInd(B) — = ¢ B'}.

This definition is sound thanks to Lemma 30. Furthermore, VIind and RInd can
be related in the following way.

27

Lemma 31 Vind(B) C VInd(B') implies RInd(B) C RInd(B').

Proof. Assume VInd(B) C VInd(B'). Since VInd(B') € B’ we obtain VInd(B) €
B'. As by definition RInd(B) C VInd(B), we also have RInd(B) € B’. Conse-
quently RInd(B) and RInd(B’) lie on the same branch B’, and thus are com-
parable. For the sake of contradiction, suppose RInd(B’') C RInd(B), then by
definition of VInd we obtain VInd(B) ¢ B’. Contradiction. The remaining case
is the expected RInd(B) C RInd(B’). O

We are ready to establish the two properties wanted for Vind.

Lemma 32 The following holds.

(1) For every node x, | VInd~'(z)| < Kin.
(2) If VInd(B') C VInd(B), then VInd(B) ¢ B'.

Proof. (1): Let B be an infinite branch such that VInd(B) = x and let y
be RInd(B). By Lemma 31, important branches with the same VInd also have
the same RInd and hence VInd~!(x) € RInd~'(y). The desired bound follows
from Lemma 29.

(2): If VInd(B) € B', then RInd(B) C RInd(B’) by definition of VInd. This
implies VInd(B) C VInd(B'), again by the definition of VInd. O

Now, for X € Atoms such that I(X) is an infinite branch we define BIndez(X)
to be VInd(I(X)). The distribution induced by Blndez is strongly sparse:

Lemma 33 (strong sparsity) For each finite zone Z of frontier F' we have
|BIndex ™' (Z)| < K2 |F|.

Proof. Assume that VInd(B), Vind(B') € Z for two branches B and B’. From
Lemma 32 (2) we can conclude that BNF = B'NF implies VInd(B) = VInd(B').
And, according to Lemmas 28 and 32 (1), the number of atoms X that share the
same value BIndex(X) is bounded by K2 . This proves the claim. 0

6.5 Car parking

In this section, our goal is to spread the indices around the tree such that each
index ends in exactly one position. This can be seen as parking vehicles. In
the beginning there are cars (indices) placed in the nodes of the tree, possibly
more than one at the same position, and we aim at parking each of them in one
node, i.e., attaching a single node to each of those cars. This is obviously not
possible in general but we shall prove that, under a sparsity constraint on the
distribution of vehicles, it is possible to attach a single parking place to each car,
and furthermore that the mapping that, given a car, tells where to park it, can
be described by a WMSO-formula.

For this purpose, we have to describe distributions and other kinds of map-
pings that involve integers in their domain or image by WMSO-formulas. These
integers will always be bounded by some constant K and hence we can split the
WMSO-definition into several formulas, one for each number that may be in-
volved. Formally, we say that a relation R C dom(t)" x I for some finite I C Z is
WMSO-definable if there are WMSO-formulas ¢;(x1, ..., z,) for each i € I such
that (u1,...,ur,7) € R iff t,uy,...,u, E ¢i(x1,...,2,). Note that a K-sparse
distribution can be seen as a relation of this kind since 0 < D(z) < 3K for every
x € dom(t).

28

Definition 34 Given a distribution D, a placement P for D is an injective
partial mapping from dom(t) x N to dom(t) such that P(x,i) is defined iff i €
[D(z)].

A flow, defined below, can be seen as a kind of instruction on how to spread
the values of a distribution to obtain a placement. In the vehicles description,
this is the number of cars which will have to cross an edge in order to reach the
final placement.

Definition 35 A flow is a mapping f from the nodes of t to Z. A flow f is
compatible with a distribution D if for all inner nodes x, D(z) + f(z) < 1+
f(z0) + f(x1) and for every leaf x, D(z) 4+ f(x) < 1. A flow f is bounded by a
constant K if |f(z)| < K for each node x.

In this definition, f(z) is interpreted as the number of cars crossing the edge from
the ancestor of x to z. In case of a negative value, — f(z) cars are driving from x
to its ancestor. The condition of f being compatible with D states that after
distributing all the cars according to the flow there is at most one car remaining
at each node. One should note here that, according to our definition, it is possible
that f(e) < 0. With the above intuition this would mean that one has to send
—f(€e) cars to the (non-existing) ancestor of the root. We need this case when
constructing flows on finite subtrees of a given infinite tree.

In the following we show that for a K-sparse distribution there is a compat-
ible flow that is bounded. From this flow we then compute a placement for the
distribution. We start by defining a flow on finite trees (which can then also be
used to deal with finite subtrees of a given infinite tree).

Lemma 36 For every finite tree t and every WMSO-definable K -sparse distri-
bution D owver t, there exists a WMSO-definable flow f that is compatible with
D, bounded by 2K + 1, and such that for each node x there is a zone Z, rooted
in x of frontier F, with

(1) D(Zo) + f(x) = |Zo| + K(|F2 — 1),
(2) and f(y) > K for all y € F, different from .

Proof. First note that (1) implies f(x) > —K for each x since D is K-sparse. We
define the values f(z) and the zones Z, inductively. These definitions directly
imply that f is compatible with D.

The base case of a leaf z is straightforward: we set f(z) to be 1 — D(x)
and Z, = {x}. By the hypothesis of sparsity, we have that D(z) < K + 1 and
hence |f(z)| is bounded by 2K + 1.

Let 2 be an inner node. Let f'(z0) and f’(x1) be respectively min(K, f(z0))
and min(K, f(z1)). Let us now define f(z) to be 1+ f'(z0) + f'(z1) — D(x)
and Z, to contain the node x, the nodes of Z,y if f(20) < K, and the nodes
of Z,1 if f(z1) < K. By the hypothesis of induction, we indeed obtain that
D(Zy)+ f(x) = |Zz|+ K(|Fy| —1). We illustrate this only for the case f'(z0) < K
and f'(x1) = K, the other cases are similar. In this case Z, = Z,o U {x},
|Fy| = |Fro| + 1, and f(z) = 1 + f(20) + K — D(z). From this we get the

29

following sequence of equalities:

D(Z;) + f(x) = D(Zw) + D(x) + 1+ f(20) + K — D(x)
=D(Zy) + f(20)+ 1+ K
= |Zyo| + K(|Foo| = 1) + 1+ K
= |Zzo| + 1+ K(|Frol)
= |Zz| + K(|Fy| — 1).

From the definition of f(x) it is clear that f(x) < 2K + 1. As mentioned before,
f(z) > —K and thus |f(x)| is bounded by 2K + 1.

It is obvious that this flow, which has only a bounded number of possible
values and is defined inductively, is WMSO-definable. This definition can be
done by requiring the existence of sets X_f,..., Xox11 such that a node x is
in X; iff f(x) = i. This can be directly expressed if x is a leaf. Otherwise it is a
simple statement on the membership of the successors z0 and x1 of x. O

Lemma 37 For every infinite tree t and every WMSO-definable K -sparse distri-
bution D, there exists a WMSO-definable flow f bounded by TK that is compatible
with D such that f(e) = 0.

Proof. As a K-sparse distribution restricted to a finite subtree of t is also K-
sparse on this subtree, we can apply Lemma 36 to define the values of f(x) for
the nodes x that are not on infinite branches of t.

Let B be the set of nodes appearing in some infinite branch. We define in-
ductively for any node x € B a flow f(x) such that 0 < f(x) < 7K. We only
consider non-negative values since on infinite branches we never reach a leaf and
hence there is no need for an upward flow.

We start by setting f(e) = 0. For x # € let y € B be the father of z. Three
cases may happen:

(a) If z is the only child of y in B, then we set f(z) = max(0, f(y) + D(y) —
f(z’) — 1) where ' is the other child of y.

(b) If the two children of y are in B and z is the left child, then we set f(z) =
max(0, min(5K, f(y) + D(y) — 1)).

(c) If the two children of y are in B and x is the right child, then we set f(z) =
max(0, f(y) + D(y) — 1 — 5K).

Obviously, f(z) > 0 in all cases. We show that if z is of type (b) or (c), then
f(z) <5K, and if z is of type (a), then f(x) < 7K.

In case (b), f(z) < 5K follows directly from the definition and in case (c)
from f(y) < 7K (by induction) and D(y) < 3K + 1 (D is K-sparse).

For z as in (a) we cannot use a local argument but have to look at sequences
of vertices of type (a) and then apply Lemma 36 together with the K-sparsity
of D. For this purpose, let y,,...,y1 be such that y, is the father of =, y;_1 is
the father of y; for all ¢ € {2,...,n}, yo,...,y, are of type (a), and y; is not
of type (a), i.e., y1 is of type (b) or (c), or y; is the root. Then we know that
f(y1) <5HK.

30

Let z1,...,x, be such that y; is the father of z;, x, # x, and x; # y;11 for
i€ {l,...,n— 1}, ie., x; is the brother of y;11. For the z; the flow is defined
using Lemma 36. Hence there are zones Z,, rooted at x; of frontier F;, such that

D(Zs;) + f (i) = | Za,| + K([Fz;| = 1). (1)
Let Z = U ({vi} U Z,,) and let F be the frontier of Z. Then

n
Zl=n+ |2, (2)
=1

[Fl=2+ (] - 1) 3)

i=1
S D) = D(2) -3 D(Z,) (1)
i=1 i=1
Since yo, ..., y, are of type (a), we get
f@) = fly) + D _(D(yi) = 1= f(xs)).
i=1

We know that f(y1) < 5K and hence it remains to be shown that > 7 | (D(y;) —
1 — f(zi)) <2K. This can be deduced as follows:

me—uﬂm>@ D(Z) = =3 (D(Ze) + f()
) D(Z)—n—;(]in+K(\in‘_1))
Y DZ)—n- K(F|-2) - ;sz,-\)
4 K|F| —n— K(|F|—2) > (12.)

=1

—~
-

= 2K

That this flow f is compatible with D can be easily deduced from the definitions
as well as the fact that it is WMSO-definable. O

We are now ready to establish our placement Lemma.

Lemma 38 (car parking) For every treet and every WMSO-definable K -sparse
distribution D, there exists a WMSO-definable placement for D. If t is finite, we
additionally require that D(dom(t)) < |dom(t)].

Proof. According to Lemmas 36 and 37 we know that there is a WMSO-definable
flow f that is compatible with D. For simplicity, we first assume that f(e) = 0,
which is the case for infinite trees (Lemma 37). If f(e) > 0 for finite trees,
then we can simply redefine f(e) = 0 without changing the property of f being
compatible with D. At the end of the proof we briefly explain how to treat the
case f(e) < 0 for finite trees.

The general strategy for defining the placement is the following:

31

— From each node we send all the cars except one to its neighbors. The number
of cars sent to each neighbor is described by the flow.

— If we follow this strategy, then each edge in t is crossed by the cars in only
one direction. Hence, a car cannot visit twice the same node. This means that
it might be sent up in the tree for some steps and from some point onwards
it is only sent downwards.

— To be sure that each car will be parked after finite time we order all the cars
that cross a node (as described by D and f) according to a fixed strategy
and we also fix a scheme for distributing the cars to the neighboring nodes.

— This ordering will ensure that the index of a car decreases each time it is sent
down in the tree. As described above, each car is sent up in the tree only a
finite number of times. Hence, if we always park the car that is first in the
ordering at a specific node, then each car will eventually be parked.

To show that this strategy can be realized by WMSO-formulas we first describe
the ordering of cars that we use and then define formulas

— send;(z, y) meaning that the ith car at node x is sent to node y.

— drive; j(x, y) meaning that the ith car at node x is sent to y and is car number
7 at y.

— start;(z) meaning that the i¢th car at node z does not come from another
node.

— itinerary,;(x, X1, ..., Xk, y) meaning that the ith car at node x will be parked
at node y using an itinerary that is described by the sets X1,..., Xk.

To define these formulas we first have to introduce some notation. To avoid case
distinctions we define f*(x) = max(f(z),0) and f~(x) = min(f(x),0). Further-
more, we assume by convention that for a leaf z the values f*(z0), fT(x1),
f~(x0), f~(x1) are defined, and are all set to 0.

Then the number of cars crossing a node x is f*(x) + f~(20) + f~(x1) +
D(z). Since all the values involved in this expression are bounded and since
we can increase K without affecting the K-sparsity of D, we can assume that
T (x)+ f~(20) + f~(21) + D(z) < K for all .

Since f is WMSO-definable, we can also assume that there are formulas ¢;f ()
and ¢; (z) defining f* and f~. Then expressions of the form i1+ [(z)+f~ (y) =
i for i1, is € [K] can easily be expressed as Boolean combinations of the formulas
¢;r and ¢; . The use of expressions of this kind simplifies the presentation of the
formulas.

We start by giving the orderings used in the definitions of the formulas send;
and drive; ;. The cars that cross a node x will be distributed in the following
order that we refer to as the distribution order:

[/ (@)~ (20)]/ (21)|D(=)]

That is, we first distribute the cars that come from the father of z, then the cars
that come from the left child of x, and so on. It remains to fix where to send the
cars.

L[f= () [FH(20) [f¥(a1) |
This means that the first car in the distribution order is parked in the node =x.
The next cars are sent to the father of z if f(x) is negative. The following cars

32

in the distribution order are send to the left child of z and the remaining cars to
the right child of x. This is expressed by the following formulas, where the first
two are only defined for 2 < i < K because the first car is always kept at the
current position.

— For 2 <1 < K:
send;(z,y) == [((x =y0) V(z =yl)) A (1 <i < C)]
20 =y) A (C1 < i< C9)
1:y)/\(02<i§C3)
Here Cy = 1+ f(2), C2 = 1+ f~(z) + fT(20), and C5 = 1 + f~(x) +
f(@0) + £ (21).
— For2<i<K:

drivei,j (.flf, y) = Sendi (.’L’, y) A

Vi@ =yl) A((G=1)+
VI0=y) A (i —1=f"(x) =Jj)]
VIl =y) A (i = 1= f~(z) = fH(20) = j)])

start;(z) == (i < fT(z) + f~(20) + f~(21) + D(x))
A(—Ty : \/]K:2 drive;;(y, x))
—Forl1 <i<K:

itinerary,(x, X1, ..., Xk, y) := disjoint(Xy, ..., Xg) A
x € X; Astart;(z) AN X7 = {y}
K
ANNNVzeX; \/ 32 e Xy o drivejji(z, 7))
=2 J'€[K]
Then the formulas v;(x,y) defining the placement are given by
Yi(z,y) = 3X1, ... Xk (itinerary;(z, X1, ..., XK, y)).

As mentioned at the beginning of the proof we now discuss how to treat the case
f(e) < 0. Recall that this may only happen for finite trees. In general, simply
redefining f(€) = 0 may lead to a flow that is not compatible with D anymore.
Therefore, we have to use a different strategy.

The strategy for distributing the cars described above would lead to f~(e)
cars that “get stuck” at the root because, following the flow, they should be sent
upwards, and this is not possible. This means that there are at most K cars (for
simplicity assume exactly K cars) that start at some node but never arrive at
some destination, i.e., there are nodes z1,...,zx and i1,...,ix € [K] such that

starti; (2;) A =3y (i, (25,)
is satisfied. From the assumption D(dom(t)) < |dom(t)| we can conclude that
there remain at least K nodes where no car is parked, i.e., K nodes which are
not image of the function defined by the ¢;’s. Let y1,...,yx be the K first such
nodes for some WMSO-definable order (this is possible since the tree is finite).
We can now extend this function by ordering the 1, ...,z and map the 7;th car
from z; to y;. Note that these definitions are expressible in WMSO. In this way

we obtain an modification of the function defined by the ¢;’s into a placement
for D. ad

33

6.6 Proof of Theorem 10

We can now prove Theorem 10 as stated in Section 4 by combining the previous
results.

Proof (of Theorem 10). For X € Atoms let

BIndex(X) if I(X) is an infinite branch,

Indez(X) = {SIndex(X) otherwise.

We construct a formula ¢nq(X,y) that associates to each X € Atoms its index
y = Index(X). From the definitions of I(X), SIndex(X), and Blndex(X) it is
clear that we can construct such a formula. Note that in the definition of this
formula, we do not have to explicitly represent infinite sets (though I(X) may be
infinite) because we can construct a WMSO formula ¢, (X, z) that associates to
X € Atoms its important nodes. From this one can construct WMSO definitions
of SIndex(X) and BIndex(X), and hence the formula ¢inq(X,y) is also WMSO.

Then, we compute the distribution D defined by D(z) = |Indez'(z)|. Since
this distribution is (Ks + K2,)-sparse by Lemmas 27 and 33, it is also WMSO-
definable using the formula ¢;,q. Let K be a constant such that D(z) < K for
all nodes . Applying Lemma 38, we obtain a WMSO-definable placement P for
D. One should note that for finite ¢ the assumption D(dom(t)) < |dom(t)] is
satisfied because D(dom(t)) is the number of elements in the set F, and Z(t)
being isomorphic to P (E) implies that ¢ has at least as many elements as F.

Let ¢;(x1,z2) for i € [K] be the formulas defining P. Now, we order all the
X € Atoms with the same index. A possible definition for such an ordering is
X <Y if the lexicographically smallest node that is not in X NY is in X. Then
one can construct WMSO-formulas 6;(X) stating that X is the ith set in the
ordering among those that have the same index as X.

The WMSO-formula Code(X,x) that attaches X to its final position z is
then defined as follows:

Code(X,x) = \/ (0;(X) A 3y(dina(X, y) A iy, x)).
i€[K]

Acknowledgments

We are particularly grateful to Vince Barany for his contribution to the random-
graph proof, as well as his comments on previous versions of this work. We also
thank Achim Blumensath for commenting on earlier stages of this work.

References

[Bar06] Vince Bardny. Invariants of automatic presentations and semi-synchronous trans-
ductions. In STACS 2006, volume 3884 of LNCS, pages 289-300. Springer, 2006.

[BGO0O] A. Blumensath and E. Gréadel. Automatic Structures. In Proceedings of 15th IEEE
Symposium on Logic in Computer Science LICS 2000, pages 51-62, 2000.

[BG04] Achim Blumensath and Erich Gradel. Finite presentations of infinite structures:
Automata and interpretations. Theory of Computing Systems, 37:641 — 674, 2004.

[Blu99] Achim Blumensath. Automatic structures. Diploma thesis, RWTH-Aachen, 1999.

34

[Bluo1]
[Cau96]
[Cau02]
[CO06]

[Col02]

[Col04]

[Cou97]

[CT02)

[CWO03]

[DT90]
[ECHT92]
[Hod83]

[Hod93]
[KLO2]

[KN95]

[KNRSO04]

Achim Blumensath. Prefix-recognisable graphs and monadic second-order logic.
Technical Report AIB-06-2001, RWTH Aachen, May 2001.

Didier Caucal. On infinite transition graphs having a decidable monadic theory. In
ICALP’96, volume 1099 of LNCS, pages 194-205. Springer, 1996.

Didier Caucal. On infinite terms having a decidable monadic theory. In MFCS’02,
volume 2420 of LNCS, pages 165-176. Springer, 2002.

Bruno Courcelle and Sang-il Oum. Vertex-minors, monadic second-order logic and
a conjecture by seese. Journal of Combinatorial Theory, Series B, 2006. to appear.
Thomas Colcombet. On families of graphs having a decidable first order theory with
reachability. In Proceedings of ICALP 2002, volume 2380 of LNCS, pages 98-109.
Springer, 2002.

T. Colcombet. Equational presentations of tree-automatic structures. In Workshop
on Automata, Structures and Logic, Auckland, New Zealand, December 2004.

B. Courcelle. The expression of graph properties and graph transformations in
monadic second-order logic. In G. Rozenberg, editor, Handbook of graph grammars
and computing by graph transformations, Vol. 1 : Foundations, chapter 5, pages
313-400. World Scientific, 1997.

Olivier Carton and Wolfgang Thomas. The monadic theory of morphic infinite
words and generalizations. Information and Computation, 176(1):51-65, 2002.
Arnaud Carayol and Stefan Wohrle. The Caucal hierarchy of infinite graphs in
terms of logic and higher-order pushdown automata. In FSTTCS’03, volume 2914
of LNCS, pages 112-123. Springer, 2003.

Max Dauchet and Sophie Tison. The theory of ground rewrite systems is decidable.
In LICS’90, pages 242-248. IEEE, 1990.

D. Epstein, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Paterson, and Thurston.
Word processing in groups. Jones and Barlett publishers, 1992.

Bernard R. Hodgson. Décidabilité par automate fini. Ann. Sci. Math. Québec,
7(3):39-57, 1983.

Wilfrid Hodges. Model Theory. Cambridge University Press, 1993.

Dietrich Kuske and Markus Lohrey. On the theory of one-step rewriting in trace
monoids. In ICALP’02, volume 2380 of LNCS, pages 752-763. Springer, 2002.
Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of structures. In
Workshop LCC ’94, volume 960 of LNCS, pages 367-392. Springer, 1995.
Bakhadyr Khoussainov, André Nies, Sasha Rubin, and Frank Stephan. Automatic
structures: Richness and limitations. In LICS’04, pages 44-53. IEEE Computer
Society, 2004.

[KNUWO05] Teodor Knapik, Damian Niwinski, Pawel Urzyczyn, and Igor Walukiewicz. Unsafe

[KRSO04]

[Mad03]
[MS85]
[Rub04]
[See91]

[Tho97]

grammars, panic automata, and decidability. In ICALP’05, volume 3580 of LNCS,
pages 1450-1461. Springer, 2005.

Bakhadyr Khoussainov, Sasha Rubin, and Frank Stephan. Definability and regu-
larity in automatic structures. In STACS 04, volume 2996 of LNCS, pages 440-451.
Springer, 2004.

P. Madhusudan. Model-checking trace event structures. In LICS’03, pages 371-380.
IEEE Computer Society, 2003.

David E. Muller and Paul E. Schupp. The theory of ends, pushdown automata, and
second-order logic. Theoretical Computer Science, 37:51-75, 1985.

S. Rubin. Automatic Structures. PhD thesis, University of Auckland, New Zealand,
2004.

Detlef Seese. The structure of models of decidable monadic theories of graphs.
Annals of Pure and Applied Logic, 53:169-195, 1991.

Wolfgang Thomas. Languages, automata, and logic. In G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Language Theory, volume III, pages 389-455.
Springer, 1997.

35

36

Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports
please consult http://aib.informatik.rwth-aachen.de/ or send your request
to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email:
biblio@informatik.rwth-aachen.de

1987-01 * Fachgruppe Informatik: Jahresbericht 1986

1987-02 * David de Frutos Escrig, Klaus Indermark: Equivalence Relations of Non-
Deterministic Ianov-Schemes

1987-03 * Manfred Nagl: A Software Development Environment based on Graph
Technology

1987-04 * Claus Lewerentz, Manfred Nagl, Bernhard Westfechtel: On Integration
Mechanisms within a Graph-Based Software Development Environment

1987-05 * Reinhard Rinn: Uber Eingabeanomalien bei verschiedenen Inferenzmod-
ellen

1987-06 * Werner Damm, Gert Dohmen: Specifying Distributed Computer Archi-
tectures in AADL*

1987-07 * Gregor Engels, Claus Lewerentz, Wilhelm Schéfer: Graph Grammar En-
gineering: A Software Specification Method

1987-08 * Manfred Nagl: Set Theoretic Approaches to Graph Grammars

1987-09 * Claus Lewerentz, Andreas Schiirr: Experiences with a Database System
for Software Documents

1987-10 * Herbert Klaeren, Klaus Indermark: A New Implementation Technique
for Recursive Function Definitions

1987-11 * Rita Loogen: Design of a Parallel Programmable Graph Reduction Ma-
chine with Distributed Memory

1987-12 J. Borstler, U. Moncke, R. Wilhelm: Table compression for tree automata

1988-01 * Gabriele Esser, Johannes Riickert, Frank Wagner Gesellschaftliche As-
pekte der Informatik

1988-02 * Peter Martini, Otto Spaniol: Token-Passing in High-Speed Backbone
Networks for Campus-Wide Environments

1988-03 * Thomas Welzel: Simulation of a Multiple Token Ring Backbone

1988-04 * Peter Martini: Performance Comparison for HSLAN Media Access Pro-
tocols

1988-05 * Peter Martini: Performance Analysis of Multiple Token Rings

1988-06 * Andreas Mann, Johannes Riickert, Otto Spaniol: Datenfunknetze

1988-07 * Andreas Mann, Johannes Riickert: Packet Radio Networks for Data Ex-
change

1988-08 * Andreas Mann, Johannes Riickert: Concurrent Slot Assignment Protocol
for Packet Radio Networks

1988-09 * W. Kremer, F. Reichert, J. Riickert, A. Mann: Entwurf einer Netzw-
erktopologie fiir ein Mobilfunknetz zur Unterstiitzung des o6ffentlichen
Straflenverkehrs

1988-10 * Kai Jakobs: Towards User-Friendly Networking

1988-11 * Kai Jakobs: The Directory - Evolution of a Standard

1988-12 * Kai Jakobs: Directory Services in Distributed Systems - A Survey

1988-13 * Martine Schiimmer: RS-511, a Protocol for the Plant Floor

37

1988-14 *
1988-15 *
1988-16 *
1988-17 *
1988-18 *
1988-19 *
1988-20 *
1988-21 *
1988-22 *
1988-23 *
1988-24 *
1989-01 *
1989-02 *
1989-03 *
1989-04 *

1989-05

1989-06 *
1989-07 *

1989-08 *

1989-09 *
1989-10 *

1989-11 *
1989-12 *
1989-13 *

1989-14 *

1989-15 *

1989-16 *

U. Quernheim: Satellite Communication Protocols - A Performance
Comparison Considering On-Board Processing

Peter Martini, Otto Spaniol, Thomas Welzel: File Transfer in High Speed
Token Ring Networks: Performance Evaluation by Approximate Analysis
and Simulation

Fachgruppe Informatik: Jahresbericht 1987

Wolfgang Thomas: Automata on Infinite Objects

Michael Sonnenschein: On Petri Nets and Data Flow Graphs

Heiko Vogler: Functional Distribution of the Contextual Analysis in
Block-Structured Programming Languages: A Case Study of Tree Trans-
ducers

Thomas Welzel: Einsatz des Simulationswerkzeuges QNAP2 zur Leis-
tungsbewertung von Kommunikationsprotokollen

Th. Janning, C. Lewerentz: Integrated Project Team Management in a
Software Development Environment

Joost Engelfriet, Heiko Vogler: Modular Tree Transducers

Wolfgang Thomas: Automata and Quantifier Hierarchies

Uschi Heuter: Generalized Definite Tree Languages

Fachgruppe Informatik: Jahresbericht 1988

G. Esser, J. Riickert, F. Wagner (Hrsg.): Gesellschaftliche Aspekte der
Informatik

Heiko Vogler: Bottom-Up Computation of Primitive Recursive Tree
Functions

Andy Schiirr: Introduction to PROGRESS, an Attribute Graph Gram-
mar Based Specification Language

J. Borstler: Reuse and Software Development - Problems, Solutions, and
Bibliography (in German)

Kai Jakobs: OSI - An Appropriate Basis for Group Communication?
Kai Jakobs: ISO’s Directory Proposal - Evolution, Current Status and
Future Problems

Bernhard Westfechtel: Extension of a Graph Storage for Software Doc-
uments with Primitives for Undo/Redo and Revision Control

Peter Martini: High Speed Local Area Networks - A Tutorial

P. Davids, Th. Welzel: Performance Analysis of DQDB Based on Simu-
lation

Manfred Nagl (Ed.): Abstracts of Talks presented at the WG ’89 15th
International Workshop on Graphtheoretic Concepts in Computer Sci-
ence

Peter Martini: The DQDB Protocol - Is it Playing the Game?

Martine Schiimmer: CNC/DNC Communication with MAP

Martine Schiimmer: Local Area Networks for Manufactoring Environ-
ments with hard Real-Time Requirements

M. Schiimmer, Th. Welzel, P. Martini: Integration of Field Bus and
MAP Networks - Hierarchical Communication Systems in Production
Environments

G. Vossen, K.-U. Witt: SUXESS: Towards a Sound Unification of Ex-
tensions of the Relational Data Model

38

1989-17 *

1989-18
1989-19 *

1989-20
1990-01 *

1990-02 *

1990-03 *
1990-04
1990-05
1990-06 *
1990-07 *

1990-08 *
1990-09 *

1990-11

1990-12 *

1990-13 *

1990-14

1990-15 *

1990-16
1990-17 *

1990-18 *

1990-20

1990-21 *

1990-22

1991-01
1991-03

1991-04

J. Derissen, P. Hruschka, M.v.d. Beeck, Th. Janning, M. Nagl: Integrat-
ing Structured Analysis and Information Modelling

A. Maassen: Programming with Higher Order Functions

Mario Rodriguez-Artalejo, Heiko Vogler: A Narrowing Machine for Syn-
tax Directed BABEL

H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:
Graph-based Implementation of a Functional Logic Language
Fachgruppe Informatik: Jahresbericht 1989

Vera Jansen, Andreas Potthoff, Wolfgang Thomas, Udo Wermuth: A
Short Guide to the AMORE System (Computing Automata, MOnoids
and Regular Expressions)

Jerzy Skurczynski: On Three Hierarchies of Weak SkS Formulas

R. Loogen: Stack-based Implementation of Narrowing

H. Kuchen, A. Wagener: Comparison of Dynamic Load Balancing Strate-
gies

Kai Jakobs, Frank Reichert: Directory Services for Mobile Communica-
tion

Kai Jakobs: What’s Beyond the Interface - OSI Networks to Support
Cooperative Work

Kai Jakobs: Directory Names and Schema - An Evaluation

Ulrich Quernheim, Dieter Kreuer: Das CCITT - Signalisierungssystem
Nr. 7 auf Satellitenstrecken; Simulation der Zeichengabestrecke

H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:
Lazy Narrowing in a Graph Machine

Kai Jakobs, Josef Kaltwasser, Frank Reichert, Otto Spaniol: Der Com-
puter fahrt mit

Rudolf Mathar, Andreas Mann: Analyzing a Distributed Slot Assign-
ment Protocol by Markov Chains

A. Maassen: Compilerentwicklung in Miranda - ein Praktikum in funk-
tionaler Programmierung (written in german)

Manfred Nagl, Andreas Schiirr: A Specification Environment for Graph
Grammars

A. Schiirr: PROGRESS: A VHL-Language Based on Graph Grammars
Marita Moller: Ein Ebenenmodell wissensbasierter Konsultationen - Un-
terstiitzung fiir Wissensakquisition und Erklarungsféhigkeit

Eric Kowalewski: Entwurf und Interpretation einer Sprache zur Beschrei-
bung von Konsultationsphasen in Expertensystemen

Y. Ortega Mallen, D. de Frutos Escrig: A Complete Proof System for
Timed Observations

Manfred Nagl: Modelling of Software Architectures: Importance, No-
tions, Experiences

H. Fassbender, H. Vogler: A Call-by-need Implementation of Syntax Di-
rected Functional Programming

Guenther Geiler (ed.), Fachgruppe Informatik: Jahresbericht 1990

B. Steffen, A. Ingolfsdottir: Characteristic Formulae for Processes with
Divergence

M. Portz: A new class of cryptosystems based on interconnection net-
works

39

1991-05
1991-06 *
1991-07 *
1991-09 *
1991-10
1991-11
1991-12 *
1991-13 *
1991-14 *
1991-15
1991-16
1991-17
1991-18 *
1991-19
1991-20
1991-21 *

1991-22

1991-23
1991-24

1991-25 *
1991-26
1991-27

1991-28

1991-30
1991-31

1992-01
1992-02 *

1992-04
1992-05 *

H. Kuchen, G. Geiler: Distributed Applicative Arrays

Ludwig Staiger: Kolmogorov Complexity and Hausdorff Dimension
Ludwig Staiger: Syntactic Congruences for w-languages

Fila Kuikka: A Proposal for a Syntax-Directed Text Processing System
K. Gladitz, H. Fassbender, H. Vogler: Compiler-based Implementation
of Syntax-Directed Functional Programming

R. Loogen, St. Winkler: Dynamic Detection of Determinism in Func-
tional Logic Languages

K. Indermark, M. Rodriguez Artalejo (Eds.): Granada Workshop on the
Integration of Functional and Logic Programming

Rolf Hager, Wolfgang Kremer: The Adaptive Priority Scheduler: A More
Fair Priority Service Discipline

Andreas Fasbender, Wolfgang Kremer: A New Approximation Algorithm
for Tandem Networks with Priority Nodes

J. Borstler, A. Ziindorf: Revisiting extensions to Modula-2 to support
reusability

J. Borstler, Th. Janning: Bridging the gap between Requirements Anal-
ysis and Design

A. Ziindorf, A. Schiirr: Nondeterministic Control Structures for Graph
Rewriting Systems

Matthias Jarke, John Mylopoulos, Joachim W. Schmidt, Yannis Vassil-
iou: DAIDA: An Environment for Evolving Information Systems

M. Jeusfeld, M. Jarke: From Relational to Object-Oriented Integrity
Simplification

G. Hogen, A. Kindler, R. Loogen: Automatic Parallelization of Lazy
Functional Programs

Prof. Dr. rer. nat. Otto Spaniol: ODP (Open Distributed Processing):
Yet another Viewpoint

H. Kuchen, F. Liicking, H. Stoltze: The Topology Description Language
TDL

S. Graf, B. Steffen: Compositional Minimization of Finite State Systems
R. Cleaveland, J. Parrow, B. Steffen: The Concurrency Workbench: A
Semantics Based Tool for the Verification of Concurrent Systems
Rudolf Mathar, Jiirgen Mattfeldt: Optimal Transmission Ranges for Mo-
bile Communication in Linear Multihop Packet Radio Networks

M. Jeusfeld, M. Staudt: Query Optimization in Deductive Object Bases
J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem

J. Knoop, B. Steffen: Unifying Strength Reduction and Semantic Code
Motion

T. Margaria: First-Order theories for the verification of complex FSMs
B. Steffen: Generating Data Flow Analysis Algorithms from Modal Spec-
ifications

Stefan Eherer (ed.), Fachgruppe Informatik: Jahresbericht 1991
Bernhard Westfechtel: Basismechanismen zur Datenverwaltung in struk-
turbezogenen Hypertextsystemen

S. A. Smolka, B. Steffen: Priority as Extremal Probability

Matthias Jarke, Carlos Maltzahn, Thomas Rose: Sharing Processes:
Team Coordination in Design Repositories

40

1992-06 O. Burkart, B. Steffen: Model Checking for Context-Free Processes

1992-07 * Matthias Jarke, Klaus Pohl: Information Systems Quality and Quality
Information Systems

1992-08 * Rudolf Mathar, Jiirgen Mattfeldt: Analyzing Routing Strategy NFP in
Multihop Packet Radio Networks on a Line

1992-09 * Alfons Kemper, Guido Moerkotte: Grundlagen objektorientierter Daten-
banksysteme

1992-10 Matthias Jarke, Manfred Jeusfeld, Andreas Miethsam, Michael Gocek:
Towards a logic-based reconstruction of software configuration manage-
ment

1992-11 Werner Hans: A Complete Indexing Scheme for WAM-based Abstract
Machines

1992-12 W. Hans, R. Loogen, St. Winkler: On the Interaction of Lazy Evaluation
and Backtracking

1992-13 * Matthias Jarke, Thomas Rose: Specification Management with CAD

1992-14 Th. Noll, H. Vogler: Top-down Parsing with Simultaneous Evaluation on
Noncircular Attribute Grammars

1992-15 A. Schuerr, B. Westfechtel: Graphgrammatiken und Graphersetzungssys-
teme(written in german)

1992-16 * Graduiertenkolleg Informatik und Technik (Hrsg.): Forschungsprojekte
des Graduiertenkollegs Informatik und Technik

1992-17 M. Jarke (ed.): ConceptBase V3.1 User Manual

1992-18 * Clarence A. Ellis, Matthias Jarke (Eds.): Distributed Cooperation in
Integrated Information Systems - Proceedings of the Third International
Workshop on Intelligent and Cooperative Information Systems

1992-19-00 H. Kuchen, R. Loogen (eds.): Proceedings of the 4th Int. Workshop on
the Parallel Implementation of Functional Languages

1992-19-01 G. Hogen, R. Loogen: PASTEL - A Parallel Stack-Based Implementation
of Eager Functional Programs with Lazy Data Structures (Extended
Abstract)

1992-19-02 H. Kuchen, K. Gladitz: Implementing Bags on a Shared Memory MIMD-
Machine

1992-19-03 C. Rathsack, S.B. Scholz: LISA - A Lazy Interpreter for a Full-Fledged
Lambda-Calculus

1992-19-04 T.A. Bratvold: Determining Useful Parallelism in Higher Order Func-
tions

1992-19-05 S. Kahrs: Polymorphic Type Checking by Interpretation of Code

1992-19-06 M. Chakravarty, M. Koéhler: Equational Constraints, Residuation, and
the Parallel JUMP-Machine

1992-19-07 J. Seward: Polymorphic Strictness Analysis using Frontiers (Draft Ver-
sion)

1992-19-08 D. Gértner, A. Kimms, W. Kluge: pi-Red"+ - A Compiling Graph-
Reduction System for a Full Fledged Lambda-Calculus

1992-19-09 D. Howe, G. Burn: Experiments with strict STG code

1992-19-10 J. Glauert: Parallel Implementation of Functional Languages Using
Small Processes

1992-19-11 M. Joy, T. Axford: A Parallel Graph Reduction Machine

1992-19-12 A. Bennett, P. Kelly: Simulation of Multicache Parallel Reduction

41

1992-19-13 K. Langendoen, D.J. Agterkamp: Cache Behaviour of Lazy Functional
Programs (Working Paper)

1992-19-14 K. Hammond, S. Peyton Jones: Profiling scheduling strategies on the
GRIP parallel reducer

1992-19-15 S. Mintchev: Using Strictness Information in the STG-machine

1992-19-16 D. Rushall: An Attribute Grammar Evaluator in Haskell

1992-19-17 J. Wild, H. Glaser, P. Hartel: Statistics on storage management in a lazy
functional language implementation

1992-19-18 W.S. Martins: Parallel Implementations of Functional Languages

1992-19-19 D. Lester: Distributed Garbage Collection of Cyclic Structures (Draft
version)

1992-19-20 J.C. Glas, R.F.H. Hofman, W.G. Vree: Parallelization of Branch-and-
Bound Algorithms in a Functional Programming Environment

1992-19-21 S. Hwang, D. Rushall: The nu-STG machine: a parallelized Spineless
Tagless Graph Reduction Machine in a distributed memory architecture
(Draft version)

1992-19-22 G. Burn, D. Le Metayer: Cps-Translation and the Correctness of Opti-
mising Compilers

1992-19-23 S.L. Peyton Jones, P. Wadler: Imperative functional programming (Brief
summary)

1992-19-24 W. Damm, F. Liu, Th. Peikenkamp: Evaluation and Parallelization of
Functions in Functional + Logic Languages (abstract)

1992-19-25 M. Kesseler: Communication Issues Regarding Parallel Functional Graph
Rewriting

1992-19-26 Th. Peikenkamp: Charakterizing and representing neededness in func-
tional loginc languages (abstract)

1992-19-27 H. Doerr: Monitoring with Graph-Grammars as formal operational Mod-
els

1992-19-28 J. van Groningen: Some implementation aspects of Concurrent Clean on
distributed memory architectures

1992-19-29 G. Ostheimer: Load Bounding for Implicit Parallelism (abstract)

1992-20 H. Kuchen, F.J. Lopez Fraguas, J.J. Moreno Navarro, M. Rodriguez
Artalejo: Implementing Disequality in a Lazy Functional Logic Language

1992-21 H. Kuchen, F.J. Lopez Fraguas: Result Directed Computing in a Func-
tional Logic Language

1992-22 H. Kuchen, J.J. Moreno Navarro, M.V. Hermenegildo: Independent
AND-Parallel Narrowing

1992-23 T. Margaria, B. Steffen: Distinguishing Formulas for Free

1992-24 K. Pohl: The Three Dimensions of Requirements Engineering

1992-25 * R. Stainov: A Dynamic Configuration Facility for Multimedia Commu-
nications

1992-26 * Michael von der Beeck: Integration of Structured Analysis and Timed
Statecharts for Real-Time and Concurrency Specification

1992-27 W. Hans, St. Winkler: Aliasing and Groundness Analysis of Logic Pro-
grams through Abstract Interpretation and its Safety

1992-28 * Gerhard Steinke, Matthias Jarke: Support for Security Modeling in In-
formation Systems Design

1992-29 B. Schinzel: Warum Frauenforschung in Naturwissenschaft und Technik

42

1992-30

1992-32 *

1992-33 *

1992-34

1992-35

1992-36

1992-37 *

1992-38

1992-39

1992-40 *

1992-41 *

1992-42 *

1992-43

1992-44

1993-01 *
1993-02 *

1993-03

1993-05

1993-06

1993-07 *

1993-08 *

1993-09

1993-10

1993-11 *

A. Kemper, G. Moerkotte, K. Peithner: Object-Orientation Axiomatised
by Dynamic Logic

Bernd Heinrichs, Kai Jakobs: Timer Handling in High-Performance
Transport Systems

B. Heinrichs, K. Jakobs, K. Lenflen, W. Reinhardt, A. Spinner: Euro-
Bridge: Communication Services for Multimedia Applications

C. Gerlhof, A. Kemper, Ch. Kilger, G. Moerkotte: Partition-Based Clus-
tering in Object Bases: From Theory to Practice

J. Borstler: Feature-Oriented Classification and Reuse in IPSEN

M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, Y. Vassiliou: Theories Un-
derlying Requirements Engineering: An Overview of NATURE at Gen-
esis

K. Pohl, M. Jarke: Quality Information Systems: Repository Support for
Evolving Process Models

A. Zuendorf: Implementation of the imperative / rule based language
PROGRES

P. Koch: Intelligentes Backtracking bei der Auswertung funktional-
logischer Programme

Rudolf Mathar, Jiirgen Mattfeldt: Channel Assignment in Cellular Radio
Networks

Gerhard Friedrich, Wolfgang Neidl: Constructive Utility in Model-Based
Diagnosis Repair Systems

P. S. Chen, R. Hennicker, M. Jarke: On the Retrieval of Reusable Soft-
ware Components

W. Hans, St.Winkler: Abstract Interpretation of Functional Logic Lan-
guages

N. Kiesel, A. Schuerr, B. Westfechtel: Design and Evaluation of GRAS,
a Graph-Oriented Database System for Engineering Applications
Fachgruppe Informatik: Jahresbericht 1992

Patrick Shicheng Chen: On Inference Rules of Logic-Based Information
Retrieval Systems

G. Hogen, R. Loogen: A New Stack Technique for the Management of
Runtime Structures in Distributed Environments

A. Ziindorf: A Heuristic for the Subgraph Isomorphism Problem in Ex-
ecuting PROGRES

A. Kemper, D. Kossmann: Adaptable Pointer Swizzling Strategies in
Object Bases: Design, Realization, and Quantitative Analysis
Graduiertenkolleg Informatik und Technik (Hrsg.): Graduiertenkolleg In-
formatik und Technik

Matthias Berger: k-Coloring Vertices using a Neural Network with Con-
vergence to Valid Solutions

M. Buchheit, M. Jeusfeld, W. Nutt, M. Staudt: Subsumption between
Queries to Object-Oriented Databases

O. Burkart, B. Steffen: Pushdown Processes: Parallel Composition and
Model Checking

R. Grofie-Wienker, O. Hermanns, D. Menzenbach, A. Pollacks, S. Repet-
zki, J. Schwartz, K. Sonnenschein, B. Westfechtel: Das SUKITS-Projekt:
A-posteriori-Integration heterogener CIM-Anwendungssysteme

43

1993-12 *

1993-13
1993-14

1993-15

1993-16 *

1993-17 *

1993-18
1993-19

1993-20 *

1993-21

1994-01

1994-02

1994-03 *

1994-04 *

1994-05 *

1994-06 *

1994-07

1994-08 *

1994-09 *
1994-11
1994-12
1994-13
1994-14

1994-15 *

1994-16
1994-17

Rudolf Mathar, Jiirgen Mattfeldt: On the Distribution of Cumulated
Interference Power in Rayleigh Fading Channels

O. Maler, L. Staiger: On Syntactic Congruences for omega-languages
M. Jarke, St. Eherer, R. Gallersdoerfer, M. Jeusfeld, M. Staudt: Con-
ceptBase - A Deductive Object Base Manager

M. Staudt, H.W. Nissen, M.A. Jeusfeld: Query by Class, Rule and Con-
cept

M. Jarke, K. Pohl, St. Jacobs et al.: Requirements Engineering: An In-
tegrated View of Representation Process and Domain

M. Jarke, K. Pohl: Establishing Vision in Context: Towards a Model of
Requirements Processes

W. Hans, H. Kuchen, St. Winkler: Full Indexing for Lazy Narrowing
W. Hans, J.J. Ruz, F. Saenz, St. Winkler: A VHDL Specification of a
Shared Memory Parallel Machine for Babel

K. Finke, M. Jarke, P. Szczurko, R. Soltysiak: Quality Management for
Expert Systems in Process Control

M. Jarke, M.A. Jeusfeld, P. Szczurko: Three Aspects of Intelligent Co-
operation in the Quality Cycle

Margit Generet, Sven Martin (eds.), Fachgruppe Informatik: Jahres-
bericht 1993

M. Lefering: Development of Incremental Integration Tools Using Formal
Specifications

P. Constantopoulos, M. Jarke, J. Mylopoulos, Y. Vassiliou: The Software
Information Base: A Server for Reuse

Rolf Hager, Rudolf Mathar, Jiirgen Mattfeldt: Intelligent Cruise Control
and Reliable Communication of Mobile Stations

Rolf Hager, Peter Hermesmann, Michael Portz: Feasibility of Authenti-
cation Procedures within Advanced Transport Telematics

Claudia Popien, Bernd Meyer, Axel Kuepper: A Formal Approach to
Service Import in ODP Trader Federations

P. Peters, P. Szczurko: Integrating Models of Quality Management Meth-
ods by an Object-Oriented Repository

Manfred Nagl, Bernhard Westfechtel: A Universal Component for the
Administration in Distributed and Integrated Development Environ-
ments

Patrick Horster, Holger Petersen: Signatur- und Authentifikationsver-
fahren auf der Basis des diskreten Logarithmusproblems

A. Schiirr: PROGRES, A Visual Language and Environment for PRO-
gramming with Graph REwrite Systems

A. Schiirr: Specification of Graph Translators with Triple Graph Gram-
mars

A. Schiirr: Logic Based Programmed Structure Rewriting Systems

L. Staiger: Codes, Simplifying Words, and Open Set Condition
Bernhard Westfechtel: A Graph-Based System for Managing Configura-
tions of Engineering Design Documents

P. Klein: Designing Software with Modula-3

I. Litovsky, L. Staiger: Finite acceptance of infinite words

44

1994-18

1994-19

1994-20 *

1994-21

1994-22

1994-24 *

1994-25 *

1994-26 *

1994-27 *

1994-28

1995-01 *
1995-02

1995-03

1995-04

1995-05

1995-06
1995-07

1995-08

1995-09

1995-10

1995-11 *

1995-12 *

1995-13 *

1995-14 *

G. Hogen, R. Loogen: Parallel Functional Implementations: Graphbased
vs. Stackbased Reduction

M. Jeusfeld, U. Johnen: An Executable Meta Model for Re-Engineering
of Database Schemas

R. Gallersdorfer, M. Jarke, K. Klabunde: Intelligent Networks as a Data
Intensive Application (INDIA)

M. Mohnen: Proving the Correctness of the Static Link Technique Using
Evolving Algebras

H. Fernau, L. Staiger: Valuations and Unambiguity of Languages, with
Applications to Fractal Geometry

M. Jarke, K. Pohl, R. Démges, St. Jacobs, H. W. Nissen: Requirements
Information Management: The NATURE Approach

M. Jarke, K. Pohl, C. Rolland, J.-R. Schmitt: Experience-Based Method
Evaluation and Improvement: A Process Modeling Approach

St. Jacobs, St. Kethers: Improving Communication and Decision Making
within Quality Function Deployment

M. Jarke, H. W. Nissen, K. Pohl: Tool Integration in Evolving Informa-
tion Systems Environments

O. Burkart, D. Caucal, B. Steffen: An Elementary Bisimulation Decision
Procedure for Arbitrary Context-Free Processes

Fachgruppe Informatik: Jahresbericht 1994

Andy Schiirr, Andreas J. Winter, Albert Ziindorf: Graph Grammar En-
gineering with PROGRES

Ludwig Staiger: A Tight Upper Bound on Kolmogorov Complexity by
Hausdorff Dimension and Uniformly Optimal Prediction

Birgitta Konig-Ries, Sven Helmer, Guido Moerkotte: An experimental
study on the complexity of left-deep join ordering problems for cyclic
queries

Sophie Cluet, Guido Moerkotte: Efficient Evaluation of Aggregates on
Bulk Types

Sophie Cluet, Guido Moerkotte: Nested Queries in Object Bases
Sophie Cluet, Guido Moerkotte: Query Optimization Techniques Ex-
ploiting Class Hierarchies

Markus Mohnen: Efficient Compile-Time Garbage Collection for Arbi-
trary Data Structures

Markus Mohnen: Functional Specification of Imperative Programs: An
Alternative Point of View of Functional Languages

Rainer Gallersdorfer, Matthias Nicola: Improving Performance in Repli-
cated Databases through Relaxed Coherency

M.Staudt, K.von Thadden: Subsumption Checking in Knowledge Bases
G.V.Zemanek, H.W.Nissen, H.Hubert, M.Jarke: Requirements Analy-
sis from Multiple Perspectives: Experiences with Conceptual Modeling
Technology

M.Staudt, M.Jarke: Incremental Maintenance of Externally Materialized
Views

P.Peters, P.Szczurko, M.Jeusfeld: Oriented Information Management:
Conceptual Models at Work

45

1995-15 *

1995-16 *

1996-01 *
1996-02

1996-03 *
1996-04
1996-05
1996-06 *
1996-07
1996-08 *

1996-09

1996-09-0

1996-09-1

1996-09-2

1996-09-3
1996-09-4

1996-09-5

1996-10

1996-11 *

1996-12 *

1996-13 *

1996-14 *

1996-15 *

1996-16 *

1996-17

Matthias Jarke, Sudha Ram (Hrsg.): WITS 95 Proceedings of the 5th
Annual Workshop on Information Technologies and Systems

W.Hans, St.Winkler, F.Saenz: Distributed Execution in Functional Logic
Programming

Jahresbericht 1995

Michael Hanus, Christian Prehofer: Higher-Order Narrowing with Defi-
nitional Trees

W.Scheufele, G.Moerkotte: Optimal Ordering of Selections and Joins in
Acyclic Queries with Expensive Predicates

Klaus Pohl: PRO-ART: Enabling Requirements Pre-Traceability

Klaus Pohl: Requirements Engineering: An Overview

M.Jarke, W.Marquardt: Design and Evaluation of Computer—Aided Pro-
cess Modelling Tools

Olaf Chitil: The Sigma-Semantics: A Comprehensive Semantics for Func-
tional Programs

S.Sripada: On Entropy and the Limitations of the Second Law of Ther-
modynamics

Michael Hanus (Ed.): Proceedings of the Poster Session of ALP96 - Fifth
International Conference on Algebraic and Logic Programming
Michael Hanus (Ed.): Proceedings of the Poster Session of ALP 96 -
Fifth International Conference on Algebraic and Logic Programming:
Introduction and table of contents

Ilies Alouini: An Implementation of Conditional Concurrent Rewriting
on Distributed Memory Machines

Olivier Danvy, Karoline Malmkjzer: On the Idempotence of the CPS
Transformation

Victor M. Gulias, José L. Freire: Concurrent Programming in Haskell
Sébastien Limet, Pierre Réty: On Decidability of Unifiability Modulo
Rewrite Systems

Alexandre Tessier: Declarative Debugging in Constraint Logic Program-
ming

Reidar Conradi, Bernhard Westfechtel: Version Models for Software Con-
figuration Management

C.Weise, D.Lenzkes: A Fast Decision Algorithm for Timed Refinement
R.Domges, K.Pohl, M.Jarke, B.Lohmann, W.Marquardt: PRO-
ART/CE* — An Environment for Managing the Evolution of Chemical
Process Simulation Models

K.Pohl, R.Klamma, K.Weidenhaupt, R.Démges, P.Haumer, M.Jarke: A
Framework for Process-Integrated Tools

R.Gallersdorfer, K.Klabunde, A.Stolz, M.Efmajor: INDIA — Intelligent
Networks as a Data Intensive Application, Final Project Report, June
1996

H.Schimpe, M.Staudt: VAREX: An Environment for Validating and Re-
fining Rule Bases

M.Jarke, M.Gebhardt, S.Jacobs, H.Nissen: Conflict Analysis Across Het-
erogeneous Viewpoints: Formalization and Visualization

Manfred A. Jeusfeld, Tung X. Bui: Decision Support Components on the
Internet

46

1996-18

1996-19 *

1996-20

1996-21 *

1996-22 *

1996-23 *

1997-01

1997-02

1997-03

1997-04

1997-05 *

1997-06

1997-07

1997-08

1997-09

1997-10

1997-11 *

1997-13

1997-14

1997-15

1998-01 *

1998-02

1998-03

1998-04 *
1998-05

Manfred A. Jeusfeld, Mike Papazoglou: Information Brokering: Design,
Search and Transformation

P.Peters, M.Jarke: Simulating the impact of information flows in net-
worked organizations

Matthias Jarke, Peter Peters, Manfred A. Jeusfeld: Model-driven plan-
ning and design of cooperative information systems

G.de Michelis, E.Dubois, M.Jarke, F.Matthes, J.Mylopoulos, K.Pohl,
J.Schmidt, C.Woo, E.Yu: Cooperative information systems: a manifesto
S.Jacobs, M.Gebhardt, S.Kethers, W.Rzasa: Filling HTML forms simul-
taneously: CoWeb architecture and functionality

M.Gebhardt, S.Jacobs: Conflict Management in Design

Michael Hanus, Frank Zartmann (eds.): Jahresbericht 1996

Johannes Faassen: Using full parallel Boltzmann Machines for Optimiza-
tion

Andreas Winter, Andy Schiirr: Modules and Updatable Graph Views for
PROgrammed Graph REwriting Systems

Markus Mohnen, Stefan Tobies: Implementing Context Patterns in the
Glasgow Haskell Compiler

S.Gruner: Schemakorrespondenzaxiome unterstiitzen die paargramma-
tische Spezifikation inkrementeller Integrationswerkzeuge

Matthias Nicola, Matthias Jarke: Design and Evaluation of Wireless
Health Care Information Systems in Developing Countries

Petra Hofstedt: Taskparallele Skelette fiir irregulér strukturierte Prob-
leme in deklarativen Sprachen

Dorothea Blostein, Andy Schiirr: Computing with Graphs and Graph
Rewriting

Carl-Arndt Krapp, Bernhard Westfechtel: Feedback Handling in Dy-
namic Task Nets

Matthias Nicola, Matthias Jarke: Integrating Replication and Commu-
nication in Performance Models of Distributed Databases

R. Klamma, P. Peters, M. Jarke: Workflow Support for Failure Manage-
ment in Federated Organizations

Markus Mohnen: Optimising the Memory Management of Higher-Order
Functional Programs

Roland Baumann: Client/Server Distribution in a Structure-Oriented
Database Management System

George Botorog: High-Level Parallel Programming and the Efficient Im-
plementation of Numerical Algorithms

Fachgruppe Informatik: Jahresbericht 1997

Stefan Gruner, Manfred Nagel, Andy Schiirr: Fine-grained and
Structure-Oriented Document Integration Tools are Needed for Devel-
opment Processes

Stefan Gruner: Einige Anmerkungen zur graphgrammatischen Spezifika-
tion von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und
Schiirr

O. Kubitz: Mobile Robots in Dynamic Environments

Martin Leucker, Stephan Tobies: Truth - A Verification Platform for
Distributed Systems

47

1998-06 *

1998-07

1998-09 *

1998-10 *

1998-11 *

1998-12 *

1998-13

1999-01 *
1999-02 *

1999-03 *
1999-04

1999-05 *

1999-06 *

1999-07
1999-08

2000-01 *
2000-02

2000-03

2000-04

2000-05

2000-06

2000-07 *

2000-08

2001-01 *
2001-02

2001-03

Matthias Oliver Berger: DECT in the Factory of the Future

M. Arnold, M. Erdmann, M. Glinz, P. Haumer, R. Knoll, B. Paech, K.
Pohl, J. Ryser, R. Studer, K. Weidenhaupt: Survey on the Scenario Use
in Twelve Selected Industrial Projects

Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am
Beispiel intraoraler Radiographien

M. Nicola, M. Jarke: Performance Modeling of Distributed and Repli-
cated Databases

Ansgar Schleicher, Bernhard Westfechtel, Dirk Jager: Modeling Dynamic
Software Processes in UML

W. Appelt, M. Jarke: Interoperable Tools for Cooperation Support using
the World Wide Web

Klaus Indermark: Semantik rekursiver Funktionsdefinitionen mit Strik-
theitsinformation

Jahresbericht 1998

F. Huch: Verifcation of Erlang Programs using Abstract Interpretation
and Model Checking — Extended Version

R. Gallersdorfer, M. Jarke, M. Nicola: The ADR Replication Manager
Maria Alpuente, Michael Hanus, Salvador Lucas, Germéan Vidal: Spe-
cialization of Functional Logic Programs Based on Needed Narrowing
W. Thomas (Ed.): DLT 99 - Developments in Language Theory Fourth
International Conference

Kai Jakobs, Klaus-Dieter Kleefeld: Informationssysteme fiir die ange-
wandte historische Geographie

Thomas Wilke: CTL+ is exponentially more succinct than CTL

Oliver Matz: Dot-Depth and Monadic Quantifier Alternation over Pic-
tures

Jahresbericht 1999

Jens Voge, Marcin Jurdzinski A Discrete Strategy Improvement Algo-
rithm for Solving Parity Games

D. Jédger, A. Schleicher, B. Westfechtel: UPGRADE: A Framework for
Building Graph-Based Software Engineering Tools

Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic
Structure of Technical Document Collections: A Cooperative Systems
Approach

Mareike Schoop: Cooperative Document Management

Mareike Schoop, Christoph Quix (eds.): Proceedings of the Fifth Interna-
tional Workshop on the Language-Action Perspective on Communication
Modelling

Markus Mohnen, Pieter Koopman (Eds.): Proceedings of the 12th Inter-
national Workshop of Functional Languages

Thomas Arts, Thomas Noll: Verifying Generic Erlang Client-Server Im-
plementations

Jahresbericht 2000

Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz
Traces

Thierry Cachat: The power of one-letter rational languages

48

2001-04

2001-05
2001-06

2001-07

2001-08

2001-09

2001-10
2001-11

2002-01 *
2002-02

2002-03

2002-04

2002-05

2002-06

2002-07
2002-08
2002-09
2002-10
2002-11
2003-01 *
2003-02

2003-03
2003-04

2003-05

2003-06

2003-07

2003-08

2004-01 *

Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model
Checking for the Alternation Free mu-Calculus

Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages
Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-
Order Logic

Martin Grohe, Stefan Wd&hrle: An Existential Locality Theorem
Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-
tional Workshop on the Language-Action Perspective on Communication
Modelling

Thomas Arts, Jiirgen Giesl: A collection of examples for termination of
term rewriting using dependency pairs

Achim Blumensath: Axiomatising Tree-interpretable Structures

Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-
sprachen und Grundlagen der Programmierung

Jahresbericht 2001

Jiirgen Giesl, Aart Middeldorp: Transformation Techniques for Context-
Sensitive Rewrite Systems

Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular
MSC Languages

Jirgen Giesl, Aart Middeldorp: Innermost Termination of Context-
Sensitive Rewriting

Horst Lichter, Thomas von der Mafien, Thomas Weiler: Modelling Re-
quirements and Architectures for Software Product Lines

Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party
Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic
Finite Automata

Jorg Dahmen: Invariant Image Object Recognition using Gaussian Mix-
ture Densities

Markus Mohnen: An Open Framework for Data-Flow Analysis in Java
Markus Mohnen: Interfaces with Default Implementations in Java
Martin Leucker: Logics for Mazurkiewicz traces

Jurgen Giesl, Hans Zantema: Liveness in Rewriting

Jahresbericht 2002

Jirgen Giesl, René Thiemann: Size-Change Termination for Term
Rewriting

Jirgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations
Jurgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:
Improving Dependency Pairs

Christof Loding, Philipp Rohde: Solving the Sabotage Game is PSPACE-
hard

Franz Josef Och: Statistical Machine Translation: From Single-Word
Models to Alignment Templates

Horst Lichter, Thomas von der Maflen, Alexander Nyflen, Thomas
Weiler: Vergleich von Ansétzen zur Feature Modellierung bei der Soft-
wareproduktlinienentwicklung

Jurgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:
Mechanizing Dependency Pairs

Fachgruppe Informatik: Jahresbericht 2003

49

2004-02

2004-03

2004-04

2004-05

2004-06

2004-07

2004-08

2004-09

2004-10

2005-01

2005-02

2005-03

2005-04

2005-05

2005-06

2005-07

2005-08

2005-09

2005-10
2005-11

2005-12

2005-13

2005-14
2005-15

Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-
sively equivalent to EMSO logic

Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 — 2nd
International Workshop on Higher-Order Rewriting

Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 — Fifth In-
ternational Workshop on Rule-Based Programming

Herbert Kuchen (ed.): WFLP 04 — 13th International Workshop on Func-
tional and (Constraint) Logic Programming

Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 — 4th International
Workshop on Reduction Strategies in Rewriting and Programming
Michael Codish, Aart Middeldorp (eds.): WST 04 — 7th International
Workshop on Termination

Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-
piling Recursive Function Definitions with Strictness Information
Joachim Kneis, Daniel Molle, Stefan Richter, Peter Rossmanith: Param-
eterized Power Domination Complexity

Zinaida Benenson, Felix C. Gértner, Dogan Kesdogan: Secure Multi-
Party Computation with Security Modules

Fachgruppe Informatik: Jahresbericht 2004

Maximillian Dornseif, Felix C. Gartner, Thorsten Holz, Martin Mink: An
Offensive Approach to Teaching Information Security: “Aachen Summer
School Applied IT Security”

Jirgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-
proving Termination of Higher-Order Functions

Daniel Mélle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for
the Steiner Tree Problem

Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing
Honeypots

Simon Fischer, Berthold Vécking: Adaptive Routing with Stale Informa-
tion

Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-
ploring a Root-Cause Methodology to Prevent Distributed Denial-of-
Service Attacks

Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With
Applications To Max-Cut

Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General
Hybrid Adversary Structures

Benedikt Bollig: Automata and Logics for Message Sequence Charts
Simon Fischer, Berthold Vocking: A Counterexample to the Fully Mixed
Nash Equilibrium Conjecture

Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-
ficient Reductions for Wait-Free Termination Detection in Faulty Dis-
tributed Systems

Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting
Failure Detection and Consensus in Omission Failure Environments
Felix C. Freiling, Sukumar Ghosh: Code Stabilization

Uwe Naumann: The Complexity of Derivative Computation

50

2005-16

2005-17

2005-18

2005-19

2005-20

2005-21

2005-22

2005-23

2005-24

2006-03

2006-04

2006-06

Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-
Linear Code)

Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-
ral Adjoint Code)

Thomas von der Maflen, Klaus Miiller, John MacGregor, Eva Geis-
berger, Jorg Dorr, Frank Houdek, Harbhajan Singh, Holger Wumann,
Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-
Entwicklungsprozess - Abschlufibericht des GI-Arbeitskreises “Features”
Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented
LL-Parsers

Felix C. Freiling, Martin Mink: Bericht iiber den Workshop zur Ausbil-
dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-
bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-
gust 2005 in Koln organisiert von RWTH Aachen in Kooperation mit
BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.
Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-
ited

Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-
ized Fair Exchange with Secret Shared Coins

Heiner Ackermann, Alantha Newman, Heiko Roglin, Berthold Vocking:
Decision Making Based on Approximate and Smoothed Pareto Curves
Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering
with Motes: Real-World Physical Attacks on Wireless Sensor Networks
Uwe Naumann: Intraprocedural Adjoint Code Generated by the
Differentiation-Enabled NAGWare Fortran Compiler

Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static
Memory Jacobian Accumulution

Joachim Kneis, Daniel Mélle, Stefan Richter, Peter Rossmanith: Divide-
and-Color

* These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

51

