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Botnet Tracking:

Exploring a Root-Cause Methodology to Prevent

Distributed Denial-of-Service Attacks

Felix C. Freiling, Thorsten Holz? und Georg Wicherski

Laboratory for Dependable Distributed Systems, RWTH Aachen University, 52056 Aachen,
Germany

Zusammenfassung. Denial-of-Service (DoS) attacks pose a significant threat
to the Internet today especially if they are distributed, i.e., launched simulta-
neously at a large number of systems. Reactive techniques that try to detect such
an attack and throttle down malicious traffic prevail today but usually require
an additional infrastructure to be really effective. In this paper we show that
preventive mechanisms can be as effective with much less effort: We present an
approach to (distributed) DoS attack prevention that is based on the observa-
tion that coordinated automated activity by many hosts needs a mechanism to
remotely control them. To prevent such attacks, it is therefore possible to iden-
tify, infiltrate and analyze this remote control mechanism and to stop it in an
automated fashion. We show that this method can be realized in the Internet by
describing how we infiltrated and tracked IRC-based botnets which are the main
DoS technology used by attackers today.

1 Introduction

An important witness of the increasing professionalism in Internet crime are so
called Denial-of-Service (DoS) attacks. A DoS attack is an attack on a compu-
ter system or network that causes a loss of service to users, typically the loss
of network connectivity and services by consuming the bandwidth of the vic-
tim network or overloading the computational resources of the victim system
[MDDR04]. Using available tools [Dit00], it is relatively easy to mount DoS at-
tacks against remote networks. For the (connection-oriented) Internet protocol
TCP, the most common technique is called TCP SYN flooding [SKK+97,Com96]
and consists of creating a large number of “half open” TCP connections on the
target machine, thereby exhausting kernel data structures and making it impossi-
ble for the machine to accept new connections. For the (connectionless) protocol
UDP, the technique of UDP flooding consists of overrunning the target machine
with a large number of UDP packets thereby exhausting its network bandwidth
and other computational resources.

Like spam, it is well-known that DoS attacks are extremely hard to prevent
because of their “semantic” nature. In the terminology of Schneier [Sch00], se-
mantic attacks target the way we assign meaning to content. For example, it is
very hard to distinguish a DoS attack from a peak in the popularity of a large
website. Using authentication it is in principle possible to detect and identify the
single origin of a DoS attack by looking at the distribution of packets over IP
addresses. However, it is almost impossible to detect such an attack if multiple

? Thorsten Holz was supported by Deutsche Forschungsgemeinschaft as part of the Graduier-
tenkolleg “Software for mobile communication systems” at RWTH Aachen University.



attack hosts act in a coordinated fashion against their victim. Such attacks are
called Distributed Denial-of-Service (DDoS). DDoS attacks are one of the most
dangerous threats in the Internet today since they are not limited to web servers:
virtually any service available on the Internet can be the target of such an attack.
Higher-level protocols can be used to increase the load even more effectively by
using very specific attacks, such as running exhausting search queries on bulletin
boards or mounting web spidering attacks, i.e., starting from a given website and
then recursively requesting all links on that site.

In the past, there are several examples of severe DDoS attacks. In February
2000, an attacker targeted major e-commerce companies and news-sites [Gar00].
The network traffic flooded the available Internet connection so that no users
could access these websites for several hours. In recent years, the threat posed
by DDoS attacks grew and began to turn into real cybercrime. An example of
this professionalism are blackmail attempts against a betting company during
the European soccer championship in 2004 [BBC04]. The attacker threatened to
take the website of this company offline unless the company payed money. Si-
milar documented cybercrime cases happened during other major sport events.
Furthermore, paid DDoS attacks to take competitor’s websites down were re-
ported in 2004 [FBI04]. These type of attacks often involve so called botnets
[McC03], i.e., networks of compromised machines that are remotely controlled
by an attacker. Botnets often consist of several thousand machines and enable
an attacker to cause serious damage. Botnets are regularly used for DDoS at-
tacks since their combined bandwidth overwhelms the available bandwidth of
most target systems. In addition, several thousand compromised machines can
generate so many packets per second that the target is unable to respond to so
many requests.

Defensive measures against DDoS can be classified as either preventive or
reactive [MR04]. Currently, reactive techniques dominate the arena of DDoS de-
fense methods (the work by Mirkovic et al. [MDDR04] gives an excellent survey
over academic and commercial systems). The idea of reactive approaches is to
detect the attack by using some form of (distributed) anomaly detection on the
network traffic and then react to the attack by reducing the malicious network
flows to manageable levels [MRRK03]. The drawback of these approaches is that
they need an increasingly complex and powerful sensing and analysis infrastruc-
ture to be effective: the approach is best if large portions of network traffic can
be observed for analysis, preferably in real-time.

Preventive methods either eliminate the possibility of a DDoS attack alto-
gether or they help victims to survive an attack better by increasing the resources
of the victim in relation to those of the attacker, e.g., by introducing some form
of strong authentication before any network interaction can take place (see for
example work by Meadows [Mea98]). Although being effective in theory, these
survival methods always boil down to an arms race between attacker and victim
where the party with more resources wins. In practice, it seems as if the arms
race is always won by the attacker, since it is usually easier for him to increase
his resources (by compromising more machines) than for the victim, which needs
to invest money in equipment and network bandwidth.

Preventive techniques that aim at DDoS attack avoidance (i.e., ensuring that
DDoS attacks are stopped before they are even launched) have received close to

4



no attention so far. One reason for this might be the popular folklore that the
only effective prevention technique for DDoS means to fix all vulnerabilities in
all Internet hosts that can be misused for an attack (see for example Section 5
of [MR04]). In this paper we show that this folklore is wrong by presenting an
effective approach to DDoS prevention that neither implies a resource arms race
nor needs any additional (authentication) infrastructure. The approach is based
on the observation that coordinated automated activity by many hosts is at the
core of DDoS attacks. Hence the attacker needs a mechanism to remotely control
a large number of machines. To prevent DDoS attacks, our approach attempts
to identify, infiltrate and analyze this remote control mechanism and to stop it
in an automated and controlled fashion. Since we attack the problem of DDoS at
the root of its emergence, we consider our approach to be a root-cause method
to DDoS defense.

It may seem unlikely that it is possible to automatically analyze and infil-
trate a malicious remote control method crafted by attackers for evil purposes.
However, we provide evidence of the feasibility of our strategy by describing
how we successfully tracked and investigated the automated attack activity of
botnets in the Internet. The idea of our methods is to “catch” malware using
honeypots, i.e., network resources (computers, routers, switches, etc.) deployed
to be probed, attacked, and compromised. Honeypots run special software which
permanently collects data about the system behavior and facilitates automated
post-incident forensic analysis. From the automated analysis we derive the im-
portant information necessary to observe and combat malicious actions of the
botnet maintainers. In a sense, our approach can be characterized as turning the
methods of the attackers against themselves.

The paper is structured as follows: Section 2 gives a brief overview over
botnets and their usage for DDoS attacks. In Section 3 we introduce a general
methodology to prevent DDoS attacks and exemplify a technical realization in
Section 4. We present our results in Section 5 and conclude this paper with
Section 6.

2 Distributed Denial-of-Service using Botnets

In this section we give a brief overview over botnets and how they can be used to
mount DDoS attacks. More technical details can be found in [The05]. A botnet is
a network of compromised machines running programs (usually referred to as bot,
zombie, or drone) under a common Command and Control (C&C) infrastructure.
Usually, the controller of the botnet compromises a series of systems using various
tools and then installs a bot to enable remote control of the victim computer via
Internet Relay Chat (IRC).

Newer bots can even automatically scan whole network ranges and propa-
gate themselves using vulnerabilities and weak passwords on other machines.
After successful invasion, a bot uses Trivial File Transfer Protocol (TFTP), File
Transfer Protocol (FTP), HyperText Transfer Protocol (HTTP), or CSend (an
IRC extension to send files to other users) to transfer itself to the compromised
host. The binary is started and tries to connect to the hard-coded master IRC
server on a predefined port, often using a server password to protect the botnet
infrastructure. This server acts as the C&C server to manage the botnet. Often
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Abb. 1. Communication flow in a botnet

a dynamic DNS name is provided rather than a hard coded IP address, so the
bot can be easily relocated. Using a specially crafted nickname, the bot tries to
join the master’s channel, often using a channel password, too. In this channel,
the bot can be remotely controlled by the attacker.

Commands can be sent to the bot in two different ways: via sending an
ordinary command directly to the bot or via setting a special topic in the channel
that all bots interpret. For example, the topic

advscan lsass 200 5 0 -b

tells the bots to spread further with the help of a known vulnerability (the
Windows lsass vulnerability). The bots should start 200 concurrent threads that
should scan with a delay of 5 seconds for an unlimited time (parameter 0). The
scans should target machines within the same Class B network (parameter -b).
As another example, the topic

http.update http://<server>/rBot.exe c:\msy32awds.exe 1

instructs the bots to download a binary from the Internet via HTTP to the local
filesystem and execute it (parameter 1).

If the topic does not contain any instructions for the bot, then it does nothing
but idling in the channel, awaiting commands. That is fundamental for most
current bots: they do not spread if they are not told to spread in their master’s
channel. Figure 1 depicts the typical communication flow in a botnet.

In order to remotely control the bots, the controller of a botnet has to au-
thenticate himself before issuing commands. This authentication is done with the
help of a classical authentication scheme. At first, the controller has to login with
his username. Afterwards, he has to authenticate with the correct password to
approve his authenticity. The whole authentication process is only allowed from
a predefined domain, so that only certain people can start this process. Once an
attacker is authenticated, he has complete control over the bots and can execute
arbitrary commands.

Today, botnets are most often used to mount DDoS attacks in the Internet.
All common bots include several different possibilities to participate in these
attacks. Most commonly implemented, and also very often used, are TCP SYN
[SKK+97,Com96] and UDP flooding attacks. For example, the command

ddos.syn XXX.XXX.XXX.XXX 80 600
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instructs the bots within the botnet to start a TCP SYN flooding attack against
the specified IP address against TCP port 80 for 600 seconds. Another example
is the following command:

udp XXX.XXX.XXX.XXX 18000 50000 100

It instructs the bots to mount a UDP flooding attack against the specified target
with 18,000 packets of a size of 50,000 bytes using a delay of 100 milliseconds
between each packet. Note that the C&C IRC server that is used to connect all
bots is in most cases also a compromised machine.

3 Preventing Distributed Denial-of-Service Attacks

In this section we introduce a general methodology to prevent DDoS attacks. It
is based on the following line of reasoning:

1. To mount a successful DDoS attack, a large number of compromised machines
are necessary.

2. To coordinate a large number of machines, the attacker needs a remote control
mechanism.

3. If the remote control mechanism is disabled, the DoS attack is prevented.

We will substantiate this line of reasoning in the following paragraphs.

3.1 A Large Number of Machines is Necessary

Why does an attacker need a large number of machines to mount a successful
DDoS attack? If an attacker controls only few machines, a DDoS attack is suc-
cessful only if the total resources of the attacker (e.g., available bandwidth or
possibility to generate many packets per second) are greater than the resources
of the victim. Otherwise the victim is able to cope with the attack. Hence, if this
requirement is met, the attacker can efficiently overwhelm the services offered by
the victim or cause the loss of network connectivity.

Moreover, if only a small number of attacking machines are involved in an
attack, these machines can be identified and counteractive measures can be ap-
plied, e.g., shutting down the attacking machines or blocking their traffic. To
obfuscate the real address of the attacking machines, IP spoofing, i.e., sending
IP packets with a counterfeited sender address, is often used. Furthermore, this
technique is used to disguise the actual number of attacking machines by see-
mingly increasing it. However, IP spoofing does not help an attacker to conduct
a DDoS attack from an efficiency point of view. It does not increase the available
resources, but it even reduces them due to computing efforts for counterfeiting
the IP addresses. In addition, several ways to detect and counteract spoofed sen-
der address exist, e.g., ingress filtering [Fer00], packet marking [SP01], or ICMP
traceback [Bel01,SWKA00]. The IP distribution of a large number of machines
in different networks makes ingress filter construction, maintenance, and deploy-
ment much more difficult. Additionally, incident response is hampered by a high
number of separate organizations involved.

So control over a large number of machines is necessary for a successful DDoS
attack.
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3.2 A Remote Control Mechanism is Necessary

The success of a DDoS attack depends on the volume of the malicious traffic
as well as the time this traffic is directed against the victim. Therefore, it is
vital that the actions of the many hosts which participate in the attack are well-
coordinated regarding the type of traffic, the victim’s identity, as well as the time
of attack.

A cautious attacker may encode all this information directly into the malware
which is used to compromise the zombies that form the DDoS network. While
this makes him harder to track down, the attacker looses a lot of flexibility since
he needs to plan his deeds well in advance. Additionally, this approach makes
the DDoS attack also less effective since it is possible to analyze the malware
and then reliably predict when and where an attack will take place. Therefore it
is desirable to have a channel through which this information can be transferred
to the zombies on demand, i.e., a remote control mechanism.

A remote control mechanism has many more advantages:

1. The most effective attacks come by surprise regarding the time, the type and
the target of attack. A remote control mechanism allows an attacker to react
swiftly to a given situation, e.g., to mount a counterattack or to substantiate
blackmail threats.

2. Like any software, malware is usually far from perfect. A remote control
mechanism can be used as an automated update facility, e.g., to upgrade
malware with new functionality.

In short, a DDoS attack mechanism is only effective if an attacker has some type
of remote control over a large number of machines. Then he can issue commands
to exhaust the victim’s resources at many systems, thus successfully attacking
the victim.

3.3 Preventing Attacks

Our methodology to mitigate DDoS attacks aims at manipulating the root-cause
of the attacks, i.e., influencing the remote control network. Our approach is based
on three steps:

1. Infiltrating the remote control network.

2. Analyzing the network in detail.

3. Shutting down the remote control network.

In the first step, we have to find a way to smuggle an agent into the control
network. In this context, the term agent describes a general procedure to mask
as a valid member of the control network. This agent must thus be customized
to the type of network we want to plant it in. The level of adaptation to a real
member of the network depends on the target we want to infiltrate. For instance,
to infiltrate a botnet we would try to simulate a valid bot, maybe even emulating
some bot commands.

Once we are able to sneak an agent into the remote control network, it enables
us to perform the second step, i.e., to observe the network in detail. So we can
start to monitor all activity and analyze all information we have collected.
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In the last step, we use the collected information to shut down the remote
control network. Once this is done, we have deprived the attacker’s control over
the other machines and thus efficiently stopped the threat of a DDoS attack
with this network. Again, the particular way in which the network is shut down
depends on the type of network.

3.4 Discussion

The methodology described above can be applied to different kinds of remote
control networks and is thus very general. The practical challenge of the metho-
dology is to automate the infiltration and analysis process as much as possible.
In all these cases, the zombies need to establish a communication channel bet-
ween themselves and the attacker. If it is possible to “catch” this malware in a
controlled way, it is possible to extract a lot of information out of it in an auto-
mated fashion. For example, if contact to the attacker is set up by establishing a
regular network connection, the network address of the attacker’s computer can
be automatically collected.

To many readers, the methodology may sound like coming directly from a
James Bond novel and it is legitimate to ask for evidence of its feasibility. In the
following section we give exactly this evidence. We show that this method can be
realized in the Internet by describing how we infiltrated and tracked IRC-based
botnets which are the main DDoS technology used by attackers today.

4 An Example: Tracking Botnets

In this section we exemplify a technical realization of the methodology we intro-
duced above. We present an approach to track and observe botnets that is able
to prevent DDoS attacks.

As already stated in the last section, tracking botnets is clearly a multi-step
operation: First one needs to gather some data about an existing botnet. This can
for instance be obtained with the help of botnets or via an analysis of captured
malware. With the help of this information it is possible to smuggle a client into
the network.

We first introduce two techniques to retrieve the necessary information from
a botnet which enables us to infiltrate in it. The necessary information includes:

– DNS/IP-address of IRC server and port number.

– Password to connect to IRC-server (optional).

– Nickname of a bot and ident [Joh93] structure.

– Name of IRC channel to join and (optional) channel password.

The first method to retrieve this information is based on honeypot technology
and is presented in Section 4.1. The second method is more lightweight and
presented in Section 4.2. Then we describe the observation and analysis process
in which we collected further information (Section 4.3). Finally, in Section 4.4
we give a small overview of possible ways to shut down a botnet.
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Abb. 2. Setup for tracking botnets

4.1 Collecting Malware with Honeypots

A honeypot is a network resource (computers, routers, switches, etc.) deployed
to be probed, attacked, and compromised. A honeynet is a network of honey-
pots. Honeypots run special software which permanently collects data about the
system behavior and facilitates automatic post-incident forensic analysis. The
collected data enables us to determine the necessary information about an exi-
sting botnet. A detailed introduction to honeypots can for example be found in
[DGH04].

Using a so called GenII Honeynet [The03] containing some Windows honey-
pots, we are able to collect all necessary information. We deployed a typical
GenII Honeynet with some small modifications as depicted in Figure 4.1.

The Windows honeypot runs an unpatched version of Windows 2000 or Win-
dows XP. This system is thus very vulnerable to attacks. It is located within the
internal network of RWTH Aachen University. On average, the expected lifespan
of the honeypot is less than ten minutes. After this small amount of time, the
honeypot is often successfully exploited by automated malware. The shortest
compromise time was only a few seconds: Once we plugged the network cable in,
a bot compromised the machine and installed itself on the machine.

As explained in the previous section, a bot tries to connect to the C&C server
to obtain further commands once it successfully attacked the honeypot. This is
where the Honeywall comes into play. The Honeywall is a transparent bridge
that enables the two tasks Data Control and Data Capture. Due to the Data
Control facilities, it is possible to control the outgoing traffic. Using available
tools for Data Control we can replace all suspicious in- and outgoing messages.
A message is suspicious if it contains typical IRC messages for command and
control, for example “ TOPIC ”, “ PRIVMSG ”, or “ NOTICE ”. Thus we are able to
inhibit the bot from accepting valid commands from the master channel. It can
therefore cause no harm to others and therefore we have caught a bot inside our
Honeynet. As a side effect, we can also derive all necessary sensitive information
for a botnet from the data we have obtained up to that point in time: The
Data Capture capability of the Honeywall allows us to determine the DNS/IP-
address the bot wants to connect to and also the corresponding port number.
In addition, we can derive from the Data Capture logs the nickname, the ident
information, the server’s password, channel name, and the channel password as
well. So we have collected all necessary information and the honeypot can catch
further malware. Since we do not care about the captured malware for now, we
rebuild the honeypot every 24 hours to have a “clean” system every day. This
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has proven to be a good time span since after this amount of time the honeypot
tends to become unstable due to installed malware.

4.2 Collecting Malware with mwcollect

The approach described in the previous section works, but has several drawbacks:

– A honeypot will crash regularly if the bot fails to exploit the offered service,
e.g. due to a wrong offset within the exploit.

– The honeypot itself has to be closely monitored in order to detect changes
on the system. Furthermore, these changes have to be analyzed carefully to
detect malware.

– The approach does not scale well; observing a large number of IP addresses
is difficult.

To overcome these limitations, we developed a program called mwcollect to
capture malware in non-native environments. This tool simulates several vulne-
rable services and waits for them to be exploited. It is comparable to a low-
interaction honeypot like honeyd [Pro04]. In contrast to honeyd it is tailored to
collecting of malware and offers possibilities that honeyd cannot offer, e.g. better
packet handling and more flexibility.

mwcollect is based upon a very flexible and modularized design. The core
module – the actual daemon – handles the network interface and coordinates the
actions of the other modules. Furthermore, the core module implements a sniffer
mode which records all traffic to a special log file. This can for example be useful
if an unknown exploit is detected that needs to be further analyzed.

Several modules, which register themselves in the core, fulfill the actual tasks.
There are basically four types of modules:

– Vulnerability modules open some common vulnerable ports (e.g. TCP Port
135 or 2745) and simulate the vulnerabilities according to these ports.

– Shellcode parsing modules analyze the shellcode, an assembly language pro-
gram which executes a shell, received by one of the vulnerability modules.
These modules try to extract generic URLs from the shellcode.

– Fetch modules simply download the files specified by an URL. These URLs
do not necessarily have to be HTTP or FTP URLs, but can also be TFTP
or other protocols.

– Submission modules handle successfully downloaded files, for example by wri-
ting it to disk or submitting it to a database.

Vulnerability modules seem to be the most important part of mwcollect, but
in fact they are not more important than every other module, they all require
each other. Moreover, the vulnerable service emulation is not very sophisticated,
but functional: Often malware does not require an indistinguishable emulation
of a real service but an approximation of it. In most cases it is thus sufficient
to provide some minimal information at certain offsets in the network flow. This
information is used by the malware to calculate the offsets it can use to exploit
the service. Upon successful exploitation, the payload of the malware is passed
to another kind of modules.
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Currently there is only one shellcode parsing module that is capable of analy-
zing all shellcodes we have found up to now. The module first recursively detects
XOR decoders in a generic way. An XOR decoder is a common way to encrypt
the actual shellcode in order to evade intrusion detection systems. Afterwards the
module decodes the code itself according to the computed key and then applies
some pattern detection, for example CreateProcess and URLDownloadToFileA

detection patterns. The results are further analyzed and if an URL is detected, it
is passed to the fetch modules. A module that parses shellcodes in an even more
generic way by emulating a Windows Operating System environment is currently
under development.

Fetch modules have the simple task of downloading files from the Internet.
There are currently three different fetch modules: one for TFTP, one for generic
HTTP and FTP URLs and finally one for CSend and similar transfer methods
used by different species of bots.

Finally, submission modules handle successfully downloaded files. Currently
there are three different types of submission modules:

– A module that stores the file in a configurable location on the filesystem and
is also capable of changing the ownership.

– A module that submits the file to a central database to enable distributed
sensors with central logging interface

– A module that checks the file with the help of different anti-virus scanners
for known malware. Optionally this module sends an alert to enable an early
warning system. Therefore, mwcollect can also be seen as a kind of intrusion
detection system.

Two further features of mwcollect are important to efficiently collect malware:
virtualized filesystem and shell emulation.

A common technique to infect a host via a shell is to write commands for
downloading and executing malware into a temporary file and then execute this
file. Therefore a virtual filesystem was implemented to enable this type of attacks.
Every shell session has its own virtual filesystem so concurrent infection sessions
using similar exploits do not conflict. The temporary file is analyzed and the
malware is downloaded from the Internet in an automated way.

Some Malware does not spread by download shellcodes but by providing a
shell to the attacker. Therefore it is sometimes required to spawn and emulate
a Windows shell. Shell emulation is centralized in the core module since only
one type of shell is emulated. However, modules can register additional com-
mands that extend the possibilities for the malware. mwcollect currently simula-
tes a rudimentary shell and implements several commands: echo, ftp.exe and
tftp.exe, as well as batch file execution.

The big advantage of using mwcollect to collect malware is clearly both sta-
bility and scalability: A bot trying to exploit a honeypot running Windows 2000
with payload that targets Windows XP will presumably crash the service. In
most cases, the honeypot will be forced to reboot. In contrast to this, mwcollect
can be successfully exploited by all of those tools and hence catch a lot more
binaries this way. Furthermore, mwcollect can listen on many IP addresses in
parallel. We tested the program with 256 IP addresses and it scaled well.
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To derive the sensitive information of the botnet from the collected malware,
a further analysis is necessary. A possible way to extract the information from
the captured malware is reverse engineering, the process of carefully analyzing a
program without having its source code. This process is time consuming, but we
have developed some techniques that enables us to extract the information within
a few minutes. A better approach is an automated analysis with the help of a
honeynet. The setup depicted in Figure 4.1 can be used for this purpose. Upon
startup, the Windows honeypot downloads a piece of malware from a database
located somewhere in the Internet. It executes the file and reboots itself after a
few minutes. During this time span, the bot installs itself on the honeypots and
connects to the C&C server. With the help of the Honeywall, we are again able
to extract all necessary information. In addition, the honeypot resets the hard
disk during each reboot so that a clean image is booted each time.

In a third approach, we are currently implementing a virtual machine that
implements an environments in which the bot can be executed. This virtualiza-
tion emulates a Windows environment and enables us to efficiently analyze the
malware.

4.3 Observing Botnets

Once we have collected all sensitive information of the botnet, we start to in-
filtrate the botnet as we have all the necessary data. In a first approach, it is
possible to setup a normal IRC client and try to connect to the network. If the
operators of the botnets do not detect this client, logging of all commands can
be enabled. This way, all bot commands and all actions can be observed. If the
network is relatively small (i.e., less then 50 clients), there is a chance that the
bogus client will be identified since it does not answer to valid commands. In this
case, the operators of the botnets tend to either ban and/or DDoS the suspicious
client.

But there are many problems with this approach: Some botnets use very
strongly stripped down C&C server which is not RFC compliant so that a normal
IRC client can not connect to this network. A possible way to circumvent this
situation is to find out what the operator has stripped out, and modify the source
code of the IRC client to override it. Furthermore, this approach does not scale
very well. Tracking more than just a few botnets is not possible since a normal
IRC client will be overwhelmed with the amount of logging data and it does not
offer a concise overview of what is happening.

Therefore we use an IRC client optimized for botnet tracking called drone.
This software was developed by two members of the German Honeynet Project
and offers several decent techniques for observing botnets:

– Multi-server support to track a large number of botnets in parallel
– Excessive debug-logging interface so that it is possible to get information

about RFC non-compliance issues very fast and fix them in the client
– Automated downloading of malware identified within the botnet
– Modular interface to un/load modules at runtime

Furthermore, drone is capable of using SOCKS v4 proxies so we do not run
into problems if it’s presence is noticed by an attacker in a botnet. The SOCKS
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v4 proxies are on dial-in accounts in different networks so that we can easily
change the IP addresses of our infiltrated bot.

When observing more than a couple of networks, we began to check if some of
them are linked, and group them if possible. Link-checking is simply realizable:
our client just joins a specific channel on all networks and detects if more than
one client is there, thus concluding the the networks controlled by several C&C
servers are linked. Surprisingly, many networks are linked.

4.4 Preventing DDoS attacks caused by Botnets

Several ways to prevent DDoS attacks caused by botnets exist that we want
to sketch in this section. Since we observe the communication flow within the
botnet, we are also able to observe the IP addresses of the bots unless this
information is obfuscated, e.g., by modifying the C&C server. Thus one possible
way to stop DDoS attacks with this methodology is to contact the owner of the
compromised system. This is however a tedious and cumbersome job, since many
organizations are involved and these organizations are spread all over the world.
In addition, the large number of bots make this approach nearly infeasible, only
an automated notification system could help.

Another approach to prevent DDoS attacks caused by botnets aims at stop-
ping the actual infrastructure, in particular the C&C server, since this component
is vital for the remote control network. One possible way to stop the C&C server
is described in [Fis05]: Most botnets use a dynamic DNS name instead of a hard-
coded IP address for the C&C server. So if the DNS name is changed so that it
resolves to an IP address in a private subnet as defined in RFC 1918, the bots
are not able to connect to the central server. Thus the remote control network
is efficiently shut down. For this approach, the assistance of the DNS provider is
needed, though.

In addition, the collected information about botnets enable another way to
stop the botnet. We know the IP address of the C&C server and are thus able to
locate it. If the operator of the network cooperates, it is possible to shut down
this server and thus shutting down the remote control network.

5 Results

In this section we present some of the findings we obtained through our obser-
vation of botnets. Data is sanitized so that it does not allow one to draw any
conclusions about specific attacks against a particular system, and protects the
identity and privacy of those involved. The information about specific attacks
and compromised systems was forwarded to DFN-CERT (Computer Emergency
Response Team) based in Hamburg, Germany.

The results are based on the observations collected with just two sensors.
One sensors uses the approach depicted in Section 4.1 and is located within the
network of RWTH Aachen University. The other sensor is based on the technique
and software introduced in Section 4.2 and is located within a dial-in network of
a German ISP.

We start with some statistics about the botnets we have observed in the last
five months:
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– Number of botnets: We were able to track about 180 botnets during the
last five months. Some of them went offline (e.g. C&C server went offline
or inexperienced attackers) and at the time of writing (March 2005) we are
tracking about 60 active botnets.

– Number of hosts: During these few months, we saw more than 300,000 unique
IP addresses joining at least one of the channels we monitored. Seeing an IP
means here that the C&C server was not modified to not send a JOIN message
for each joining client. If an IRC server is modified not to show joining clients
in a channel, we do not see IPs here. Furthermore some IRC server obfuscate
the joining clients IP address and obfuscated IP addresses do not count as
seen, too. This shows that the threat posed by botnets is probably worse
than originally believed. Even if we are very optimistic and estimate that
we track a significant percentage of all botnets and all of our tracked botnet
C&C servers are not modified to hide JOINs or obfuscate the joining clients
IPs, this would mean that more than one million hosts are compromised and
can be controlled by malicious attackers.

– Typical size of Botnets: Some botnets consist of only a few hundred bots.
In contrast to this, we have also monitored several large botnets with up
to 50,000 hosts. The actual size of such a large botnet is hard to estimate.
Often the attackers use heavily modified IRC servers and the bots are spread
across several C&C servers which are linked together to form a common
remote control network. We use link-checking between IRC servers to detect
connections between different botnets that form one large botnet. Thus we
are able to approximate the actual size.
As a side note: We know about a home computer which got infected by 16
different bots, so its hard to make an estimation about world bot population
here.

– Dimension of DDoS-attacks: We are able to make an educated guess about
the current dimension of DDoS-attacks caused by botnets. We can observe
the commands issued by the controllers and thus see whenever the botnet is
used for such attacks. From the beginning of November 2004 until the end of
March 2005, we were able to observe 406 DDoS-attacks against 179 unique
targets. Often these attacks targeted dial-up lines, but there are also attacks
against bigger websites or other IRC server.

– Spreading of botnets: Commands issued for further spreading of the bots
are the most frequent observed messages. Commonly, Windows systems are
exploited and thus we see most traffic on typical Windows ports used for file
sharing.

– “Updates” within botnets : We also observed updates of botnets quite frequent-
ly. Updating in this context means that the bots are instructed to download
a piece of software from the Internet and then execute it.

We conclude that our general methodology described in Section 3 is feasible
and the automated approach described in Section 4.2 is effective. We collected
more than 5500 binaries (about 800 unique ones) with mwcollect in just one
week on a single sensor. This sensor has only one IP address and is connected
to the Internet via a German DSL dial-in provider with 4 MBit downstream
and 2 MBit upstream. About five percent of the unique files were broken due
to failures during TFTP transfer. We are currently in the process of analyzing
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these files. Once we have implemented a virtualization mechanism to efficiently
and automatically analyze the collected files, we hope to be able to significantly
increase the number of botnets we observe. In addition, this information can be
used to prevent DDoS attacks by shutting down the C&C server.

6 Conclusion and Further Work

DDoS attacks have become increasingly dangerous in recent years and we are
observing a growing professionalism in the type of Internet crime surrounding
DDoS. In this paper we have introduced a technique for DDoS attack prevention
that neither implies a resource arms race nor needs any additional infrastructure.
In contrast to previous work in this area our approach is preventive instead of
reactive. Our technique attacks a root-cause of DDoS attacks: in order to be
effective, an attacker has to control a large number of machines and thus needs
a remote control network. Our methodology aims at shutting down this control
network by infiltrating it and analyzing it in detail.

We have exemplified a technical realization of this methodology considering
as example the tracking of IRC-based botnets. Such a botnet is a network of
compromised machines that can be remotely controlled by an attacker through
Internet relay chat technology. Due to their immense size (tens of thousands of
systems can be linked together), these botnets pose a severe threat to the Internet
community, e.g., since their aggregated resources can be used to overwhelm most
targets with a DDoS attack. We have shown that an automation of this approach
is possible to a high degree. With the help of honeypots, i.e., network resources
deployed to be compromised, we are able to automate the process of collecting
sensitive information of the remote control network by automatically “collecting”
malware. Via an automated analysis of the captured binaries we are furthermore
able to extract the sensitive information that allow to shut down the control
network.

With the help of just two sensors we were able to track a significant number
of botnets within a few months. In the future we want to analyze how good
our approach scales. Therefore we want to deploy more sensors within different
networks. In addition, we aim at speeding up the automated analysis process so
that it becomes even more effective. This can for example be achieved with the
help of a generic shellcode parser or a virtual machine that analyzes and extracts
the sensitive information from the captured binaries.

Moreover, the data we captured while observing the botnets show that these
control networks are used for more than just DDoS attacks. Possible usages of
botnets can be categorized as listed below. And since a botnet is nothing more
then a tool, there are most likely other potential uses that we have not listed:

– Spamming : Some bots offer the possibility to open a SOCKS v4/v5 proxy –
a generic proxy protocol for TCP/IP-based networking applications – on a
compromised machine. After having enabled the SOCKS proxy, this machine
can then be used for nefarious tasks such as sending bulk email (spam) or
phishing mails. With the help of a botnet and thousands of bots, an attacker
is able to send massive amounts of spam. Some bots also implement a special
function to harvest email-addresses from the victims.
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– Attacking IRC Chat Networks: Botnets are also used for DDoS attacks against
Internet Relay Chat (IRC) networks. Popular among attackers is especially
the so called clone attack : In this kind of attack, the controller orders each
bot to connect a large number of clones to the victim IRC network. The
victim is overwhelmed by service request from thousands of (cloned) bots.

– Manipulating online polls/games: Online polls/games are getting more and
more attention and it is rather easy to manipulate them with botnets. Since
every bot has a distinct IP address, every vote will have the same credibility
as a vote cast by a real person. Online games can be manipulated in a similar
way.

– Sniffing Traffic: Bots can also use a packet sniffer to watch for interesting
clear-text data passing by a compromised machine. The sniffers are mostly
used to retrieve sensitive information like usernames and passwords.

– Keylogging : If the compromised machine uses encrypted communication chan-
nels (e.g. HTTPS or POP3S), then just sniffing the network packets on the
victim’s computer is useless since the appropriate key to decrypt the packets
is missing. But most bots also implement functions to log keystrokes. With
the help of a keylogger it is very easy for an attacker to retrieve sensitive
information.

– Harvesting of information: Sometimes we can also observe the harvesting of
information from all compromised machines. With the help of special com-
mands the operator of the botnet is able to request a list of sensitive infor-
mation from all bots.

With our method we can shut down the root-cause of all of these types of nui-
sances, and hence our method is not restricted to combat DDoS.

In the future, we hope to develop more advanced honeypots that help us to
gather more information about threats such as botnets. Examples include client-
side honeypots that actively participate in networks (e.g. by crawling the web,
idling in IRC channels, or using P2P-networks) or modify honeypots so that
they capture malware and send it to anti-virus vendors for further analysis. It is
also to be expected that future botnets will use communication facilities other
than IRC (like potentially decentralized p2p-communication). Our methodology
seems valid also for these scenarios, although more research in this area is still
needed.
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1992-19-08 D. Gärtner, A. Kimms, W. Kluge: pi-Redˆ+ - A Compiling Graph-

Reduction System for a Full Fledged Lambda-Calculus

1992-19-09 D. Howe, G. Burn: Experiments with strict STG code

1992-19-10 J. Glauert: Parallel Implementation of Functional Languages Using

Small Processes

1992-19-11 M. Joy, T. Axford: A Parallel Graph Reduction Machine

1992-19-12 A. Bennett, P. Kelly: Simulation of Multicache Parallel Reduction

23



1992-19-13 K. Langendoen, D.J. Agterkamp: Cache Behaviour of Lazy Functional

Programs (Working Paper)

1992-19-14 K. Hammond, S. Peyton Jones: Profiling scheduling strategies on the

GRIP parallel reducer

1992-19-15 S. Mintchev: Using Strictness Information in the STG-machine

1992-19-16 D. Rushall: An Attribute Grammar Evaluator in Haskell

1992-19-17 J. Wild, H. Glaser, P. Hartel: Statistics on storage management in a lazy

functional language implementation

1992-19-18 W.S. Martins: Parallel Implementations of Functional Languages

1992-19-19 D. Lester: Distributed Garbage Collection of Cyclic Structures (Draft

version)

1992-19-20 J.C. Glas, R.F.H. Hofman, W.G. Vree: Parallelization of Branch-and-

Bound Algorithms in a Functional Programming Environment

1992-19-21 S. Hwang, D. Rushall: The nu-STG machine: a parallelized Spineless

Tagless Graph Reduction Machine in a distributed memory architecture

(Draft version)

1992-19-22 G. Burn, D. Le Metayer: Cps-Translation and the Correctness of Opti-

mising Compilers

1992-19-23 S.L. Peyton Jones, P. Wadler: Imperative functional programming (Brief

summary)

1992-19-24 W. Damm, F. Liu, Th. Peikenkamp: Evaluation and Parallelization of

Functions in Functional + Logic Languages (abstract)

1992-19-25 M. Kesseler: Communication Issues Regarding Parallel Functional Graph

Rewriting

1992-19-26 Th. Peikenkamp: Charakterizing and representing neededness in func-

tional loginc languages (abstract)

1992-19-27 H. Doerr: Monitoring with Graph-Grammars as formal operational Mo-

dels

1992-19-28 J. van Groningen: Some implementation aspects of Concurrent Clean on

distributed memory architectures

1992-19-29 G. Ostheimer: Load Bounding for Implicit Parallelism (abstract)

1992-20 H. Kuchen, F.J. Lopez Fraguas, J.J. Moreno Navarro, M. Rodriguez

Artalejo: Implementing Disequality in a Lazy Functional Logic Language

1992-21 H. Kuchen, F.J. Lopez Fraguas: Result Directed Computing in a Func-

tional Logic Language

1992-22 H. Kuchen, J.J. Moreno Navarro, M.V. Hermenegildo: Independent

AND-Parallel Narrowing

1992-23 T. Margaria, B. Steffen: Distinguishing Formulas for Free

1992-24 K. Pohl: The Three Dimensions of Requirements Engineering

1992-25 ∗ R. Stainov: A Dynamic Configuration Facility for Multimedia Commu-

nications

1992-26 ∗ Michael von der Beeck: Integration of Structured Analysis and Timed

Statecharts for Real-Time and Concurrency Specification

1992-27 W. Hans, St. Winkler: Aliasing and Groundness Analysis of Logic Pro-

grams through Abstract Interpretation and its Safety

1992-28 ∗ Gerhard Steinke, Matthias Jarke: Support for Security Modeling in In-

formation Systems Design

1992-29 B. Schinzel: Warum Frauenforschung in Naturwissenschaft und Technik

24



1992-30 A. Kemper, G. Moerkotte, K. Peithner: Object-Orientation Axiomatised

by Dynamic Logic

1992-32 ∗ Bernd Heinrichs, Kai Jakobs: Timer Handling in High-Performance

Transport Systems

1992-33 ∗ B. Heinrichs, K. Jakobs, K. Lenßen, W. Reinhardt, A. Spinner: Euro-

Bridge: Communication Services for Multimedia Applications

1992-34 C. Gerlhof, A. Kemper, Ch. Kilger, G. Moerkotte: Partition-Based Clu-

stering in Object Bases: From Theory to Practice

1992-35 J. Börstler: Feature-Oriented Classification and Reuse in IPSEN

1992-36 M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, Y. Vassiliou: Theories

Underlying Requirements Engineering: An Overview of NATURE at Ge-

nesis

1992-37 ∗ K. Pohl, M. Jarke: Quality Information Systems: Repository Support for

Evolving Process Models

1992-38 A. Zuendorf: Implementation of the imperative / rule based language

PROGRES

1992-39 P. Koch: Intelligentes Backtracking bei der Auswertung funktional-

logischer Programme

1992-40 ∗ Rudolf Mathar, Jürgen Mattfeldt: Channel Assignment in Cellular Radio

Networks

1992-41 ∗ Gerhard Friedrich, Wolfgang Neidl: Constructive Utility in Model-Based

Diagnosis Repair Systems

1992-42 ∗ P. S. Chen, R. Hennicker, M. Jarke: On the Retrieval of Reusable Soft-

ware Components

1992-43 W. Hans, St.Winkler: Abstract Interpretation of Functional Logic Lan-

guages

1992-44 N. Kiesel, A. Schuerr, B. Westfechtel: Design and Evaluation of GRAS,

a Graph-Oriented Database System for Engineering Applications

1993-01 ∗ Fachgruppe Informatik: Jahresbericht 1992

1993-02 ∗ Patrick Shicheng Chen: On Inference Rules of Logic-Based Information

Retrieval Systems

1993-03 G. Hogen, R. Loogen: A New Stack Technique for the Management of

Runtime Structures in Distributed Environments

1993-05 A. Zündorf: A Heuristic for the Subgraph Isomorphism Problem in Exe-

cuting PROGRES

1993-06 A. Kemper, D. Kossmann: Adaptable Pointer Swizzling Strategies in

Object Bases: Design, Realization, and Quantitative Analysis

1993-07 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Graduiertenkolleg In-

formatik und Technik

1993-08 ∗ Matthias Berger: k-Coloring Vertices using a Neural Network with Con-

vergence to Valid Solutions

1993-09 M. Buchheit, M. Jeusfeld, W. Nutt, M. Staudt: Subsumption between

Queries to Object-Oriented Databases

1993-10 O. Burkart, B. Steffen: Pushdown Processes: Parallel Composition and

Model Checking

1993-11 ∗ R. Große-Wienker, O. Hermanns, D. Menzenbach, A. Pollacks, S. Re-

petzki, J. Schwartz, K. Sonnenschein, B. Westfechtel: Das SUKITS-

Projekt: A-posteriori-Integration heterogener CIM-Anwendungssysteme

25



1993-12 ∗ Rudolf Mathar, Jürgen Mattfeldt: On the Distribution of Cumulated

Interference Power in Rayleigh Fading Channels

1993-13 O. Maler, L. Staiger: On Syntactic Congruences for omega-languages

1993-14 M. Jarke, St. Eherer, R. Gallersdoerfer, M. Jeusfeld, M. Staudt: Con-

ceptBase - A Deductive Object Base Manager

1993-15 M. Staudt, H.W. Nissen, M.A. Jeusfeld: Query by Class, Rule and Con-

cept

1993-16 ∗ M. Jarke, K. Pohl, St. Jacobs et al.: Requirements Engineering: An In-

tegrated View of Representation Process and Domain

1993-17 ∗ M. Jarke, K. Pohl: Establishing Vision in Context: Towards a Model of

Requirements Processes

1993-18 W. Hans, H. Kuchen, St. Winkler: Full Indexing for Lazy Narrowing

1993-19 W. Hans, J.J. Ruz, F. Saenz, St. Winkler: A VHDL Specification of a

Shared Memory Parallel Machine for Babel

1993-20 ∗ K. Finke, M. Jarke, P. Szczurko, R. Soltysiak: Quality Management for

Expert Systems in Process Control

1993-21 M. Jarke, M.A. Jeusfeld, P. Szczurko: Three Aspects of Intelligent Co-

operation in the Quality Cycle

1994-01 Margit Generet, Sven Martin (eds.), Fachgruppe Informatik: Jahresbe-

richt 1993

1994-02 M. Lefering: Development of Incremental Integration Tools Using Formal

Specifications

1994-03 ∗ P. Constantopoulos, M. Jarke, J. Mylopoulos, Y. Vassiliou: The Software

Information Base: A Server for Reuse

1994-04 ∗ Rolf Hager, Rudolf Mathar, Jürgen Mattfeldt: Intelligent Cruise Control

and Reliable Communication of Mobile Stations

1994-05 ∗ Rolf Hager, Peter Hermesmann, Michael Portz: Feasibility of Authenti-

cation Procedures within Advanced Transport Telematics

1994-06 ∗ Claudia Popien, Bernd Meyer, Axel Kuepper: A Formal Approach to

Service Import in ODP Trader Federations

1994-07 P. Peters, P. Szczurko: Integrating Models of Quality Management Me-

thods by an Object-Oriented Repository

1994-08 ∗ Manfred Nagl, Bernhard Westfechtel: A Universal Component for the

Administration in Distributed and Integrated Development Environ-

ments

1994-09 ∗ Patrick Horster, Holger Petersen: Signatur- und Authentifikationsverfah-

ren auf der Basis des diskreten Logarithmusproblems
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