RWTH Aachen

Department of Computer Science
Technical Report

The Complexity of
Derivative Computation

Uwe Naumann

ISSN 0935-3232 . Aachener Informatik Berichte . AIB-2005-15

RWTH Aachen . Department of Computer Science . August 2005

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

The Complexity of Derivative Computation

Uwe Naumann

LuFG Software and Tools for Computational Engineering, Department of Computer Science
RWTH Aachen University, 52056 Aachen, Germany
WWW: http://www.stce.rwth-aachen.de, Email: naumann@stce.rwth-aachen.de

Abstract. We show that the problem of accumulating Jacobian matrices by
using a minimal number of floating-point operations is NP-complete by reduction
from ENSEMBLE COMPUTATION. The proof makes use of the fact that, deviating
from the state-of-the-art assumption, algebraic dependences can exist between
the local partial derivatives. It follows immediately that the same problem for
directional derivatives, adjoints, and higher derivatives is NP-complete, too.

1 Context

We consider the automatic differentiation (AD) [10] of an implementation of a
non-linear vector function

y = F(x,a), F:R"™>D—- R"™ |, (1)

as a computer program.’ With the Jacobian matrix F’ of F defined in Equa-
tion (6) tangent-linear

y = F(x,%,a) = F/(x,a) #%, x€R" | (2)

and adjoint
x = F(x,y,a) = (F'(x,2)" x5, yeR" | (3)

versions of numerical simulation programs with potentially complicated intra-
and interprocedural flow of control can be generated automatically by AD tools
[9, 11,15, 25]. This technique has been proved extremely useful in the context of
numerous applications of computational science and engineering requiring numer-
ical methods that are based on derivative information [3,5-7]. For the purpose
of this paper we may assume trivial flow of control in the form of a straight-line
program. Similarly, one may consider the evaluation of an arbitrary function at
a given point to fix the flow of control.

Our interest lies in the computation of the Jacobian of the active outputs (or
dependent variables) y = (y;)j=1,..m with respect to the active inputs (or inde-
pendent variables) x = (x;)i=1,..n. The n—vector a contains all passive inputs.
Conceptually, AD decomposes the program into a sequence of scalar assignments

vj = p;(vi)i<; (4)
for j =1,...,p+m. where we follow the notation in [10]. We refer to Equation (4)
as the code list of F, and we set x; = v;—,, for i = 1,...,n and y; = v,4; for
j=1,...,m. Thevj, j =1,...,p, are referred to as intermediate variables. The

! F is used to refer to the given implementation.

notation i < j marks a direct dependence of v; on v; meaning that v; is an
argument of the elemental function? ¢j. The code list induces a directed acyclic
graph G = (V, E) such that V = {vi_p,...,Vp4m} and (i,j) € E & i < j.
Assuming that all elemental functions are continuously differentiable at their
respective arguments all local partial derivatives can be computed by a single
evaluation of the linearized code list

0, .
Cji = (%7 (Uk)k<j Vi<J
3

forj=1,...,p+m (5)
vj = ¢j(vi)i<j

for given values of x and a. The corresponding linearized computational graph
is obtained by attaching the ¢;; to the corresponding edges (7, 7). An example is
shown in Figure 1.

It has been well-known for some time [2] that the entries of the Jacobian

, _ N 8yj . (9Up+j . .
F(x,a)_(fjvz)—<8xi =\,) i=1,...,n, j=1,...,m, (6)

can be computed as

fa=>, I ar . (7)

[i—3] (kD€[i—J]

where [i — j] denotes a path from ¢ to j in G, that is, a sequence of edges
((ky,ly),v = 1,...,|P,;;|) such that k; = 1, Up,; = J, and I, = kyy for v =
L,...,|P | — 1. We set P; = {(k,l) € [i — j]}. Throughout this paper we
use the notation |S| for the cardinality of a set S. Moreover, the theoretical
investigation of the potential decrease of the number of floating-point operations
required for the evaluation of Equation (7) has been the subject of a number
of papers [13,14,18,20]. In all cases the authors consider elimination problems
in versions of the computational graph. The c;; are assumed to be algebraically
independent. Linear parts of the program may represent an exception as the
values of the local partial derivatives are invariant with respect to the inputs
of F. Hence they can potentially be eliminated statically (at compile-time) as
described in [21].3

2 Elemental functions are the arithmetic operators and intrinsic functions provided by the
programming language.

3 In AD one is primarily interested in a low dynamic (run-time) cost of the automatically
generated derivative code. Similar to classical compiler techniques the cost of compile-time
manipulations is not taken into account. This approach assumes that the cost of the compi-
lation is still within reasonable bounds, that is, it must be much lower than the cumulative
computational cost of all executions of the generated code. This requirement is satisfied by
the static techniques proposed in [21].

Example 1 Consider the following linearized code list of a vector function F' :
R* — IR*:

C1,-3 = V-2; C1,-2 = V-3; V1 =V-3*V-2

C2 —1 = Vo; C20 = VU-1; V2 = V-1 * 70
c31=1/va; c3o=—v1/v3; vy =v1/vg
C41 = V35 C4,3 = V1; V4 = V1 * U3
53 = cos(v3); vs = sin(vs)
ce,3 = 3.14; vg = 3.14 x vg
Cr2 = U3; C7,3 = V2; V7 = V2 * U3

The computation of the wvalues of the code list variables v1,...,v7 is preceded

by the computation of the corresponding local partial derivatives. The linearized
computational graph is shown in Figure 1. The fact that c41 = c72 = v3, contra-
dicts the assumption about the algebraic independence of the partial derivatives.
Nevertheless, to our knowledge such dependences have been ignored in previous
work on the subject.

Fig. 1. Linearized Computational Graph G: Independent and dependent variables are repre-
sented by black triangles pointing upward (—3,...,0) and downward (4,...,7), respectively.
Intermediate and maximal vertices are marked with their respective elemental functions. The
corresponding local partial derivatives that are associated with all edges in G are enclosed
within square brackets.

The remainder of the paper is organized as follows: In Section 2 we state the
OPTIMAL JACOBIAN ACCUMULATION problem, and we prove its NP-completeness
by reduction from ENSEMBLE COMPUTATION taking into account possible alge-
braic dependences between the local partial derivatives. Various special cases are
considered as well as the generalization for higher derivative tensors. In Section 3
we discuss the results in the context of Jacobian accumulation techniques that
exploit structural properties of the computational graph.

2 Result

ENSEMBLE COMPUTATION |[8] is defined as follows: Given a collection C' = {C),, C
A:v=1,...,|C|} of subsets C, = {c¢/ : i =1,...,|C,|} of a finite set A and
a positive integer (2 is there a sequence u; = s; Ut; fori = 1,...,w of w < 2
union operations, where each s; and t; is either {a} for some a € A or u; for
some j < i, such that s; and ¢; are disjoint for ¢ = 1,...,w and such that for
every subset C), € C, v =1,...,|C]|, there is some u;, 1 <1i < w, that is identical
to C,7

Lemma 1. ENSEMBLE COMPUTATION is NP-complete.
Proof. The proof is by reduction from VERTEX COVER as shown in [8]. [J
Example 2 Let an instance of ENSEMBLE COMPUTATION be given by

A ={ay,az,a3,a4}
C= {{(117 (12}7 {a27 as, (14}, {ala as, CL4}}

and 2 = 4. The answer to the decision problem is positive with a corresponding
instance given by

Cy =up ={a1} U{az}
ug = {az} U {as}

Cy = uz = {ag} Uuy

C3 =uy ={a1} Uuy

W.lo.g. we assume A C IR in the following. The number of floating-point
operations (scalar multiplications “x” and additions “+”) can potentially be de-
creased compared to the straight-forward application of Equation (7) by exploit-
ing the algebraic laws of the field (IR, +, %), that is associativity, commutativity,
and distributivity. The corresponding computer programs are referred to as Ja-
cobian accumulation codes. There is an exponential (in the size of G) number of
them.

Example 3 The derivation of the Jacobian accumulation code for Example 1
which corresponds to Equation (7) is straight-forward. In

fi1 =ca3z*xc31*ci—3+canxc1-3
fi2 =caz*c31*ci—2+ca1 xcp—2
f1,3 = C43%C32%C2 1

f1,4 =C43%C32*C20

f2,1 =C53%C31*C1,-3

fra=cr3*xc3a*xcao+craxcap

36 multiplications and 4 additions are performed. It is less obvious that the Ja-
cobian can also be obtained by the Jacobian accumulation code

cait=caz *c31; 3 fi1 =ca1*xci,—3; fio=ca1*cr—2

crot=cr3xc32; faz3=cro*ca_1; faa=cr2%*cCap

C3,—3 = C3,1 ¥C1,-3; €C3-—2=0C31*C1—-2; C3-1=C32%C2_1; C30=C32*C20
fiz=rcaz*c3_1; fra=ca3*c30

f2,1 = C5,3 * C3,-3; f2,2 = C5,3 * C3 2 f2,3 = C5,3 ¥C3 —1; f2,4 =C5,3%C30
f3,1 = €6,3 * C3,-3; f3,2 = Cg,3 * C3 23 f3,3 = €6,3 ¥ C3,—1; f3,4 = Cg,3 X C30

a1 =cr3*c3 35 fa2=cr3*c3 o

at the cost of 22 multiplications and 2 additions.* Assuming structural indepen-
dence of the local partial derivatives the above is the best solution for the Bat
graph® known today. See [20] for details.

We refer to the problem of minimizing the number of scalar multiplications
and additions performed by a Jacobian accumulation code as the OPTIMAL JA-
COBIAN ACCUMULATION (OJA) problem. The corresponding decision version is
defined as follows:

Given a linearized computational graph G of a vector function F' as defined
in Equation (1) and a positive integer {2 is there a sequence of scalar assignments
up = Spoty, o € {+,%}, k=1,...,w, where each s; and tj, is either ¢;; for some
(i,7) € E or uy for some k' < k such that w < {2 and for every Jacobian entry
there is some identical ug, k < w?

Theorem 1. OPTIMAL JACOBIAN ACCUMULATION is NP-complete.

Proof. We reduce from ENSEMBLE COMPUTATION. A given solution is verified
in polynomial time by counting the number of operations.

Given an arbitrary instance of ENSEMBLE COMPUTATION we define the cor-
responding OPTIMAL JACOBIAN ACCUMULATION problem as follows:

Consider y = F(x,a) where x € RI°l a = (aj)j=1,..,4] € R4l is a vector
containing all elements of A, and F : RICITIAl - RIC! defined as

1Cy|

Yy = Ty * H c; (8)
j=1

for v =1,...,|C| and where cj is equal to some a;, i = 1,...,]A], for all v and

j. The elements of A are set to be random numbers. We assume that

Q

1Cy|

v __ Vv v v
Cj =Cl*Cp ... % (g
1

J

4 We use the C-style notation a+=b to denote the incrementation of a by b.
5 Turn the graph in Figure 1 upside down and use a little imagination to verify the appropri-
ateness of the naming.

and that, w.l.o.g.,
C.|
Ty * Hc’; =ayxc] xcy ..kl = (.. () *ch)...) * g,
J=1

is evaluated from left to right. This transformation is linear with respect to
the original instance of ENSEMBLE COMPUTATION in both space and time. The
Jacobian F'(x,a) is a diagonal matrix with nonzero entries

ICy|
Jop = H C;
j=1
for v = 1,...,|C]|. Is there a Jacobian accumulation code for F’(x,a) of length

less than (27 We claim that the answer is positive if and only if there is a solution
of the corresponding ENSEMBLE COMPUTATION problem.

“«<" In a given solution of the ENSEMBLE COMPUTATION problem we simply
substitute * for U. The length of the resulting Jacobian accumulation code is less
than 2. The correctness of the code follows immediately from the definition of
both ENSEMBLE COMPUTATION and OPTIMAL JACOBIAN ACCUMULATION.

“=" No additions are performed by any Jacobian accumulation code as a
result of the definition of F(x,a). Let

ukzsk*tk, k:zl,...,w 5 (9)

be a solution of the OPTIMAL JACOBIAN ACCUMULATION problem. We claim
that a solution of ENSEMBLE COMPUTATION is obtained by substitution of U for
% in Equation (9). According to the definition of OPTIMAL JACOBIAN AcCCU-
MULATION each s; and tj is either a; for some i € {1,...,|A|} or uy for some
k' < k. Similarly, there is some uj, j < w, for every subset C,, € C, v =1,...,|C]|,
that is identical to C), since all Jacobian entries are computed by Equation (9).
It remains to be shown that s; and ¢; are disjoint for 1 <17 < w.

W.l.o.g. suppose that there is some i < w such that s; Nt; = {b}. Hence
the computation of u; in the Jacobian accumulation code involves a factor b * b.
Note that such a factor is not part of any Jacobian entry which implies that
the computation of u; is obsolete and therefore cannot be part of an optimal
Jacobian accumulation code.

While {a,b} = {c,d} if and only if a = cand b =d (or a = d and b = ¢) we
may well have a x b = ¢ x d. Pick, for example, a =2, b =6, ¢ = 3, and d = 4.
However as A consists of random numbers the similar treatment of (A4,U) and
(A,) is feasible. O

Example 4 The equivalent instance of OPTIMAL JACOBIAN ACCUMULATION
for Example 2 comes as a vector function F : IR¥* — IR3 defined by the following
system of equations:

Y1 = X1 *xaq *xag
Yo = Tg *x A2 * a3 * Q4

Y3 = X3 *x a1 *x a3 *aq

Fig. 2. Linearized Computational Graph for Example 4.

The Jacobian accumulation code according to Equation (7) is

f1,1 = a1 *az
f2,2 = Qa2 * a3 * a4

f3,3 = a1 *a3* a4

A Jacobian accumulation code that solves the OPTIMAL JACOBIAN ACCUMULA-
TION problem with {2 = 4 is given as

t=as3*xay
f1,1=611*a2
fo2 =ag*t

fzz=ap*t

While the straight-forward reduction from ENSEMBLE COMPUTATION in the
proof of Theorem 1 is sufficient to show the NP-completeness of OPTIMAL JACO-
BIAN ACCUMULATION it does not illustrate how differentiation makes life diffi-
cult. A similar combinatorial optimization problem arises already for the function
evaluation itself. To circumvent this inconvenience one may introduce local non-
linearities as follows.

Consider y = F(x,a) where x € RI°l a = (aj)j=1,..4] € Rl is a vector
containing all elements of A, and F : RICITIAl - RIC! defined as

Yo = Ploy, (o2 (PT (@0 x) ¥ 65) - g, 1) * g (10)

forv =1,...,|C| and where cj is equal to some random number a;, ¢ = 1,..., |Al,
for all v and j. The unary nonlinear functions are chosen such that ¥ (v) # ¢ (w)
if v # w. The function needs to be evaluated forward. The algebraic properties

of scalar multiplication cannot be exploited anymore.

Differentiation of Equation (10) with respect to x yields again a diagonal
matrix with nonzero entries

9t (v)
fow =ty x 11 S W) e

j=1
for v =1,...,|C| and where
Ty * Cf ifj=1
vy = @4 (1 (0 *) x) if j =2

OF (e (@ xe) . oxcf) xcf ifj=3,...,]C)) -1

The products of the ¢ in the derivative accumulation yield an ENSEMBLE COM-
PUTATION problem with 2 := 2 + Z,‘,C:H |ICy| = |C.

Example 5 Consider

Y1 = s01(1‘1 * 01) *ag
Y2 = @3(%02(1‘2 * 02) * a3) * Qg

Y3 = @5(%04(1‘3 * 01) * a3) * Qg

The Jacobian accumulation code according to Equation (7) is

v
fi1=a1* @(91?5)(xl*al)*ag
Opa (v O3 (v
foo =az* %225)(xg k ag) * ag * 905’5)(gog(a:g % ag) * ag) * a4
0 0
faz=ar* a(v) (r3 % ay) * ag * SO;EU (pa(ws *a1) * ag) * ay

A Jacobian accumulation code that solves the OPTIMAL JACOBIAN ACCUMULA-
TION problem with 2 =4 + Z'ﬂl |Cy| — |C| =9 is given as

t = a3 *ay
0
fii=aq* %157)) (1 % a1) * ag
0 0
fa2 = ag * (p(;fv) (x2 * az) * %35”) (p2(wo * ag) xaz) xt
0 0
f33=a1 * 905757)) (w3 *ay) * SO;EU) (p4(x3 *ar) xaz) xt

Note that only multiplications of local partial derivatives are counted. The values
Y
%5511) (v}’) are assumed to be available after linearization of the computational

graph as described in Section 1.

10

[d>] [d4] [ds] [ds] [d10] [d12]
9 [® [® [

(0] [c] [a] [c] [a] [b]
® [® [® [

[d] [ds] [ds] [d7] [do] [d11]

[a] [a] [b] [b] [c] [c]

Fig. 3. Cheap Jacobians — An Extreme Case

We may ask ourselves how large the savings in Jacobian accumulation can become
compared to the computational cost of evaluating the underlying function. For
the type of function used in the proof of Theorem 1 savings are negligible as
outlined before. The proposed extension with local nonlinear functions yields
maximum savings of a factor of roughly two. Consider therefore y = F(x,a) as
before where x € RIAl'" and F : RIAMIAl - RIAI defined as

Yo = Ga (oo @y x) ey) vy (1)

for v = 1,...,|A|! such that the ¢, ... ’CTAI range over all permutations of the
elements in A. An example computational graph is shown in Figure 3 for |A| = 3,

where A = {a,b,c} and the partial derivatives of the ¢} are denoted by d; for

ap¥
j=1,...,(JA] = 1)|A|!. Assuming again that the soéiv) (v¥) are algebraically in-

dependent we observe that the function evaluation takes (2|A|—1)| A|! operations
whereas the Jacobian can be accumulated at a cost of 2+ (|A| —1)| A|! operations.
For the example in Figure 3 we get (2|A| —1)|A|! = 30 and 2+ (|A| —1)|A|! = 14.

The idea underlying the proof of Theorem 1 can be applied to a wide va-
riety of practically relevant derivative computations as shown below. A major
strength of AD is the ability to compute Jacobian-vector (for example, used
in matrix-free Newton-type methods for solving systems of nonlinear equations
[17]) and transposed-Jacobian-vector products (for example, used in nonlinear
least squares optimization [16]) in its forward and reverse modes, respectively,
without building the full Jacobian. The latter can be computed by the tangent-
linear (resp. adjoint) code that implements Equation (2) (resp. Equation (3)) at
a complexity that is proportional to n (resp. m) if x (resp. y) ranges over the
Cartesian basis vectors in IR"™ (resp. IR™). Gradients (m = 1), in particular, can
be evaluated as adjoints in reverse mode at a computational cost that is a small
constant multiple of the cost of evaluating F itself [22].

The accumulation of the Jacobian for a function with the Bat graph G =
(V, E) displayed in Figure 1 takes n * |E| = 4 % 12 = 48 scalar multiplications

11

in forward mode and, as n = m, the same number in reverse mode. The best
Jacobian accumulation code for the Bat graph know so far takes less than half this
number. We believe that this improvement is rather impressive keeping in mind
that the function at hand is extremely simple compared to numerical simulation
programs for real-world applications. See [10] for further details on AD. In any
case, the minimization of the corresponding computational effort must play a
central role in all attempts to speed up numerical methods that rely on some kind
of derivative information. In the following we derive NP-completeness results for
various related problems.

We define the OPTIMAL GRADIENT ACCUMULATION problem similar to OP-
TIMAL JACOBIAN ACCUMULATION with a scalar dependent variable in Equa-
tion (1).

Theorem 2. OPTIMAL GRADIENT ACCUMULATION is NP-complete.
Proof. The proof follows immediately by modifying Equation (8) in the proof of
Theorem 1 as follows

C] IC| 1Cy|

1=Su=3 (neIle
v=1 j=1

v=1

The additional sum introduces a linear section that can be eliminated statically
as described in [21]. The nonzeros on the diagonal of the Jacobian become the
gradient entries. [J

Gradients are single rows in the Jacobian. Similarly, we can show that the
computation of single columns, that is, for a scalar independent variable in Equa-
tion (1), is NP-complete by considering the Jacobian of

[
yl,:a:*Hcg v=1,...,|C|
j=1

Example 6 The linearized computational graphs for
Y = 1% a1 * Ay + Tg * Qg * A3 * A4 + T3 * a1 * a3 * ay (12)
and
Y1 =T *xay *az
Y2 = Tk ag * az * ayq (13)
Y3 =T KA1 % a3 ay
are shown in Figure 4(a) and Figure 5, respectively. The graph in Figure 4(b) is

obtained by applying static elimination techniques for edges that carry label 1 to
the graph in Figure 4(a) as described in [21].

We define the OPTIMAL TANGENT COMPUTATION and OPTIMAL ADJOINT
COMPUTATION problems as the problems of computing the product of the Ja-
cobian with an n-vector x and the product of the transposed Jacobian with an
m-vector y, respectively.

12

2
[a1]
[az]
A
-2 -1
(a)

Fig. 4. Linearized computational graph for Equation (12) before (a) and after (b) folding of
constant local partial derivatives.

Fig. 5. Linearized computational graph for Equation (13).

13

Theorem 3. OPTIMAL TANGENT COMPUTATION and OPTIMAL ADJOINT COM-
PUTATION are NP-complete.

Proof. Setting &, = ¢/ for v = 1,...,|C| the computation of F’ * X becomes
equivalent to the computation of the |C| x 1 Jacobian of y with respect to x for

y = F(z,%,a), F: R'YICHIAI o p — RICI

defined as
|Cy|

. 17
y,,zx*a:,,*ch
J=2

The proof is similar to the proof of Theorem 1.
The result for (F')T % y follows by symmetry. Simply set 7, = <oyl for
v=1,...,|C| and consider

Y= F(x, a,y), F:]R'C‘HA‘HC\ OD— R

defined as
|C] |C] |Cv]—1
=2 (woret s welgem) =X (wx IT ¢ |#n) - O
S v=1 j=1

Example 7 With y = (a1,a2,a1) and X = (as,a4,a4) the linearized computa-
tional graphs are similar to Figure 4 (a) and Figure 5, respectively.

The results can be generalized to derivatives of arbitrary order ¢ > 0 by
considering

20 ICu)
w="r11¢
'
forv=1,...,|C| instead of Equation (8) and deriving the corresponding special
cases. The division by ¢! is not essential. All it does is ensure that the g¢th

derivative of y, with respect to x, is equal to H‘Jc;”l‘ lext

", thus making the proof of
Theorem 1 applicable without any modification.

3 Discussion

Previous work on the subject has always made the assumption that the local par-
tial derivatives are algebraically independent [4, 12,13, 19]. The potential impact
of dependences between the c;; on the complexity of Jacobian accumulation
has been acknowledged only recently during personal communication with A.
Griewank and T. Steihaug at Humboldt University Berlin [1].

The simplicity of the result of reducing ENSEMBLE COMPUTATION to OPTI-
MAL JACOBIAN ACCUMULATION ensures that all elimination techniques known
so far are covered. Vertex [13], edge [18], and face elimination [20] as well as
rerouting and normalization [14] exploit different structural properties of the
computational graph. Neither rerouting nor normalization are applicable if all
dependent variables are mutually independent and all intermediate vertices have

14

both a single predecessor and a single successor. Both face and edge elimina-
tion are equivalent to vertex elimination in this case. Hence we have shown the
NP-completeness of a special case that implies the NP-completeness of all elimi-
nation problems on versions of the computational graph known so far. Note that
we have not shown the NP-completeness of OPTIMAL JACOBIAN COMPUTATION
for mutually algebraically independent local partial derivatives. We conjecture
that a similar result can be derived in this case. However, the proof appears to be
less straight-forward than that developed in this paper. Moreover, the relevance
of this special case becomes questionable in the light of these new results.

OpPTIMAL ADJOINT COMPUTATION is equivalent to the problem of computing
adjoints with a minimal number of operations if the entire code list can be
stored. Hence, it represents a special case of the OPTIMAL CHECKPOINTING
problem that aims to balance the use of storage and recomputation such that
the overall number of operations is minimized [23,24]. Theoretically, the NP-
completeness of this special case could be taken as proof for the NP-completeness
of the OPTIMAL CHECKPOINTING problem. However, one must acknowledge that
there is no OPTIMAL CHECKPOINTING problem if the entire execution of the
function can be stored. Hence we envision further work to be necessary in order
to handle this highly relevant problem theoretically in a consistent way. There is
no doubt that practical algorithmic work is crucial to speed up derivative-based
numerical methods.

All existing algorithms for minimizing the operations count of Jacobian accu-
mulation codes aim to exploit structural properties of the computational graph.
The main conclusion from this paper is that a mind shift is required to tackle the
OPTIMAL JACOBIAN ACCUMULATION problem adequately. Tools for AD need to
take potential algebraic dependences between the local partial derivatives into
account. First steps in this direction are currently made at Humboldt University
Berlin and RWTH Aachen University as part of a collaborative research project.
The practical implementation of new (pre)accumulation strategies in existing AD
tools (see, for example, [9,11,15,25] and www.autodiff.org) remains a major
technical challenge.

References

1. Personal communication with T. Steihaug, Bergen University, Norway, and A. Griewank
at Humboldt University Berlin, March 2005.

2. W. Baur and V. Strassen. The complexity of partial derivatives. Theoretical Computer
Science, 22:317-330, 1983.

3. M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors. Computational Differentiation:
Techniques, Applications, and Tools, Proceedings Series. STAM, 1996.

4. C. Bischof and M. Haghighat. Hierarchical approaches to automatic differentiation. In /3],
pages 82-94.

5. M. Biicker, G. Corliss, P. Hovland, U. Naumann, and B. Norris, editors. Automatic Differ-
entiation: Applications, Theory, and Tools, number 50 in Lecture Notes in Computational
Science and Engineering, Berlin, 2005. Springer.

6. G. Corliss, C. Faure, A. Griewank, L. Hascoét, and U. Naumann, editors. Automatic
Differentiation of Algorithms — From Simulation to Optimization, New York, 2002. Springer.

7. G. Corliss and A. Griewank, editors. Automatic Differentiation: Theory, Implementation,
and Application, Proceedings Series. STAM, 1991.

8. M. Garey and D. Johnson. Computers and Intractability - A Guide to the Theory of NP-
completeness. W. H. Freeman and Company, 1979.

15

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.

21.

22.

23.

24.

25.

R. Giering and T. Kaminski. Applying TAF to generate efficient derivative code of Fortran
77-95 programs. In Proceedings of GAMM 2002, Augsburg, Germany, 2002.

A. Griewank. FEwvaluating Derivatives. Principles and Techniques of Algorithmic Differen-
tiation. Number 19 in Frontiers in Applied Mathematics. STAM, Philadelphia, 2000.

A. Griewank, D. Juedes, and J. Utke. ADOL-C, a package for the automatic differentiation
of algorithms written in C/C++. ACM Trans. Math. Software, 22(2):131-167, 1996.

A. Griewank and U. Naumann. Accumulating Jacobians as chained sparse matrix products.
Math. Prog., 3(95):555-571, 2003.

A. Griewank and S. Reese. On the calculation of Jacobian matrices by the Markovitz rule.
In [7], pages 126-135.

A. Griewank and O. Vogel. Analysis and exploitation of Jacobian scarcity. In Proceedings
of HPSC Hanoi. Springer, 2003.

L. Hascoét and V. Pascual. Tapenade 2.1 user’s guide. Technical report 300, INRIA, 2004.
M. Heath. Scientific Computing. An Introductory Survey. McGraw-Hill, New York, 1998.
C. Kelley. Solving Nonlinear Equations with Newton’s Method. STAM, 2003.

U. Naumann. Elimination techniques for cheap Jacobians. In [6], chapter 29, pages 247-253.
2001.

U. Naumann. Cheaper Jacobians by Simulated Annealing. SIAM J. Opt., 13(3):660-674,
March 2002.

U. Naumann. Optimal accumulation of Jacobian matrices by elimination methods on the
dual computational graph. Math. Prog., 3(99):399-421, 2004.

U. Naumann and J. Utke. Optimality-preserving elimination of linearities in Jacobian
accumulation. Electronic Transactions on Numerical Analysis (ETNA), 2005. To appear
in special issue on combinatorial scientific computing dedicated to Professor Alan George.
B. Speelpenning. Compiling Fast Partial Derivatives of Functions Given by Algorithms.
PhD thesis, University of Chicago, Urbana-Champaign, IL, Jan. 1980.

A. Walther. Program Reversal Schedules for Single- and Multi-processor Machines. PhD
thesis, Institute of Scientific Computing, Technical University Dresden, Germany, 1999.
A. Walther and A. Griewank. New results on program reversals. In [6], chapter 28, pages
237-243. Springer, 2001.

C. Wunsch, C. Hill, P. Heimbach, U. Naumann, J. Utke, M. Fagan, and N. Tallent. Ope-
nAD. Preprint ANL/MCS-P1230-0205, Argonne National Laboratory, Argonne, IL, Febru-
ary 2005.

16

