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Requirements traceability is intended to ensure continued alignment between
stakeholder requirements and system evolution. To be useful, traces must be organized
according to some modeling framework. Indeed, several such frameworks have been
proposed, mostly based on theoretical considerations or analysis of other literature. This
paper, in contrast, follows an empirical approach. Focus groups and interviews conducted in
26 major software development organizations demonstrate a wide range of traceability
practices with distinct low-end and high-end users of traceability. From these observations,
reference models comprising the most important kinds of traceability links for various
development tasks have been synthesized. The resulting models have been validated in case
studies and are incorporated in a number of commercial traceability tools. The discussion of
the link types and their usage in practice has implications for the design of next-generation
traceability methods and tools.
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1. INTRODUCTION

Reference models are prototypical models of some application domain, usualy
organized according to some underlying basic metamodel. The purpose of reference models is
to reduce significantly the task of creating application-specific models and systems : the user
selects relevant parts of the reference model, adapts them to the problem at hand, and
configures an overall solution from these adapted parts. Since the analysis of a domain can
take an enormous effort when started from scratch, the use of reference models has been
reported to save up to 80% in development costs for systems in standardized domains (Scheer
1994). Not surprisingly, reference models have become highly successful in many industries,
the best-known example being the SAP approach.

Not every domain is sufficiently standardized to allow for a reference model of the final
product — the system to be built. Moreover, approaches like the one followed by SAP are not
necessarily supportive of change, especially when this change goes beyond the initially covered
domain. However, at least experience on how to get to the product should be reused (Dhar
and Jarke 1985). This leads to the idea of reference models for capturing the development
process itself, not to be confused with prescriptive software process models (Finkelstein et al.
1994).

The process of developing reference models is arduous. The traditional normative
computer science approach of imposing such models on developers is long known to have
failed in most cases. Reference models are therefore an abstraction of best practice, condensed
from numerous case studies over an extended period of time, followed by more case studies to
refine and evaluate the proposed reference model. There is nothing provably correct about
reference models; they derive their relevance from the slice of practice they cover.
Nevertheless, by formalizing a reference model in an appropriate mathematical framework, at
least a number of elementary desirable properties can be ensured.

1.1 Why Reference Models for Traceability?

Our interest is the development of reference models for requirements ilitgceab
Summarizing several earlier views and perspectives, Gotel and Finkelstein (1994) define
requirements tracetdity as “the ability to describe and follow the life of a requirement, in
both a forward and backward direction, i.e. from its origins, through its development and
specification, to its subsequent deployment and use, and through periods of on-going
refinement and iteration in any of these phases’. The importance of requirements traciégb
is highlighted by the fact that, for example, the US Department of Defense spends about 4%
of its IT costs on tracedby — often without getting an adequate value for this money, as
traceallity in many organizations is haphard, the standards provide little guidance, and the
models and mechanisms vary to a large degree and are often poorly understood. Not
surprisingly, the market for requirements tradégtiools is booming, even though current
tools support only rather simple tracéigbmodels and services.

Previous models of requirements tracgigitfocus on different aspects of requirements
tracealbity. Version and configuration management systems focus osotbheCE aspect (i.e.,
physical artifacts where traceldlp information is maintained), emphasizing the document
management role of traceldlp (Rose et al1991, Conradi and Westfechtel 1998). The source
aspect remains important: only trace objects availalpergstent sources actually constitute
long-term tracealtty, so traceallity methods and tools have to makades persistent reliably
and at acceptable cost.

Studies at the management level usually focus onsth&EHOLDER aspect (i.e.,
agents involved in the management of tradiegb A good example is the work of Yu and

2



Mylopoulos (1994) who use dependencies between stakeholders as a starting point for driving
and documenting requirements processes. The roles of stakeholders with respect to objects are
emphasized in Gotel's thesis work on contribution structures (Gotel and Finkelstein 1995).
Her empirical study shows the practical value of using a rich system of stakeholder roles in
documenting the creation of requirements (Gotel and Finkelstein 1997); our longitudinal case
study (Ramesh et al. 1997) shows that also the different usage roles are important in designing
and implementing tracedity systems. Summarizing, the stakeholder aspect becomes more
important as the duration and complexity of projects grow.

Despite the importance of considering physical trace management and stakeholder
roles, current practice shows that the efficiency and effectiveness of tliacasaipport is
largely determined by the system@#JECT types and tracediby link types offered. This is
not only important for fine-grained change management, but also has repercussions for the two
other aspects, i.e. for source management and stakeholder dependencies (Pohl et al. 1997). In
this paper, we therefore focus on the analysis of object types and trace link types used in
current practice, and organize our reference models around them. However, after presenting
the models, we shall discuss their embedding with the stakeholder and source management
aspects, including the implications for tool design drawn from our studies.

1.2 Research Overview

Our own efforts to develop a reference model of traliyabvere driven by
experiences with the deployment of REMAP, a model for design rationale and dependency
management we developed in the late 1980’s (Dhar and Jarke 1988, Ramesh and Dhar 1992).
The development of this model was guided by experiments with experienced software
engineers, and it has in fact served as a starting point for several commercial tool
developments including the KBSA environment by Anderson Consuitidgthe SLATE tool
by TD Technologies. Despite this apparent success, some users of REMAP pointed out that it
was too complex for some usage situations, even though each of its features was needed
sometimes. The informal feedback gained in these discussions was thaetdad variety of
traceability strategies is practiced in industry and the existing models are too simple and/or
too rigid to deal with this variety.

In 1992, we therefore embarked on a two-pronged strategy. In the European
NATURE project, we began to develop model-driven approaches to process guidance and
traceality that would provide the technical means for dealing with a wide spectrum of
traceabity techniques. As a starting point for this activity, we developed a basieabity
framework that has become known as “the three dimensions of requirements engineering”
(Jarke and Pohl 1993, Pohl 1994). In (Pohl 1996), this framework was elaborated by a set of
18 types of tracedllby links found in the literature, and by the RSM model which synthesizes
the objects to be traced from 21 international software engineering standards. In (Domges and
Pohl 1998, Pohl et al. 1999), the resulting process-integrated tool environments are discussed.

In parallel, we began a four-year series of empirical studies with American software
development organizations, with the goal of
e capturing the current and desired practice in requirements tildgeab
» developing and validating reference models which could guide an improved practice
* assessing the impact of good tradéglon the software development and maintenance

process.

This paper presents the reference models together with their grounding in the empirical
studies, and relates the findings to requirements for future tikigeabchanisms. Companion
papers discuss the organizational factors that guide the selection user organizations make
among such models (Ramesh 1998) and the organizational implementation and impact of
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traceability, based on atwo-year case study in one specific organization (Ramesh et al. 1997).

In section 2, we describe the design of the empirical studies, starting from a brief
survey of traceability uses reported in the literature. Section 3 presents the first group of
results, a smple meta model according to which traceability schemes can be organized. The
studies show that there is a clear distinction between low-end and high-end users of traceability
representing very simple and very comprehensive traceability practices (explained in detail in
Section 2.5.2). Therefore, sections 4 and 5 describe low-end and high-end reference models
separately, and indicate ways how to migrate from one to the other. Section 6 contains a fairly
detailed example on use of high-end models for supporting a large system-engineering project.

Sections 7 and 8 discuss the implications of our results. In section 7, we define four
basic categories of traceability link types and show how they map to the concrete link typesin
the reference models; by discussing available support for each link type, we relate our results
to existing research. In section 8, general conclusions concerning the functionality of
traceability tools are drawn; the application of these conclusions is demonstrated by another
case study, the development of the Design Rationale tool within the KBSA ADM system of
Andersen Consulting. Section 9 summarizes our results.

2. Empirical Studies

In this section, we describe the empirical studies used for defining, validating and
applying the reference models.

2.1 Background: Definitions and Uses of Traceability

Requirements traceability has been identified in the literature as a quality factor - a
characteristic a system should possess and include as a non-functional requirement (Roetzheim
1991) Many standards governing the development of systems for the U.S. Government (e.g.,
MIL-STD-2167-A and MIL-STD-498 which replaces it (DoD, 1988)) require the
development of requirements traceability documents.

Edwards and Howell (1991) define traceability as a technique used to "provide a
relationship between the requirements, the design, and the final implementation of the system".
Pamer (1997) states that "traceability gives essential assistance in understanding the
relationships that exist within and across software requirements, design and implementation”.
These relationships allow designers to show that the design meets the requirements and help
early recognition of those requirements not satisfied by the design. Palmer states that
traceability helps acertain "how and why system development products satisfy stakeholder
requirements’. Hamilton and Beeby (1991) view tracetity as the ability to “discover the
history of every feature of a system” so that the impacts of changes in requirements can be
identified. Greenspan and McGowan (1978) state that thiey db allow changes to any
artifacts -- requirements, specification, implementation-- to be traced throughout the system is
an important property of any systems description technique. In short, requirementslityaceab
Is a characteristic of a system in which the requirements are clearly linked to their sources and
to the artifacts created during the system development life cycle based on these requirements.

Many different stakeholders -- project sponsors, project managers, analysts, designers,
maintainers, and end users -- are involved in the system development life cycle. Thdityaceab
needs of these stakeholders differ due to differences in their goals and priorities, and many
problems of traceadly stem from these differences in interest and understanding (Ramesh and
Edwards 1993).

Stehle (1990) identifies some criteria from the perspectivenafaging a system
development effort. Trace#ity helps promote a contractor and contracted method of
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working, demonstrate that each requirement has been satisfied. Further, it helps ensure that
each component of the system satisfies a requirement to ward off ‘gold-plating’ (Wright
1991), i.e. the addition of expensive and unnecessary features to a system.

In requirements engineering, a major challenge is the linking of rationales and sources
to the requirements. Traceldap faciltates communication between those involved in the
project to alleviate these problems. Requirements management can be facilitated by capturing
information necessary to understand requirements evolution and verification (Fiksel 1992).

During design, traceality allows designers and maintainers to keep track of what
happens when a change request is implemented before a system is redesigned (Edwards and
Howell 1991). Traceality is helpful if it can link designs to justifications, important decisions
and assumptions behind them and the contexts in which design solutions are arrived at
(Smithers et al. 1991).

Systems evolution requires a better understanding of the requirements which can only
be achieved by tracing back to their sources (Pinheiro and Goguen 1996). iliyaceab
provides the ability to cross-reference items in the requirements specifications with items in
the design specifications (Dorfman and Thayer 1990). Therefore, with complete iitgceab
more accurate costs and schedules of changes can be determined rather than depending on the
engineer or programmer to know all the areas effected by these changes.

Last not leasttest procedures, if traceable to requirements or designs, can be modified
when errors are discovered (Brown 1987).

2.2 Motivation and Overall Study Design

As a consequence of these different uses and perspectives onilingctdadre are
wide variations in the format and content of tradigbnformation across different system
development efforts. Even though some detailed proposals for tileigdedmeworks have
been made (Gotel and Finkelstein 1995, Pohl 1996), the current literature and the standards do
not provide detailed guidelines on what types of information must be captured and used in
what contexts. Though a variety of tools used in the industry provide mechanisms to represent
various types of linkages between system components, the interpretation of the meanings of
such linkages is left to the user. Thus, there is a clear need for the development of reference
models, and guidelines for their use in software development activities. A comprehensive
scheme, based on such models can help ensure that ilitgcealnaintained through all
phases of the systems development process, from the requirements as stated or contracted by
the customer, through analysis, design, implementation, testing and operationalization of the
product. This step, from the generic link types to their usage in typical development tasks as
encoded in a reference model, requires empirical analysis.

As discussed earlier, providing traciigbof requirements to their sources and the
outputs of the system development process can be along several dimensions. Different
stakeholders contribute to the capture and use of trsiigegformation, often with different
perspectives. For example, the types of links of interest to an end user may be different from
those of interest to a system designer. An end user may be interested in the answer to the
following question: what are the system components that are affected by a requirement? A
systems designer may, in addition, be interested in the answer to the following: why and how
are the components affected by a requirement?

Further, the semantics of a given linkage as viewed by different stakeholders may
differ. For instance, consider the following relationship maintained in a tikiyesdole:
REQUIREMENT LINKED-TO DESIGN object. An end user may view the relationship as a means to
identify a design component that is generated by a requirement. A designer may view the same
linkage as providing information on the constraint (i.e., requirement) that restricts a design
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object. The semantics or the meaning attributed to a linkage is guided by the reasoning that the
user will be performing with the linkage. While the end user may be interested in just the
connectivity information, the designer may be interested in the repercussions of changes in the
solutions with the relaxation of the constraint (or redefinition of a requirement).

We conducted several empirical studies that capture the information needs (with
respect to traceability) of different stakeholders involved in the software development process.
Data collection methods included evaluation of major traceability tools, structured interviews
with practitioners, focus groups involving the various stakeholders, and an in-depth case study
of traceability practice in one organization. Due to the elaborate preparation required to
assemble experienced practitioners in their organizational settings for these empirical studies,
data collection spanned a period of over three years. Subsequently, the models have been used

and incorporated in a number of prototypical and commercial tools.

Table 1 summarizes the various steps in our data collection and analysis steps and
identifies the magjor outputs of these phases. Each of these steps will be described in the
following subsections.

Stage Data Sources Outputs
Pilot Study Six focus groups e Initiadl verson of meta
Seven verbal protocols model
Six structured interviews » Detaled design for the
empirical study
Analysis of | Data on seven commercial traceability tools | «  Capabilities and  short-
current tools and three in-house traceability tools - comings of current tools
including review of literature, vendor . Understanding of various
training, interviews with at least two major approaches to traceability
users of tools support
Main Phasel | Five focus groups of traceability | « Traceability meta-model
Study practitioners * Initial coding scheme for
One group of experts development of reference
models
Phase I | 23 focus groups of traceability practitioners | «  Low-end model of
Evaluation of traceability documents traceability
* High-end models of
traceability
Phase | Two groups of experts drawn from| e Comments and informal
[l different industries "validation" of models
Model Use Use of modelsin CASE tools » Case studies on the use of
» Design rationale modelsin KBSA ADM models
* Requirements management models in | ¢ Industrial uptake of results
Tracenet, RECAP
* High-end modelsin SLATE
Table 1. Summary of data collection and analysis
2.3 Pilot Study

The pilot study determined the appropriateness of the various data collection
approaches and guided the development of relevant instruments, such as a questionnaire for
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structured interviews and focus groups. It involved focus groups for idea generation, protocol
analysis to study problem-solving behavior, and structured interviews to evauate the initial
results.

A focus group is a semi-structured exchange among a small group of people conducted
with a clear agenda. This technique is the most commonly used qualitative data collection
methodology used in market research (Templeton 1987).

Protocol analysisis commonly used in building expert systems. The thought process of
subjects is captured through think-aloud verbal protocols. The protocols are recorded as
subjects think through a problem and verbalize their thoughts. The recorded protocols are
analyzed to capture knowledge elements and operators that characterize the problem solving
behavior. In our context, the knowledge elements provide insights into the relationships or
linkages and the operators provide insights into the reasoning performed with the relationships.

Sructured interviews were designed to provide further insights into the nature of the
traceability links, as well as potential areas for providing support by explicit representation of
these relationships. Further, various types of reasoning performed by the stakeholders were
identified such that mechanisms can be developed to aid the tasks of design and maintenance
based on the nature of the relationships and the perceived areas of potential benefits.

The pilot study involved 58 master’s students in information technology at a graduate
university. Many subjects had extensive experience in domains such as ship building and
aviation maintenance where traciigb is widely practiced. The participants had also
completed a comprehensive project involving the analysis and design of a segment of a large-
scale, real life system.

Six focus groups, consisting of eight to ten subjects each, were conducted. The
discussion was moderated to discuss definitions, need for tildigeddom different
stakeholder perspectives, the issues involved in creating a comprehensivelityagesdtice.

Seven subjects participated in the protocol analysis phase of the project. Think aloud protocols
of subjects involved in defining tracdlil links (among requirements, design elements and
implementation) in projects they had participated in were collected. Six subjects participated in
structured interviews where the results developed from the above data collection sessions were
reviewed and elaborated.

Besides the development of initial versions of our meta-model, the primary outcome of
the pilot study was the development of a detailed design for the empirical study. Focus groups
and structured interviews were identified as the primary methods for data collection during the
subsequent phases. The importance of incorporating both contributors and users dityraceab

information in the study was also highlighted. ‘
Stakeholders Traceability focus
]

| sudy | requirementy |
1 Computer Hardware, system engineers | over 1 million | Requirements management,
System Integration project manager lines Satisfying requirements,
quality assurance, Contract compliance,
system analysts Project monitoring and control,
Rationale,
Change contral
2 US Government project sponsors | multi--billion Rationale,
System Devel opment project manager dollar Project monitoring,
Organization lead system Satisfying requirements,
engineers Resource management
3 US Government project sponsor, several hundred | Standards compliance,
System Devel opment contractor million dollars project tracking and control,
Project Management engineers, resource management,




[ No_|

Stakeholders

Traceability focus |

Organization system analysts change control
4 US Government systems analysts, | 1400 requirements evol ution,
System Devel opment project sponsors requirements standards compliance
Organization
5 US Government test engineers, 1300 satisfaction of requirements,
System Testing manager, requirements standards compliance,
Organization contractor development of appropriate
engineers verification procedures
6 System Integration system engineers, | over 100 million | satisfaction of requirements,
test engineers, dollars inter-component dependencies,
maintenance development of appropriate
engineers verification procedures,
rationale
7 Pharmaceuticals system engineers, | over 1000 satisfaction of requirements,
maintenance requirements rationale, quality assurance,
engineers reguirements allocation
8 Utility project manager, | approx. 15 satisfying requirements,
system engineers, | million dollars change contral,
maintenance project tracking and monitoring,
engineers compliance with regulations
9 Telecommunications project manager 6000 satisfying requirements,
system engineers, | requirements quality assurance,
test engineer project tracking and monitoring
10 | Aerospace project lead several hundred | requirements allocation,
engineer, system | million dollars reguirements management
engineer (evolution),
reguirements rationale
11 | Aerospace system engineers, | over 5000 reguirements all ocation,
maintenance requirements design rationale,
engineer component dependencies,
resource monitoring
12 | Electronics system engineers, | multi-million quality assurance,
project manager, | dollars satisfying requirements,
maintenance standards compliance,
engineers design rationale
13 Defense Contractor, system engineers | over 25 million | requirements allocation,
System Integrator dollars satisfaction of requirements,
requirement management (evolution)
14 | Electronics system engineers | 600 satisfaction of requirements
reguirements
15 | Contractor for system engineers | 500 satisfaction of requirements
Financial Services requirements
16 | Govt. contractor system engineers | 900 satisfaction of requirements,
reguirements contract compliance
17 | Govt. project project managers, | over 100 project tracking and control,
Management systems analysts | million dollars contracts compliance,
organization standards compliance,
resource management
18 | Govt. project sponsor project sponsors | over 150 devel opment of requirements
project manager million dollars compliance with standards,
system analysts mission/organizational needs,
project costing/estimating
19 | Automobile system engineers, | multi-million reguirements allocation,




Linvolvedin | (cost,numberof| |
requirements
maintenance dollars satisfaction of requirements,
engineers resource monitoring, rationale
20 | Electronics test engineers, 1300 satisfaction of requirements,
project manager, | requiements development of
systems analyst appropriate verification
procedure
21 | Govt. contractor system engineers | 400 development of
reguirements traceabilitiy documents
required by sponsor
(requirements-test matrix)
22 | Contract Software system engineers | 1700 development of
Developer reguirements allocation and test
matrices
23 | Government contract over contract compliance,
Contracting specialists, 10,000 standards compliance,
Organization project manager requirements project monitoring and control
24 | Contract software Maintenance 800 requirements satisfaction,
Development and engineers requirements test plan devel opment
Maintenance
25 | Aerospace Configuration 8000 reguirements evolution,
management requirements system /component evolution,
personnd, reguirements satisfaction
quality assurance,
system engineers
26 | Telecommunications system engineers, | 6000 development of requirements,
systems analysts | requirements requirements rational e,
project costing/estimating

Table 2: Organizationsinvolved in focus groups and interviews

2.4 Analysis of Current Tools

As a first step towards developing a clear understanding of the current practice of
traceability, a detailed study of the capabilities of major tools that support traceability was
undertaken. All leading case tools on the market were included in the study. These include
DOORS, Marconi RTM, Teamwork/RQT, RDD-100, SLATE, RTS, and Requirements
Tracer. Three CASE tools developed by system engineering organizations for in-house use
were aso studied. The study included a detailled review of vendor provided literature,
participation in vendor provided training (ranging from 1 to five days) on the tools, and
interviews with at least two major users of each of the tools. It provided clear understanding of
the capabilities of current tools, the areas of traceability supported by each tool, and
shortcomings of the different approaches to traceability supported by them, which was very
valuable in the design of focus groups and interviews. The details of the tool analysis are not
reported here, as they were subsumed by a later survey of traceability tools, conducted by the
International Council on Systems Engineering (see  www.incose.org/workgrps
/toolg/tooltax.html) and extended in (Démges and Pohl 1998).




2.5 Main Study

The main part of the study comprised 30 focus group discussions in 26 organizations.
They were conducted in a wide variety of industries, including defense, government,
aerospace, hardware development, pharmaceuticals, utility, system integration, electronics, and
telecommunications. Table 2 gives an overview of the organizations involved. Whenever
feasible, participants representing different user and consumer perspectives were included. On
average the focus groups consisted of five participants. As in the pilot study, focus groups
were followed up with selected structured interviews.

The participants had experience in several key areas of systems development including
project management, software engineering training, requirements management, software
testing, system integration, configuration management, procurement, development support,
software quality assurance, systems analysis, maintenance, software implementation. The
participants had an average of 15.5 years experience in systems devel opment.

2.5.1 Phase|

The focus groups were conducted in two phases. In Phase I, building on results of the pilot
study, data from five focus groups involving thirty participants were used in developing a
traceability meta-model. The meta-model defines the language in which traceability reference
models are described. It provides the primitives to represent different traceability linkages
among the various objects produced during systems development. It further represents the
agentsinvolved in the systems development process as well as the sources in which traceability
information is captured. The meta-model is discussed in Section 4. The meta-model was
checked for plausibility and terminology by a group of experts drawn from different industries
and stakeholder groups.

An important outcome of this study is also the identification of various types of
traceability information and the development of an initial scheme for encoding reference
models from data collected in subsequent phases.

2.5.2 Phasell

The second phase involved the development of reference models of traceability practice. Data
from 23 focus groups were used in the development and classification of traceability links
representing current practice and ideal practice.

Issues addressed in the focus groups

Each focus group started with clarifications on the definitions and terms used. This
included the identification of the various stakeholders involved in traceability, the system
lifecycle phases covered in the project being discussed, the system components to which
traceability is intended, and the various views on tracesbility.

The focus group participants were then asked to discuss their current traceability
practice as well as desired traceability practice. To achieve comprehensive understanding of
the current and desired practices, participants were asked to elaborate their ideas from two
different perspectives:

e user perspective: What types of traceability information is needed and is useful at different
phases of the system development process? How is this information captured and by whom
and at what phase of the system development life cycle? What are the costs associated
with the capture of thisinformation?
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* provider perspective: What types of traceability information does each stakeholder
capture? in what phase of the lifecycle and how is it used and by who and when? What are

the benefits associated with the capture of this information?

Wherever available, the participants were asked to answer these questions with specific
reference to the reports and documents produced in the organization.

The next part of each focus group was devoted to a discussion of the different types of
traceability links used in that organization:

1. How are the various traceability relationships identified in the traceability documents?

2. How are the traceability relationships created/defined and prioritized? Who are the
stakeholders involved in managing these links?

3. How are the traceability links maintained, reviewed, updated or changed, by whom and

during which activities?

SRS

What are the mechanisms for defining the semantics of these links and maintaining this?
What are the uses of each type of traceability link identified?
What are the issues that facilitate or impede the implementation of traceability?

Each focus group session lasted between 1.5 - 2.5 hours. All sessions were audio or
video taped for further analysis. When this was prohibited by security or confidentiality
concerns, a scribe documented the discussions.

During the focus groups, a deeper understanding of the different types of traceability
links discussed in the literature was developed. The usage of these link types in practice was
gradually encoded in reference models for the major uses of traceahility, as discussed below in

section 5.

High-end and Low-end Users

It quickly became apparent that the participants in our study could be categorized into
two distinct groups with respect to their traceability practice. We refer to them as low-end and

high-end traceability users.

Characteristic

L ow-end traceability user

High-end traceability user

Number of organizations in the

Nine

Seventeen

study

Number of participants Fifty-four Eighty-four

Typical complexity of system about 1000 requirements about 10000 reguirements
Traceability experience level zero to two years fivetoten years

User definition of traceability

documents transformation of
reguirements to design

increases the probability of
producing a system that meets
al customer requirements and
will be easy to maintain

Main application of traceability

reguirements decomposition
reguirements allocation
compliance verification
change control

full coverage of life cycle,
including user and customer;
captures discussion issues,
decisions and rationale;
capturing traces across product
and process dimensions

Table 3: Characterization of low-end and high-end usage of requirementstraceability
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The characteristics of both groups are summarized in Table 3. The representation of
the two groupsin our empirical study is also discussed in this table. Briefly, low-end users with
just afew years of traceability experience see it smply as a mandate from the project sponsors
or for compliance with standards. In contrast, experienced high-end users are experiencing
traceability as a major opportunity for customer satisfaction and knowledge creation
throughout the systems lifecycle. The perceived importance of traceability grows with system
complexity. As the following sections will show, the reference models used for low-end and
high-end traceability users differ substantially. However, it should be noted that even an
organization with predominantly low-end practice may have "mature" traceability practice in
some areas and vice-versa.

Development of reference models

The analysis of the data followed standard procedures used in qualitative research that
employ focus groups and interviews. The data was analyzed using a form of content analysis
(Eisenhardt, 1989) where the data is categorized into concepts. The primary concepts in our
study are the various types of traceability links used in current and ideal practice. The results
presented in this paper are based on a "qualitative or ethnographic summary” (Morgan, 1988)
and rely on direct quotations from the data. As suggested in Morgan (1988), the analysis was
done in two phases. During Phase |, a detailed examination of the data from five focus groups
provided the initial categories and concepts along which the data was coded. This scheme was
developed iteratively so that it was sufficient to explain the data. The scheme from this study
was used in the analysis of data from Phase |1 to identity and refine components of traceability
models. Triangulation (Eisenhardt, 1988) across multiple data sources (multiple participants
that represent different stakeholder perspectives from each organization) and across data
collection methods (focus groups, interviews and review of traceability documents) helped
confirm the findings. Each concept represented in the reference models presented in Section 5
was included only when is observed in practice (as reported as current practice in focus group
discussions and/or structured interviews and/or represented in traceability documents) and
identified by others as a part of desired practice. Each traceability information in the high-end
modelsisin either use or considered desired practice by at least six organizations in our study.

We have developed two sets of models. The low-end models describe the current
practice in low-end organizations. The reference models for high-end users in different systems
development activities represent the best practices in the industry.

2.5.3Phaselll

The reference models developed from phase Il were presented to two groups of experts
for comments and feedback. These two groups were composed of experienced traceallity
users drawn from different industry groups. The two groups provided informal "validation” of
the models presented here and further provided suggestions on the implementation of the
models in system engineering environments.

2.6 Model Use in Tools

Based on the suggestions received from the experts and our analysis of the current
traceability tools, we identified characteristics of system engineering environments for the
implementation of the traceability reference models (cf. sections 7 and 8). To develop and
adapt reference models, the software information system requires support for specialization
and instantiation, applied both to nodes and links.
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In order to ensure formal consistency of the proposed models, and to be able to
demonstrate them to users and tool vendors, the meta model and the reference models were
first encoded in ConceptBase (Jarke et a. 1995), a knowledge-based meta database
management system based on the Telos language (Mylopoulos et al. 1990). We shall use
ConceptBase screenshots to show the reference modelsin Sections 4 and 5.

For initial validation, a ConceptBase prototype of an early submodel was included in
the concept demonstrator of the Knowledge-Based Software Assistant (KBSA) project.
Demonstrations of these prototypes, together with their empirical grounding, led to the
adoption of our reference models in several commercial traceability tools:

* The traceability scheme of SLATE, a leading system engineering tool, is
architected around earlier versions of the models presented here.

* The design rationale models presented here are the primary components of the
Knowledge Based Software Assistant tools Concept Demo and ADM created by
Andersen Consulting on behalf of the U.S. Air Force

* The models have been incorporated in the Tracenet tool that supports the capture
of traceability across multiple environments

* The models have been tailored and used in a large commercial and a government
system engineering organization (Ramesh et a, 1997). The models have also been
tallored to support traceability to forma specifications in a model management
system (Ramesh 1997).

Though a detailed discussion of the experiences from these implementations is beyond
the scope of this paper, they seem to provide strong evidence of usability and scalability of the
models in real-life system engineering. We present two case studies in sections 6 and 8.

3. A Simple Meta Model of Requirements Traceability

In the next three sections, we present the reference models resulting from our studies.
We assume that our traceability reference models will be implemented in some trace repository
(manual or computerized). It is widely accepted that such a repository will comprise at least
three layers (for details, see e.g. Bernstein et al. 1999, Constantopoulos et al. 1995, Jarke et al.
1994, Pohl 1996):

» the meta model defining the language in which traceability models can be defined

* aset of reference traceability models which can be customized within the scope defined by
the meta model

* a(possibly distributed) database of actual traces, recorded under the chosen models.

We adopt the convention that we denote node metaclasses (e.g., STAKEHOLDER) by
small bold caps, and their instances (e.g., CUSTOMER) by non-bold small caps. Similarly, link
metaclasses (e.g., TRACES-TO) are denoted by bold italics, specific link types by standard italics
(e.0., REFINES).

The practitioners and focus groups in phase | of the Main Study) confirmed that the
most essential aspects of traceability can be captured in the very simple meta model shown in
Figure 1 which thus provides the basic language primitives for categorizing and describing
traceability models in more detail.

13



STAKEHOLDER

HASROLE IN MANAGES

TRACES%
DOCUMENTS

OBJECT [ SOURCE

Figure 1: Traceability Meta M odel

Each entity and link in the meta-model can be specialized and instantiated to create
organization or project specific traceability models. The meta-model can be used to represent
the following dimensions of traceability information (cf. Table 4):

1. What information is represented - including salient attributes or characteristics of the
information?

In the model, OBJECTS represent the inputs and outputs of the system development
process. Examples of various types of OBJECTS include REQUIREMENTS, ASSUMPTIONS,
DESIGNS, SYSTEM COMPONENTS, DECISIONS, RATIONALE, ALTERNATIVES, CRITICAL
SUCCESS FACTORS, etc. These represent the magor conceptual elements among which
traceability is maintained during the various life cycle stages. OBJECTS are created by
various organizational tasks. Examples of tasks include systems analysis and design
activities. Thisinformation can be represented as an attribute of OBJECTS.

Traceability across various OBJECTS is represented by the TRACES-TO links. For example,
a DEPENDS-ON link between two objects (a REQUIREMENT and an ASSUMPTION) can be
represented as a specidization of this TRACES-TO link.

2. Who arethe STAKEHOLDERS that play different roles in the creation, maintenance and use
of various OBJECTS and traceability links across them?

In the model, STAKEHOLDERS represent the agents involved in the system development
and maintenance life cycle activities. Examples of STAKEHOLDERS include the project
managers, systems analysts, designer etc. These STAKEHOLDERS act in different roles or
capacities in the establishment and use of the various conceptual OBJECTS and traceability
links.

3. Whereit isrepresented - in terms of sources that “document” tradkgbnformation?

All OBJECTS are documented byOURCES, which may be physical media such as
documents or intangible things such as references to people or undocumented policies and
procedures. Examples &DURCES include REQUIREMENT SPECIFICATION DOCUMENTS,
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MEETING MINUTES, DESIGN DOCUMENTS, MEMORANDA, TELEPHONE CALLS AS WELL AS
REFERENCES TO VARIOUS STAKEHOLDERS USING THEIR PHONE NUMBERS, E-MAIL ADDRESS
etc. STAKEHOL DERS manage the SOURCES; i.e., they create, maintain and use them.

How thisinformation is represented - both by formal and informal means and how it relates
to other components of traceability?

The sources, as mentioned above, can be physical or intangible. Further, they can be
represented at different levels of formality. Some sources such as requirements
specifications may be text documents, whereas others design documents may be
represented in multiple formats such as graphics and text.

. Why acertain conceptual OBJECT was created, modified or evolved?

The rationale behind the creation, modification and evolution of various conceptual
OBJECTS can be represented as a specidization of the meta-class OBJECT. Then, it can
then be linked to the conceptual object (using a specialization of the traces-to link). More
complex models of rationale, such as the Issue Based Information Systems framework
which include issues, alternatives and arguments supporting and opposing them can also be
represented as specialization of the OBJECT-TRACESTO-OBJECT relationship in our model.

. When this information was captured, modified and evolved?

Relevant temporal information about the any of the entities or links in our model can be
represented as their attributes. For example, the frequency or the time / duration at which a
requirement or design was created, reviewed, modified or justified by a specific rationale
can be represented with this scheme.

DIMENSION EXAMPLE

What? Rationale for Design Decisions

Who? Systems Designer

Where? In the design documentation library

How? Using Tool X;
Represented as the "Rationale - justifies - Design Decision
traceahility link

Why? To facilitate understanding and communication with other
designers, maintainer; to avoid rework

When? At the finalization of the design

Table 4: Traceability Dimensions- An example

The three nodes of the meta model correspond roughly to the three dimensions of

requirements engineering proposed by (Pohl 1994) in that they cover the aspects of
understanding (objects), agreement (stakeholders), and physical representation (sources).
However, note that we are not discussing the requirements process per se, but the creation and
usage of traces.
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4. Low-End Use of Traceability

A model of the typical low end user’s traceability efforts is provided in Figure 2. The
names of objects and links presented here are our interpretations (validated by the expert
groups) of what was observed in practice. Many organizations simply use traceability tables to
link various components of information without explicit identification of the semantics of such
relationships. Low-end users created traceability links to model requirement dependencies,
alocation of requirements to system components, compliance verification, and change control.
For the following, recall that we denote traceability linkages by italic small-caps (LINKAGES),
while components that they link are indicated with uppercase letters (OBJECTS). For every link
in the model an inverse may be defined.
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Figure 2: Low End Traceabilty M odel

Typical low end users viewed requirements traceability as providing a link from initial
REQUIREMENTS to the actual system COMPONENTS that satisfy those requirements. However,
first, the higher level requirements must be decomposed to a more refined level. During this
recursive process, lower level REQUIREMENTS are DERIVED from higher level system
REQUIREMENTS. (“often derived requirements are the problem; you don’t know why and how
they got there.. want to make sure that every low level requirement is tied to the bigger level
specificatiori) 1. Typically, this information is captured in a relational data base, and used in
the form of a tracedllty matrix.

1 Thisisadirect quote from a subject participating in a focus group or interview. Henceforth, all quotes from
a subject will beitalicized and included within quotation marks, but no specific reference will be made.
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Original and derived REQUIREMENTS are ALLOCATED TO System COMPONENTS (“We
want to track which component will take care of what requirement by creating an allocation
table”). An allocation table is the common mechanism used to maintain this information. This
simple two way mapping between requirements and system components is usually used also to
ensure that there ac®MPONENTS in the system thagaTisFy all REQUIREMENTS (“when you
want to know which part of the system satisfies what requirement, you can go to the
allocation table to identify it. Whether the does indeed or not is another matter - for testing to
worry about”).

By capturing which components satisfy various requirements and which requirements
are mapped to different components, the designer is able to verify that all requirements are
addressed by the system.

In the Compliance Verification phase of systems development, low end users use the
requirements database, which contains the most current version of the system's validated
requirements, to develop the systeoMPLIANCE VERIFICATION PROCEDURES (CVPS) such as
tests or simulationscvps developed for eacREQUIREMENT is usually maintained in a
REQUIREMENTS-andTESTS traceallity matrix. (“A matrix showing the tests to requirements is
very important to make sure all requirements are adequately taken care of”).

If a change should occur in the requirements then the tiigelaiks could identify
the cvps that must be modified or redevelopeti/Ps are PERFORMED on the system
components verifying that the component satisfies the requirements. Results of the tests are
used to verify that the system works and that it meets all of the requiremeéress (*
performed indicate whether we indeed achieved success in implementing goals and satisfied
the requirements’). A systemCOMPONENT may DEPEND on others and may alSeTERFACE
with EXTERNAL SYSTEMS. This information is used in evaluating how a requirement is satisfied
by a system component.

Low-end users lacked especially in the area of capturing rationale. In requirements
management, for example, information concerning requirement issues, how they are resolved,
and the rationale for the decisions are seldom captured. Likewise, similar information is absent
in the design and implementation phasedtéh we have no idea who made these decisions,
and how they impact the rest of the effort. Smply trying to do these at the end of the project
or after the fact doesn’t work. Often the people who worked on it are gone without a trace of
what happened. .. not disciplined enough to document these .. with all the demands on the
teant).

5. High-End Use of Traceability

High-end users of traceility employ much richer &ceabity schemes than low-end
users, and also use traciigb information in much richer ways. We have, therefore,
segregated the high-end model into three parts for clarity: Requirements Management, Design
Allocation, and Compliance Verification. In addition, Rationale Management now takes center
stage.

5.1 Requirements Management Submodel

Traceality, when implemented correctly, would greatly benefit requirements
management facilitating requirements understanding, capture, tracking and verification. The
following is a discussion of the Requirements Management model presented in Figure 3.
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Systems are built to primarily satisfy ORGANIZATIONAL NEEDS. These needs may either
be long term STRATEGIC NEEDS or more immediate OPERATIONAL NEEDS, as denoted by the IS
A hierarchy (shown as thick lines in Figures 3 — 6). These two needs sepphrother and
are often detailed IBCENARIOS DESCRIBING the intended use or purpose of the systelfve(*
build the system obvioudy to satisfy some long term or operational goals of our sponsors. In
our environment, these are clearly stated in the mission needs statement - MNS - operational
requirements document - ORD- two important documents to work within any effort.
Obvioudy, these are at a very high level .. laying out the goals”).
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Figure 3: Requirements M anagement Submodel

The objectives that the system is trying to meMSTEM OBJECTIVES, must be
JUSTIFIED by ORGANIZATIONAL-NEEDS (“the system draws its legitimacy from the MNS and
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ORD”). Stakeholders such as customer, program manager, program sponsor, etc. specify the
SYSTEM-OBJECTIVES. TheREQUIREMENTS for the system areENERATED from thesesySTEM
OBJECTIVES (“The high level goals are after all too vague to be called requirements - for
contracting. Soecific, detailed requirements have to be developed to proceed further”).

Due to the large number of requirements associated with complex systems, it is
important to determine those factors that are critical to the success of the project, and to
manage requirements based on how they contribute to these factors. The stakeholders
involved in the identification of th®@RGANIZATIONAL NEEDS also IDENTIFY theseCRITICAL
SUCCESS FACTORS (CsF) ("Stakeholders have some issues or values like, no mistakes or system
errors, performance is the most important thing, the power requirements are the most critical
item in this area”). RESOURCES such as Cost, Time, Weight, Voltage, etc. are examples of
csFs. ("A lot of decisions have been made...because of cost and weight, mostly cost.”) ("It
will be a combination of technical and cost trades."). REQUIREMENTS for the system are
MANAGED (budgeted, monitored, tracked etc.) by theses. For example, the mission
criticality (a csF) of requirements could be used in classifying and monitoring requirements.
Similarly, csFs such as weight in an aerospace system or the total cost of development can be
used in tracking and monitoring requirements. As part of the negotiation process among
stakeholders, many tradeoffs are made in deciding the scope and functionality of the system
depending on their impact asrs ("Typically we enter into a complex negotiation process of
what's in scope, what's out of scope, what's affordable, what's not affordable. And | believe
this is where traceability earns its keep"). Such decisions determine, among many things,
whether requirements identified initially are feasible, cost effective, or desirable.

Not all requirements are equal in significance or criticality; requirements may be traced
through the lifecycle at different levels of granularity or detail in order to optimize on
resources spent. It may be unnecessary or even undesirable, considering the overhead involved
in maintaining traceality, to maintain linkages between every requirement and every output
created during the systems design process. CBie may be used in deciding when it is
essential to trace requirements in detail and when fine grained fliacesltess important
("...just try to get as much traceability information for the critical requirements, and not as
much for the requirements that may not be as important"). REQUIREMENTS can be traced
throughout the lifecycle to provide stakeholders with a view to understand and evaluate
whether the system supports theses ("..the smaller subset is the driving, high risk set of
requirements that merit more visibility in the tracking of the program...we have an attribute
of a requirement that we call technical performance measure (TPM). Is it high risk, do we
want to put a TPM against this requirement? The TPMs are all programmed, tracking, giving
them higher visibility to see how we're doing"). Further, requirements may also be based on
STANDARDS, POLICIES AND PROCEDURES. Maintaining the links between requirements and the
sources and the requirements willl help understand and correctly interpret them.

CONSTRAINTS may be treated as a typeREQUIREMENT (denoted bys-A link). Several
focus groups stated how constraints become hard requirements because lifég sathin
which the system is to be developedyétems are designed and decisons made with
constraints considered”).

5.1.1 Evolution

One of the biggest challenges in managing large, complex systems is due to the way
requirements are constantly evolving and changing. Each focus group noted that in order to
accurately reflect this voldity, a requirements &rceabity scheme should help document and
understand the evolution of requirements. Two major sources of changes are: 1) the need to
fix a deficiency in the system, identified during, say operations or testing (discussed in detall in
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Section 6.4), and 2) changes in ORGANIZATIONAL NEEDS. Various stakeholders modify Sy STEM
OBJECTIVES based on changed ORGANIZATIONAL NEEDS, leading to changes in REQUIREMENTS.
In projects with very long life cycles, such as military applications, not only is the nature of
systems requirements dynamic, but even the ORGANIZATIONAL NEEDS (mission and
operational) and the SYSTEM OBJECTIVES keep evolving (Systems that were considered
successful during the cold war era are no longer considered useful as strategic and mission
needs are evolving rapidly”). It is not possible, however, to abandon all investments in such
systems and develop new systems to meet current needs. The lack of comprehensive
traceabity is a primary reason for the inability to identify components that are linked to
various objectives and modify them to meet the current requiremevescén’t clearly figure
out which part of the system we can retain and which part is no longer relevant.. we don’t
have the traceability details for these systems any'nore

Traceality links are needed amonBEQUIREMENTS that get specified at different
levels of detail as they evolve through the various stages of the development lifecycle. The
recursive links amongEQUIREMENTS shown in our model are useful in providing a historical
record of requirements evolution and in mappirREQUIREMENT back to its sources, thereby
facilitating a complete understanding of where a requirement comes from.

5.1.2 Derived Requirements

Lower level REQUIREMENTS are DERIVED from higher levelREQUIREMENTS, usually
based on assumptions made by stakeholders. Derived requirements need to be tracked
carefully as they are likely to be a major source of conflicts and issues, and are subject to
changes as assumptions behind them are often unrecorded. Requirements that are derived
"create a collection of requirements at a different level” of detail. Traceality helps clearly
identify derived requirements thapartially satisfy the originating requirement” (“We find
things in requirements documents which most people didn't know where they came from.
Then we will figure out that someone created these consolidating or clarifying other
requirements. We now have a policy to identify - and before that - agree on these derived
requirements. There is lot of room for problems when we go from customer given
requirements to lower levels based on our interpretations. We try to document these also in as
much detail or at least know who is responsipl&urther, this traceadlty information is
useful in managing the "explosion™ in the number of requirements you can start with 30
pages of requirements, top level, then you can go to your prime item development
specifications and you could consider those requirements derived from those 30 pages, but
then you have those second and third generation... derived requirements between those ...you
have an explosion of derived requirements and relationships’).

Some REQUIREMENTS are ELABORATED by others, providing further explanation or
clarification. This added detail assists in understanding the assumptions behind requirements
as well as how they are interpreted.Sofhetimes you add requirements really because you
find them unclear. They are refined, and become more specific in detail then in fact are more
demanding than the original requirement might have been").

REQUIREMENTS also DEPEND-ON others.For example, a requirement to use a specific
software platform may depend on a requirement to use a specific hardware platform.
Identifying these dependencies is important, especially when requirements change, so that the
impact of the change on the entire system can be determidiéfdrént people and teams
work on different parts of requirements, some even from other parts of the organization or
sub-contractors. It iswhen it is difficult to trace whose part affects which other. After all are
part of the same system. We get into major problems down the line when we are unable to
figure out these connections”).
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Complex requirements are often broken down into their components, identifying
simpler requirements that form a PART-OF them. These links help in understanding how various
pieces of a requirement fit together and are especialy important on large, complex systems
whose requirements may contain several interdependent parsplit a requirement to deal
with different aspects .. like functionality”). Is-A links between requirements show the
parent/child hierarchical relationshipsH{gher levels of requirements are just abstractions of
lower levels.") ("Initially its a top-down, hierarchical decomposition starting with the most
general goals of the customer, floming down to a set of systems performance
requirements...you now can have children with multiple parents, whereas originally we were
probably looking at children with a single parent."”). 1IS-A hierarchies can be used to show the
relationship between requirements specified for an entire class of hardware to be used and
those for a specific type of hardware component.

5.2 Rationale Sub-Model

The following is a discussion of the Rationale sub-model presented in Figure 4. The
specification, elaboration, decomposition, derivation and modificatio®BIECTS such as
REQUIREMENTS, DESIGNS ETC. GENERATE (Or lead t0)ISSUES or CONFLICTS, often due to the
differing interpretations, assumptions, interests, viewpoints, experience and objectives of the
stakeholders. Information about how decisions are made to resolvelshese must be
maintained throughout the system lifecycle to ensure that customer requirements are
understood and satisfiedTfaceability pays for itself by making sure you understand how the
requirement is interpreted, how its being implemented, what were the issues that were
consdered in the design to satisfy that"). These DECISIONS, in turn, may AFFECT
REQUIREMENTS.

VariousALTERNATIVES that address the resolution1gSUES are considered \Ve want
everyone to know what the options are, why we are picking one versus ancther. They can
immediately see if these decisions will affect their parts and this feedback is important in
making the right decisons. Getting a resolution through this process is also helpful in
bringing everyone on board and on the same sheet of music”’). ARGUMENTS for and against
eaChALTERNATIVE may be proposed.THeECISION t0 SELECT one or moreALTERNATIVES iS
oftenINFLUENCED by thecsrs (“All parties understand the various possibilities and why one
looks better than othersin terms of what is critical for the project”).

A common observation made by most focus groups is that seldom such detailed
information on all theALTERNATIVES considered, theRGUMENTS supporting and opposing
these alternatives and the assumptions behind this decisions is explicitly recorded. Most often
only the chosen alternative is well documented and the discarded ones are not recorded. With
evolving requirements, availability of such information may help avoid expensive rewdgek ("
debated that for two weeks now. Why was it thrown out years ago when we got one camp
arguing to put it back in and another to keep it out. And if we could have gone back and
assessed why we made that decision two years ago it would have saved us a lot of time").

Often, the capture of rationale at the detail described above is impractical due to
overhead involved in capture and due to the lack of tools to facilitate it. However, simple
descriptions of rationale on whickEQUIREMENTS OR DESIGNS are based may be recorded
along with the assumptions behind them. Furt?e3SumMPTIONS underlying the various
components of the deliberation are also recordédé ¢ecord the rationale as simple notes..
and add specifically any assumptions we have made. It is useful to keep track of these
assumptions as clearly as possible for these are the most likely candidates for changed
requirements’). We return to this issue in section 8.5.
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Figure 4: Rationale Submodel

Over the lifecycle of large projects, requirements, assumptions, etc. change. Further,
such projects also experience personnel turnover. If detailed rationale is not maintained, these
changes lead to alot of rework ("We already looked at that tradeoff, that approach, but the
person who did it - the analysis - is leaving and the person that reviened it is gone, so we
churn the whole thing again”. "This is a lengthy look at all these issues with a lot of people
that contribute to, touch, change, add, use thisinformation.”).

During the systems development process different stakeholders often bring different
interpretations of requirements and their origins. For example, even when two different
stakeholders review the same origins ®&EQUIREMENT (say, a standard) they may interpret it
differently. Often the difference in interpretation is the cause of conflicts between stakeholders,
even in a cooperative settingYQu can look at a given set of requirements and they might be
meaningless if you don't really know what the customer needs because you can interpret them
wrong, or at least two or three different ways.") .

Another reason to have detailed rationale is to provide accdliptaibformation
about how the requirements and design have evolved, what changes have been made, why and
how they were made, and the status of their development is extremely helpful to those

22



stakeholders that were not involved in creating the requirement ("If you don't have traceability
to the rationale, it is impossible to understand many low level requirements.. They may have
made sense to the person who evaluated the options and not for others”).

5.3 Design/Allocation

We use the term design to refer to any activity that creates artifacts, including
implementation. In Figure 5, HQUIREMENTS DRIVE DESIGN, that are oftenBASED ON
MANDATES such asSTANDARDS OR POLICIES OR METHODS that govern the system development
activity (“we have to follow military standards and policies to make sure we are compliant”).

— ConceptBase Graph Browser < |

ConceptBase Graph Browser Ness Rape...

= Add Hode

Save Lavout
Load Lavout

Help
Quit

depend_an

ja

Fl I

Figure 5: Design Allocation Submodel

SYSTEM/SUBSYSTEM/COMPONENT (hereafter referred to aSOMPONENTS) are the
building blocks of the system. They apeFINED or CREATED by the DESIGN process.
REQUIREMENTS are ALLOCATED to COMPONENTS that are supposed to satisfy them. The
components could be a piece of hardware, software, humanware,Adtthe @llocation step
you're going to allocate to people, to processors, to memory, to hardware, etc.”).
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COMPONENTS DEPEND ON Other COMPONENTS, in that the functionality and performance
of one may depend on another. When the interfaces between different COMPONENTS are
explicitly identified (for example, in interface specifications), maintenance of dependency
information is easier. The difficulty in the identification of indirect dependencies among
COMPONENTS makes it important to record them when they are indeed discovered. For
instance, an operating system on one component may affect the choice of hardware on
another, even though there may be no direct interfaces between them. When a component is
created or modified, this traceability information is helpful in determining the impact on the
entire system. (Thisinformation is hard to figure out and people who know about how your
work on a piece affects some seemingly unrelated piece don’t share this information.. leads to
lots of rework).

The composition ofCOMPONENTS is identified using thePART-OF links. This
information allows the designers to identify inter-component dependengies ¢hange a
part or break it into sub-parts, | would like to have some sort of traceability or mesh structure
which gives some sort of relationships...| would like to know what is the characteristic of each
component”). TheIs-A hierarchy specifies that components are organized at different levels;
from system to subsystem to item and to unie(Want to keep track common details for
same types of components”).

RESOURCES (such as money, weight, personnel, power etc.ysB-BY COMPONENTS.
As discussed in Section 5.1, when these resourcessase it is important to track their
allocation, distribution and utilization during design and implementatién tfie allocation
level there needs to be parameters that associate budgets of resources that are going to be
consumed ... and then you're going to have to test to see that you're somehow compatible
with, complying with and not grossly out of bounds with your budgeting.”) ("I want
traceability to give me some level of assurance of particular stepsin the design process that
I’'m meeting or likely to meet system goals or to help me to allocate resources or capabilities
in such a way that | maximize the likelihood of meeting system goals.”). ("If cost happens to
be the major system driver, then what | am really interested in is keeping track of actual or
supposed cost of the components. I, on the other hand, memory space is the primary driver,
they might not really pay as much attention to cost, as how my decisons impact the
allocation of memory space.")

Several focus groups mentioned that it was important to identifyFtNETIONS
PERFORMED BY COMPONENTS. These FUNCTIONS are typically traced to the functional
REQUIREMENTS explicitly identified in requirements documentsw¢‘ have to keep the
functionals separate. We want to make sure each of these is addressed in some way by the
different pieces of the system’”) (" Another use of traceability in design is allocating functions
in such a way that you're sure that they support each other and don't interfere with each
other"). A COMPONENT may partiallysaTISFY REQUIREMENTS, and as the design progresses, all
REQUIREMENTS must be fully satisfied. The difficulty in explicitly creating trackigblinks
between non-functional requirements and system components was also highlighted by several
groups (Wth non-functionals, it is a problem. How are we going to say which part of the
system affects how much of a performance requirement to give 20 millisecond response”).

The COMPONENTS DEPEND ON EXTERNAL SYSTEMS in that they often interface with
them. Direct interfaces are easier to recognize and represent in ailitpdebework than
indirect dependenciesd'particular product line is going to be brought on board a ship and
its going to have to plug into an already existing system...the things they need to know is what
IS the functionality that the system needs to have, what is the demand on these services that
they would have and the range of the demand .. especially with respect to the system we are

plugging into").
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Our discussion in Section 5.2 on the capture of rationale applies also to the capture of
rationale behind the development of DESIGNS and COMPONENTS. (" Traceability would come in
handy for determining the reasons for your design.") ("That's the design knowledge capture
that we were supposed to maintain. What is basically here is the design the way it is and here’'s
the decisions, the thought that went into that decision. And then when you changed them,
here’'s how we changed them”).

5.4 Compliance Verification Sub-Model

A variety of cvPs (PROTOTYPING, SIMULATION, TESTING and INSPECTION shown by the
IS-A links) are developed to ensure that each of the REQUIREMENTS is adequately addressed
("We write the test specifications by taking apart the SRS and Component Specifications.”
"You've got to be able to specify what you're going to test taking Standards into account”).
The ability to developcvps is a critical factor in deciding whether REQUIREMENT IS
considered as suchlf“something is untestable or we elect not to test, then it becomes no
longer a requirement or at least we all agree that it is unverifiable").
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Figure 6: Compliance Verification Submodel
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The development of cvps is adso governed by their uss of RESOURCES (such as
personnel, money etc.). The utilization, assignment and availability of RESOURCES often
determines whether one can even perform a compliance test, or if the cost-benefit analysis of
performing it justifies it. The tradeoff between the resources allocated to development and
CVPs is often a source of ISSUES OR CONFLICTS that must be resolvedHow are we going to
find that this how far we should do go in testing. It is a matter of trade-off, for discussion”).

MANDATES such asSTANDARDS OR POLICIES OR METHODS are commonly the basis of
cvps and determine which CVPs are required and how they are to be performed. Often,
REQUIREMENTS are written such that they comply with thesBeftre we decide on a testing
strategy, we want to go to the same standard which the requirement is trying to meet”). It is
important that the CVPs for a requirement use the same interpretation of the standards used
while developing requirements. In the absence of traitgdietween theREQUIREMENTS and
the STANDARDS on which it is based, it is difficult to devela@yps ("Thereis a lack of a way
to firmly assure that the tests you are generating really reflect the same thing as the standard
used in writing the requirement")

cvps produce results that eithearify how theCOMPONENTS satiSfyREQUIREMENTS Of
help GENERATE CHANGE PROPOSALS for REQUIREMENTS Of DESIGN Of IMPLEMENTATION. They
are thus used to certify completeness and correctness of the system and identify changes that
may be necessary to meet the objectivAs {He design or requirement is changed based on
tests, my current system continues to support my objectives.").

6. Implementing High End Traceability Models: A Case Study

In this section, we illustrate an advanced usage of the models presented in Section 5
with a case study adopted from a system for a U.S. Government organization.

The case study is based on the combat systems section of a new ship (refereed to as
ECS hereafte?) The discussion highlights the implementation of traigaat various stages
of systems development. We focus on the development of a passive sonar for the ECS, and
describe how tracediby, using the high-end models described in Section 5, can be
implemented in this project. This implementation is described using scenarios at various stages
of the development life cycle. The objective of our discussion is to illustrate implementability
and tailorability of the models. In this section, the Requirements Management, Design
allocation and rationale management are used for this purpose.

The implementation of the models has been using a popular commercial CASE tool,
viz., System Level Automation Tool for Engineers (SLATELATE's traceality scheme is

represented using Iinl% among abstraction bIocI (which are building blocks used to
represent physical and conceptual objects). User defined subtyperrid¢E@INK object can
be used to represent specific types of links. The link type is identified within paranthesis with

every link. In SLATE, an object that helps define another object is termed a defining object
P A
i3k, Objects that comply other objects are called complying ob£E%; For example, a

traceabity link from a system objective to an organizational need will identify the mission
need as defining object. Also, a tradkglink from a system objective to a requirement will
identify the requirement as a complying object.

2 The discussion has been "sanitized" to protect proprietary or confidential data.
8 Trademark of TD Technologies Inc.
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6.1 Requirements Management

The traceability scheme used for requirements management is adopted from the high-end
requirements management model, and implemented in SLATE as shown in Figure 7.
Specificaly, it shows the linkages among requirements, mission needs, system objectives, and
critical success factors. It aso includes components of the rationale model to represent the
rationale behind requirements.

rﬂ Diagram: Requirements Management Model
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Figure 7: Requirements M anagement M odel

Mission Needs. According to this traceability model, a first step in a system development

problem is defining the MISSION NEEDS that JUSTIFY the SYSTEM OBJECTIVES. The MISSION

NEEDS are provided in a document called the Mission Needs Statement (MNS). This
document, a segment of which is shown in Figure 8, resides as a living document in the

SLATE database. The MNS document contains the “big picture” requirements for a Surface
Combatant ship, the subject of the ECS. It provides general guidelines on the mission,
capabilities, design and architecture constraints, and personnel constraints. It also provides
some operational constraints.

Each mission needs identified in the MNS is represented in SLATE as an abstraction
block. For example, Figure 9 (line 3) shows that a mission need is represented by the
abstraction block no. 7, which is also specified as a defining object. In contrast, line 5
identifies a complying object, viz. the system overview. This, in fact, represernts i@y
OBJECTIVES (corresponding to theRGANIZATIONAL NEEDS in figure 3.

The tracing of relevant parts efSTEM OBJECTIVES with statements in the MNS is
shown in figure 7 using th&sTIFIES link. The project sponsors involved in the definition of
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SYSTEM OBJECTIVES create these linkages to justify each objective based on their relation to
higher-level mission needs, i.e. provide “backward tralityatbo the origins of requirements.
During discussions about the rationale for different functionalities of the system, this
traceabity will be valuable. For example, the systems analyst can use this information to
initially get the “big picture” of what the customer wants the system to do and
why.

J_'L] Document: Mission Need Stateme nt

File  Edii Create Show Options  Yew Window Working Set  Uilities ﬂelpl

wE0Be x| elijofHal EE

1.0 DEFENSE PLANMING GUIDANCE ELEMENT

a.:This Mission Need Statement (MNS) provides reguirements for expeditionary force surtace
combatants for the 21t Century. The multi-mission capabilities are comprised of the combat suite
and the hull, mechanical, and sledrical systems needed to astablish and ensure battlespace
dominance tor expeditionary, interagency, joint and allied torces. These forces must operate
whietever tequired, particularly in fittoral waters, to enable joint maritime expeditionary force
operations and project precise strike power ashore. The mission capabilities must be fully
interoperable with other naval, interagency, joint, and allizd forces:

b. This unclassified MNS in part addresses the Department of Defense "Defense Planning
Guidance, FY 1895-1988." dated 28 September 1993, requiring the United States to:
" Lcontinue to field first rate military forces capable of performing their missions in a wide rangs of
operations " (g 1]

oocapitalize on advanced technology and modernize our weapons and suppart swstems
selectively to ensure we retain superior capabilities.” (p. 14) ji

¢ This MNS should guide 215t Gentury surface combatant design, research, development and
aduisition program decisions, service and joint doctrine, and cooperative efforts with LS. allies.

20 MISSION AND THREAT ANALYSIS

£

- I
Document Paragraph: DEFENSE PLANNING GUIDANCE ELEMENT, in Document: Mission Need Statement S— [ IT.,‘E.

Figure 8: MNS Document

Requirement Identification. The next step in the development is the identification of
REQUIREMENTS. As shown in Figure 7REQUIREMENTS are GENERATED from SYSTEM
OBJECTIVES. The original requirements document for the ECS that includes requirements for
the Passive Sonar Requirements is maintained as a living document in SLATE. A SLATE
utility called Requirements Identifier parses documents to identify statements that meet user
defined criteria for identifying requirements using keywords. In our case study, in compliance
with project standards, sentences that contain the word "shall" are identified as distinct
requirements. Parsed text subsequently beCOREERJIREMENTS OBJECTS. In SLATE
terminology, theS®EQUIREMENTS OBJECTS COMPLY with the SYSTEM OBJECTIVES. Figure 10
shows System Objective (2.0 System Overview) with several complying requirements
(Requirements 3-2 through 3-5).
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Figure 10: Requirements compliance with system obj ectives

Requirements Rationale. Figure 11 depicts information about a particular REQUIREMENT 3-3.
It identifies the broadband figure of merit at a geometric mean frequency in a radio frequency
band against a source level target. Requirement 3-3 has a link to the paragraph in the source
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document from which it was identified (see Line 5 in Figure 11). This source paragraph is
identified as the defining object. In SLATE, RATIONALE can be attached to REQUIREMENTS in
the form of notes. A user defined NOTE type called RATIONALE is used for this purpose. In our
example, REQUIREMENT 3-3 iS SUPPORTED BY a RATIONALE note (see line 7) This RATIONALE
addresses the Figure of Merit (FOM) required to achieve sufficient detection range against
most likely submarine threat. Requirement 3-3 is also linked to a paragraph from the system
objectives that generated it.

rﬂ Folder: Requirements objects (2) folder
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Figure 11: Requirements Rationale

6.2 Design Allocation

The design alocation model for high-end users has been tailored for use in the ECS problem.
The model shown in Figure 12 identifies the linkages between requirements, design, system
components, and functions. Further, it identifies resources used by system components as well
as standards / policies/ methods that constrain the design. In this model, the link between
standardg/ policies / methods and design has been defined as the inverse of the link4 shown
between these objects in the high-end design allocation model shown in Figure 4.

4 As mentioned earlier, for each link in our models an inverse may be defined.
30




rﬂ Diagram: Design Allocation Model
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Figure 12: Design Allocation M odel

During the design phase of ECS, Data Flow Diagrams (DFD) and Entity Relationship
Diagrams (ERD) are used to capture the information flow in the system. SLATE provides an
interface with TeamWork®, a CASE tool used in ECS for this purpose. When abstraction
blocks in SLATE are linked with the DFDs in TeamWork, objects called TeamWork handles
are formed. Figure 13 illustrates abstraction blocks representing the sonar and its components
as well as the TeamWork handles for the corresponding DFDs. Here the TeamWork handles
represent the traceability link between information represented in SLATE and TeamWork. The
SLATE objects are treated by TeamWork as requirements attached to individual processesin a
DFD. SLATE provides a mechanism for synchronizing TeamWork when objects change in
SLATE. A similar mechanism can be used to link requirements represented in SLATE and
functions represented in TeamWork.

Figure 14 shows the defining objects for Requirement 3-3, namely its source document
paragraph, its rationale, and system objectives. The first complying object (line 6) is a cell
(Row 10, column 3) in atable that contains the constraints that must be satisfied by the design.
These constraints were created by the design team based on the analysis of requirements. In
fact, the value in this cell references a string in the requirements statement. Now, any changes
made to the requirement will be automatically reflected in the constraint. 1n our example, the
requirements statement mentions the need for BF microcode which in turn is referenced in the
cell. If the requirement 3-3 is changed from BF microcode to SC microcode, it will
automatically change the constraint on the functional design. Requirements in this project often

5 Trademark of CADRE Technologies
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contain such parameters that may get modified during development. Maintaining information
in one location and referencing it in REQUIREMENTS (as well as other relevant objects),
significantly increases the integrity of the information, besides reducing the possibilities of
overlooking important changes.

o [r] Abstraction Hierarchy: Functional View of Sonar System
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Figure 13: Design Linked to System Components

The next two objects shown in Figure 14 are two functions represented as abstraction blocks,
1.2.1.1 Signal Conditioner and 1.2.1.1.1 Digital Beamformer. The Requirement 3-3 has been
allocated to these blocks that depict the functional view of the passive sonar system. These
could just as easily describe any other view for instance, the physical system components to
which the requirements are allocated..

In SLATE, CRITICAL SUCCESS FACTORS (CSF) such as resources can be modeled
using budgets. In ECS, REQUIREMENTS are be managed by CSFs (as shown in Figure 7) and
resources are used by system components. These are represented by attaching budgets to
relevant objects such as REQUIREMENTS and SYSTEM COMPONENTS. Figure 15 shows that
Requirement 3-9 is linked to a component (abstraction block 1.2.1 Hydrophone) to which a
budget for hull size is attached. Budgets are used for planning as well as for performing “what
if" analyses. SLATE supports hierarchical budgetmil@ to nested spreadsheets). For
example, the budget for the hull size attached to the Hydrophone can be linked hierarchically
to the budgets for its children and so on. Any allocations done at the lowest level (leaf nodes)
can be “rolled up” the hierarchy. Another potential use for budgets in complex projects such as
ECS is the ability to monitor the cost and schedule of a project.
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Figure 16: Rationale Capture

6.3 Rationale Management

Discussions about requirements may raise issues or conflicts. Alternative ways of
addressing these issues are explored and decisions the stakeholders to resolve those issues are
made. ISSUES, ALTERNATIVES, ARGUMENTS and RATIONALE (which are used to represent
rationale - as shown in Figure 7) can be represented in SLATE using different types of notes.

Figure 16 shows an example. The ISSUE relates to the REQUIREMENT of tracking 100
targets. Two ALTERNATIVES 1 and 2 are proposed. Alternative 1 suggests that the system
should “keep the capabilities of simultaneously trackif targets.” Alternative 2 advocates
that the design “reduce the capabilities of simultaneous tracking to 50 targets.” Argument 1
supports Alternative 1 by stating that “we need to be capable of drug interdiction operations
...." Argument 2 supports Alternative 2 by stating “since the cold war ended, we do not need
the capability of tracking.00 targets simultaneously.” Based on th&sBUMENTS a DECISION
Is made to keep the capability of trackit@) targets simultaneously.

Each NOTE type can be assigned attributes. In our case, attributes to identify the
“originator” of the ISSUE and ARGUMENTS are used. Capturing this type of information is
useful when a project is completed and the customer questions why something was
implemented a particular way. Further, this information is useful is while performing system
maintenance. Capturing the original issues and decisions can prevent rework on the same
iIssues that have been resolved long ago. The mechanism described here can be used for
maintaining rationale in any phase of the lifecycle.

In this section, we have illustrated how the high-end models proposed in Section 5 can be
tailored and implemented in large-scale system design situations. This also provides a concrete
example illustrating the instantiation of the model components. By using a commercial CASE
tool, we further highlight the implementability of the reference models. In several such case
studies, the models proposed in Section 5 have been shown to be both adaptable and
implementable within currently available commercial environments..
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7. Supporting the Traceability Links

Summarizing the differences between the low-end and the high-end uses of traceability,
we observe that the latter are characterized mostly by two extensions:

» they employ a much richer type system for the product-related object and link categories,
thus enabling easier retrieval and more precise (human or computerized) reasoning about
traces

» they have a much stronger emphasis on the process-related categories; indeed, in the long-
term case study conducted as part of this work (Ramesh et al. 1997), the step from low-
end to high-end traceability was followed by a strong increase in the SEI capability
maturity rating.

The large number of different link types precludes an individual treatment of each one.

However, as shown in section 7.1, we can group the link types found in the reference models

in a few basic categories. We then go again back to the empirical studies in order to identify

the necessary tool support for each category, and point out proposals in the commercial or
research literature that may address these issues. Conversely, this discussion then also provides

a classification of the solution proposals advanced for traceability tool services.

7.1 Basic Classification of Traceability Links

Formally speaking, a traceability system can be defined as a semantic network in which
nodes represent objects (also stakeholders and sources which we do not consider at the
moment), among which traceability is established through links of different types and
strengths. This dependency-directed approach of maintaining consistency of designs dates back
at least to the work of Stallman and Sussman (1977) and is by now well established.

The simplest traceability tools are purely relational (i.e. in the form of relational
databases or spreadsheets) and do not systematically distinguish different node and link types.
Others, such as RDD-100, use a basic entity-relationship structure to distinguish nodes and
links, and allow the user to introduce distinctions between different types of nodes and links.
However, this begs the question which node and link types should be defined.

In the literature on software information systems, a large number of link types have
been proposed, many of which are also important for traceability. The basic organization and
abstraction mechanisms, independent of traceability, are detailed in (Constantopoulos et al.
1995). In the NATURE project, a comprehensive literature survey revealed eighteen different
types of dependencies in the traceability context (Pohl 1996); these were grouped into five
clusters named condition, contents, documentation, evolutionary, and the already-mentioned
abstractions.

SATISFIES RATIONALE

»
»

DEPENDENC EVOLVES-TO

»
»

Figure 17: product and processrelated categories of traceability links

Asastarting point for classifying our empirical observations, we adopt a smple system
of just four types of traceability links, shown in figure 17. A first group of traceability links and
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mechanisms could be called product-related because they describe properties and relationships
of design objects independent of how they were created. In figure 17.a, the high-level object
(e.g. a requirement, a standard, a policy, or complex design object) defines some kind of
constraint or goal which should be saTISFIED by one or more lower-level objects. Satisfaction
Is usualy just a claim that must be substantiated by compliance verification procedures (cf.
section 5). The shared constraint or goal to be satisfied also implies a DEPENDENCY between
lower-level objects. Generalization and aggregation abstractions (i.e. configuration of complex
objects) are specia kinds of dependencies. Thus, we have two basic kinds of product-related
traceability links, satisfaction links and dependency links; low-end traceability users tend to be
characterized by relying mostly on these two link types.

The second group of traceability links is called process-related because it can be
captured only by looking at the history of actions taken in the process itself, and cannot be
recovered from the product relationships alone. Figure 17.b looks very similar to figure 17.a,
with the important difference that the evolution link types has a temporal direction : the left
lower-level design object EVOLVES-TO the right one through some kind of action whose
RATIONALE is captured in the higher-level object. Thus, the two kinds of process-related links
are evolution and rationale links. Advanced traceability users typically have a higher share of
link types belonging to this category.

If we enhance the traceability meta model of Figure 1 with these four traceability link
types, we get an ‘onion-shell meta model of tradiyabas shown in Figure 18. Reflecting
back to our empirical studies, the models used by low-end tikigeasers tend to focus on
the inner kernel of the model, more advanced users tend to venture further out to process-
related issue and more explicit source and stakeholder management.

As evidence for these observations, Table 5 summarizes the link types of the high-end
models according to the way how and where they are used, and the link category they belong
to. The abbreviations in the right column refer to the submodels in section 5 where the link
types occur : RM for Requirements Management, R for Rationale, DA for Design/Allocation,
and CV for Compliance Verification.

requirement/
policy/ ...
Compliance
satisfies Verification

Procedure

requirement/
desigry ... depends-on

Product Objects
%
evolvesto )
Process Objects
Stakehol der Source

Figure 18: Traceability M eta Model Extended with Principal Link Types
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LINK TYPE | PURPOSE USES EXAMPLES
MODEL : LINK
Satisfaction To ensure that the to ensure consistency between
Links requirements are outputs of different phases of
satisfied by the thelifecycle DA : Requirements-drive-design
system.
track the designs created to
Re ationships satisfy requirements DA: requirements-all ocated-system
between one or more Component
design, track system/subsystem/
implementation components to which
objects and reguirements are allocated DA: Component-satisfies-requirement
requirement objects DA: system-performs-function &
verified by CVPs identify the system/subsystem/ functions-address-requirement
components that satisfy
requirements and that every
component satisfies some CV: CVP- developed for - requirement
reguirement
track CVPs that are devel oped
for each requirement CV: CVP - verify - (system - satisfies -
track the results of CVPsto requirements)
ensure that the requirements
are
indeed satisfied
Evolution Document theinput- | Identify where do the various RM: system objectives-generate-
Links output relationships | objects come from. I.e, reguirements;
of actions leading identify the origins of various | RM: Organizational needs - justify-
from existing objectsto facilitate: system objectives
object(s) to new or a) better understanding of RM: scenarios-describe-{ organizational
modified object(s) requirements (and other needs |System objectives | Requirements}
objects) RM: Change proposal s-modify-
b) establishment of requirements
accountability for creation and | RM: system objectives-generate-change
maodifications of objects proposals
¢) tracking the modification, RM: requirements-drive-design
refinement history of various RM: organizational needs-identify-CSF
objects. RM: requirements-basedon-standards
CV: CVP-generate-change proposals
CV: compliance verification
procedures-based on-standards;
R: decisions-affect-Requirements
DA: design-based-on-standards/policies/
methods
DA: change proposals-modify-design
DA: design-defines/creates-component
RM: requirements -derive-requirements
RM: requirements-elaborate-
reguirements
Rationale represent the identify the reasons behind the | R: requirements-basedon-rationale;
Links rationale behind creation of various object to R: Requirements-generate-issues/
objects or clearly identify conflicts;
document the a) justifications for the Alternatives-address-issues/conflicts;
reasons for creation/ arguments-support/oppose-
evolutionary steps modification of objects, aternatives,

b) important decisionsand
assumptions made
¢) identify the context in

arguments-depend on-assumptions,

R: { Requirements | Rationale | Decisions
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LINK TYPE | PURPOSE USES EXAMPLES
MODEL : LINK
which objects are created [
d) provide transparency into Arguments}- depend on-assumptions
the decision process including
discarded alternatives, in order | R: decisions-select/eval uate-alternatives
to decisions-resol ve-issues/conflicts
- provide clear understanding | R: decision-influenced by-CSF
of the current solution,
facilitate RM: Requirements-managed by- CSF
maintenance and reuse RM: system components - use -
- manage the system resources
development with in line with
organizational needs/
objectives
Dependency help manage track the composition and RM: {requirement | constraint }-1SA-
Link dependencies among | hierarchies of objects reguirement

objects (typically at
the same stage of
development), often
imposed by a
constraint (resource,
competence,
compatibility)

manage the repercussions of
changesin one on other
objects that depend on it

RM: requirement-part of - requirement
RM: { strategic need | operational need}-
| SA- organizational need

RM: Resource-I SA-CSF

CV: {Test | Ingpection | Simulation |
Prototype} -1SA-CVP

RM: requirement-part of-requirement
DA: component- part of - component

DA: component-depends on-external
system

DA: component-depends on-component
RM: requirement-depends on-
reguirement

R: { Requirements | Rationale Decisions

Arguments} - depend on-assumptions

Table5: Traceability Link Types Used in Reference M odels

7.2 Issues in implementing traceability link types

Besides the classification of the different link types, a second goal of our study has
been to identify issues in implementing their capture and use in system engineering practice.
For each of the four link types discussed in the previous subsection, we first present the issues
raised by our empirical study participants, and then discuss solution strategies proposed in the
literature. The overall result is that local solutions exist for al the identified issues; however,
the question how to configure such individual solutions to usable and more powerful trace
tools than those today on the market remains open. In section 8, some more general design
goals for such systems will be discussed, and an example of an interesting solution will be
given where several of the issues addressed in this section have been combined in a creative

manner.

7.2.1 SATISFIES Links
The focus groups raised three main issues concerning support for the satisfaction links:

Derived Links
An important use of requirements traceability is to ensure that the system meets the
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current set of user requirements. Representing this information is considered to be critical from
a project management perspective. It is usually accomplished by creating alink between the set
of requirements and a set of system components that saTISFY them. Such links may also be
indirectly derived. An important concern of the study participants was the lack of support in
many CASE tools for the automated identification of derived links ("I don't have the time to
link every requirement with everything produced at different stages. These links must be
automatically derived whenever possible"). For example, requirements may be linked to
designs that are intended to satisfy them. Designs, in turn, may be linked to relevant system
components. Then, a derived link is created from requirements to system components.

Mechanisms for automated inferencing incorporated in deductive or active database
environments such as ConceptBase (Jarke et al, 1995) can be used to infer "derived links" in a
traceability environment. As a critical first step, the semantics of the different linkages among
objects must be clearly represented.

Multiple Sources of Support

When a set of requirements may be satisfied by a set of system components, the status of
a requirement (whether satisfied or not) can be ascertained based on whether the relevant set
of system components meet their goals. Most tools do not provide away to represent the fact
that alternate ways may exist for satisfying a requirement ("we can’t state that the requirement
is met by either this solution or another one or a combination of system components easily in
these tools. This will give me the flexibility to accurately convey the multiple solution paths |
need to follow anyway").

A goal tree is a good representation for answering questions about how goals were
achieved and why they were attempted (Winston, 1984). Well defined inference procedures for
finding “optimal” solutions from a goal tree can be used in finding the best possible way to
satisfy a requirement or resolve an issue (say, with least cost) if they are represented as a goal
tree. In the context of system engineering, the goals could correspond to requirements that
need to be satisfied, issues that need to resolved or complex decisions that need to be made.
Each of these “objects” in our model can be represented by a goal tree. The nodes of a goal
tree are of two types: OR nodes represent choices i.e., they are satisfied when any of the
immediate subgoals are satisfied; AND nodes represent simultaneous subgoals that must have
compatible solutions; i.e., they are satisfied only when all subgoals are satisfied (Charniak and
McDermott, 1985).

Degrees of satisfaction

During systems development, project managers would like to ascertain how close they
are to satisfying critical requirements. In complex systems, many requirements (especially, non-
functional requirements) can not be said to have been “satisfied” absolutely. Often, a designer
IS interested in maximizing the degree to which a requirement is satisfied. For instance, a
performance requirement to provide response time ofiilieconds in a missile system may
be thought to be reasonably well satisfied if the system meets the requirement within a few
milliseconds of this target. Her&05 milisecond and 95 milisecond response times may be
considered to satisfy the requirement with different degrees. Most current tools do not provide
natural ways to represent such informatiofro("'compliance, | want to track how well | am
doing on a requirement based on progress in implementation. It is hard to get this
information into and out of my tools. | need thisinformation for trade-offs”).

Mylopolous et al (1992) suggest that goal satisficing (rather than satisfying) may be a
more appropriate way of characterizing this situation. The concept of satisficing, as defined by
Simon (1981), refers to methods that look for satisfactory rather than optimal solutions. Using

39



this framework, a system component may be thought of as contributing positively or negatively
towards satisficing a requirement. Hauser and Clausing (1992), in the House of Quality, use
four categories to relate how each development characteristic affects the customer quality
requirement: strong positive, medium positive, medium negative, and strong negative. Here,
we have a measure of not only the directionality (positive or negative) of a relationship, but
also its strength (high, medium etc.). This scheme can be incorporated in our traceability model
as follows: a system component may contribute towards satisficing a requirement along these
four (or a finer grained) categories. For example, a user interface component may have a
strong negative impact on a performance requirement..

All three issues — derived links, multiple support, and degrees of satisfaction — can also occur
in combined form. When a requirement is satisfied by a set of component, mechanisms for
combining the “evidence” for its satisfaction must be developed. For example, if all the
“evidence” is in the same direction (positive), the degree to which the requirement is satisfied
may be treated as the minimum of the support it receives. Situations in which a requirement
receives both positive and negative support at varying degrees pose a significant problem.
Requirements that rely on user perceptions (such as usability of a system) require qualitative
measures of ascertaining compliance as well as qualitative mechanisms for combining
evidence. Combining beliefs in evidence and propagating such beliefs in such an inference
network may be supported with mechanisms such as Dempster-Shafer, Bayesialifit{arobab
Belief Networks and Fuzzy Logic (Hau and Kashyap, 1990), (Hussain et al, 1994). Whereas
Fuzzy logic provides good mechanisms for representing and combining imprecise, qualitative
evidence, the other, more quantitative methods provide stronger methods for combining
evidence from multiple sources.

7.2.2 DEPENDENCY Links

The dependencies created between objects when trying to satisfy some goals are at least
minimally supported by almost all tracdip models. Issues raised by the study participants
therefore address the lack of precision in characterizing the types and strength of such
dependencies, resulting in much less automated support than would be possible.

Types of dependency and inferencing services

Most traceatlity models explicitly represent dependencies among objects. For example,
dependencies among system components, requirements, assumptions and decisions are part of
a high-end tracedity scheme. The type of dependencies that exist among objects vary widely.
For example, a software requirement may depend on a requirement for a specific hardware,
implying that in order to meet one the other has to be met. Such a dependency is very different
from the relationship between two outputs that must be produced in a pre-determined order.
For example, an organization may have a policy that the test plans for a requirement must be
developed before design solutions that satisfy the requirement are considered. Our empirical
studies identified two problems related to the management of dependency links. First, most
tracealbity frameworks simply identify that there exists a dependency between a set of related
objects without the ability to specify the nature of the depend@hdy create matrices that
show that there is the hardware requirements on one column that affect the software
requirements on the other. This obvioudy is not good enough. It is not clear whether these
two are related as they consume the same resource like power or because one has to be
completed before the other.. One needs to intuitively figure out what the connection is.").
Second, as the nature of the dependency is not well specified, the ability to pupyidet $she
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use of traceability information is limited. ("We got this dependency as the two components will
have to share the same memory. As | keep developing one, the impact on the other must be
easy to figure out .. how much the total memory is already accounted for. But my trace matrix
stops with just listing the two involved components. There is no help for assessing how
changing one affects another"). Thus, our study suggests that the ability to define different
types of dependencies within a traceability framework and developing support mechanisms to
manage such dependencies will be very valuable.

In addition to research in theoretical computer science and in operations research.
several schemes for identifying different types of trace-oriented dependencies have been
proposed in the literature. For example, Yu and Mylopoulos (1994) classify dependencies
among stakeholders into three categories. goal dependency, task dependency and resource
dependency. This scheme can be adapted and extended to manage dependencies as follows:

» Dependency links among requirements may often be goal dependencies. For instance, a
software requirement may depend on a requirement for a specific hardware. When a goal
dependency between two such requirements exists, inference procedures that monitor
whether (or how well) the dependent requirement is satisfied are necessary:

» The dependency between objects created by their common reliance on atask creates a task
dependency. Design objects (say, the ERD and DFD) often have task dependencies. Here,
the corresponding artifacts must be produced following a specified method (e.g.,
structured methodology). If the object (say, ERD) is produced using any other procedure,
the correspondence between the two components may not be as expected. When a task
dependency exists between two objects, procedures for monitoring the progress of the task
using the specified procedure are essential. For instance, whenever a change in one of the
artifactsis initiated, all associated task dependencies must be checked for compatibility.

* A resource dependency may involve resources that are physical (e.g., money, electricity)
or informational (e.g., data). A navigation control system may resource-depend on radar
input. When such a dependency exists, the quality, quantity, and frequency of such
dependence and the interfaces for the transfer of resources must be identified. When a
resource dependency exists, procedures for monitoring that the dependee provides the
desired quality and quantity of resources at specified frequency are necessary. It may be
necessary to identify who is responsible for the resource and the conditions on which the
resource delivery depends.

» Additionally, a temporal dependency exists when actions relating to objects are done in a
specified temporal order. The temporal order could be specified by operators such as
before, after, during, concurrently etc. Often system development activities involve strict
temporal ordering. For instance, a temporal dependency link could be set up to enforce the
policy that test plans must be created before designs for addressing a requirement are
completed. Violations of temporal dependency constraints can be monitored using a
temporal reasoning system.

Strength of dependency
Another problem associated with maintaining dependency information is that al
dependencies are treated as equally critical. Our studies identified the inability to precisely
identify the strength of a dependency link to be an important issue for the users of this
traceability information. ("we got two requirements in this matrix, all I know is that changing
one will affect the other. In some cases, | really need to take it serious. The impact can be
devastating. But often timesit is not that serious. But | got to ask around to see which ones |
should really worry about. It's not in the matt)x
Hauser and Clausing (1988) propose a scheme for assigning qualitative or quantitative
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weights to links. Yu and Mylopolous (1994) adapt this scheme in their non-functiona
requirements framework. Based on these, the degree to which a dependency is important to
those involved in a dependency linkage is termed the strength of the dependency. This is a
measure of how much one object affects the other. It could be measured qualitatively (e.g.,
high, medium, low etc.) or quantitatively (e.g., 1-10 on a 10 point scale). The strength of the
dependency will also very much influence the type of inference procedures and monitoring
necessary to ensure the enforcement of various types of dependencies.

A network of dependencies such as those discussed in this section can be defined at different
levels of formality (Stallman and Sussman 1977). At the most basic level, a link simply
identifies the existence of a dependency between two objects. As the only information
contained in such a representation is that one object has something to do with the other, the
potential for automated reasoning is limited, even when the type of dependency is identified.
For example, if there exists a resource dependency between say, two components in a satellite,
we can infer that whenever the weight of one changes, it will affect the other component. A
more detailed representation will also capture the direction in which the dependency affects an
object. In this example, information on whether the effect of the change is positive or negative
can be captured. Finally, a very detailed model will represent the exact nature of the influence
that one component has on the other, possibly expressed in a detailed, domain-specific
mathematical model. It may, then, be possible to compute the effect of change in the weight of
one component on the other. Obviously, the more well defined the dependencies are the more
sophisticated the inferencing capabilities.

7.2.3 EVOLVES-TO Links

Traceability models represent the process of modification, refinement and evolution of
different objects through a variety of links. The objective is to capture the history of the
development in a structured manner so that it will facilitate understanding and management of
the objects. For example, in our high-end models, requirements evolution is modeled using
links such as MODIFY, DEFINE, ELABORATE, DERIVE etc. These links can be considered to be
specializations of some generic EVOLVESTO link. Our empirical studies highlighted two
dilemmas in the management of links representing evolution. First, many traceability
frameworks simply represent the fact that an object has evolved, without any elaboration. For
example, derived requirements may be simply identified as a new requirement ("don’'t know
where the derived requirements came from"). On the other hand, very fine-grained
representation of the evolutionary path may not be desired in cases where the process is
implicitly well understood. ("We manage derived requirements in a separate document. As
long as we create a simple trace matrix showing the customer requirements and the derived
requirements we are fine.") Another area of concern is the weak support for versioning and
configuration management in traceability tools (" |1 have good sense of how my source code is
managed within a configuration system with nice features for notification of changes, but not
with my traceability tool").

When afine grained representation of the evolutionary path of an object is not desired, a
higher level view can be captured by using just the generic link. Much of the pre-requirements
traceability information can be thought of as representing the evolution of needs and goals into
requirements and therefore, can be represented using these links. The evolutionary links can be
used for chronologica replay of the evolution of an artifact. For subsequent phases of
development, transformational approaches to software engineering, constraint-based
techniques as well as research in version and configuration management have created elaborate
refinements (and associated reasoning schemes) of the simple EvVOLUTION link. We do not
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pursue these specializations further in this paper, but just mention that they can be easily
embedded in the framework presented here.

Software configuration management (Conradi and Westfechtel 1998) tools provide
facilities for representing and enacting policies regarding the evolution of coarse-grained
artifacts, and provide mechanisms for notification of the user about changes. These
functionalities are likely to be very useful for managing traceability information. However,
traceability tools often manage finer-grained objects with more representational diversity, so
the combination of configuration management and traceability remains a partially open issue.

7.24 RATIONALE Links

Issues concerning the rationale links partially repeat the demand for multi-granular
representations aready discussed for other link types; however, in addition, the capture of the
stakeholder dimension of traceability is considered a key issue.

Rationale at different levels of detail

Study participants wish to maintain rationale for different types of artifacts and decisions
at different levels of detail. The criticality or the importance of a requirement, for instance, will
be a principal factor in deciding the granularity what rationale needs to be captured. In
contrast, many traceability schemes we observed in practice prescribe a single framework for
representing rationale which is either too fine-grained to justify the overhead in all cases or too
coarse to be of value in critical instances. ("We are supposed to be documenting critical
decisions. We are just now going through a review of a very, very critical decision.. worth
several hundred million dollars. We can not for the life of the project figure out how we came
to the conclusion we came to in the first place. It looks doubly bad with the sponsors that we
come up with a different answer now. It's all in the details and assumptions we made. But this
Is where good traceability could have paid off big time .. But we can’t do it this much detail
with every decision. We just can not afford the time for so much detailed documentation for
every case... How do we do it right - It is a major issué'We got all these details. As a
manager, | can’t get a quick glimpse of the big picture from there reports'gasily

Most tools for the management of rationale (such as gIBIS, DRL, SYBYL) as well as
traceability tools such as RDD-100 support a uniform approach to the representation of
rationale. This results in either a very simple scheme that is not detailed enough to document
critical aspects of systems development or a comprehensive scheme too complex to be
implemented in every stage of systems development. Also, a detailed study (Ramesh et dl,
1997) reveals that when the amount of rationale captured is left to the discretion of the project
participants, the quality and content of this information fluctuates depending e.g. on time
pressure and personal preferences. The rationale management approach taken in the KBSA-
ADM tool (discussed in Section 8.4) illustrates a compromise. This tool supports the capture
of rationale at multiple levels of detail and also provide a way to map the rationale captured
with a comprehensive rationale into a simple view to provide a "big picturé'.

Link to sources and stakeholders

Rationale links help represent the context in which various objects are developed. Our
empirical study highlighted two common concerns: The need to link to the various sources of
this information to not only reduce the overhead in capturing rationale, but also to ensure
minimal loss of detail ("As long as | know where to look if | want to understand why we
decided the way we did, it is sufficient. | not only am too busy to reenter into the trace tool,
also | don’t want to interrupt the critical activities to db)it

In large projects, the overhead involved in the detailed representation of rationale can be
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considerable. Facilities to link any object (say, a requirement or a decision) to its sources such
as documents, meeting minutes, e-mail exchanges etc. will help minimize the overhead. Also,
this facilitates non-intrusive capture. The use of multiple media to capture such informal
knowledge has been long recognized in the literature (Goldman and Segall, 1992, Mead, 1975,
Rochelle et al, 1990), and confirmed in studies of design situations e.g., (Baudin et al, 1990,
Lakin et a, 1989, Sults 1988). The use of thick descriptions for representing traceability is
discussed in detail in Section 8.3.

8. Implications for Traceability Mechanisms

Traceability mechanisms support the capture and usage of trace data, i.e., to document,
parse, organize, edit, interlink, change and manage requirements and the traceahlity links
between them. Besides generic tools such as word processors, spreadsheets, hypertext editors,
and relational databases, a number of specialized RT tools are being offered, either stand-alone
(e.g. RDD-100 (Alford 1991), DOORS (QSS 1996), SLATE (TD Technologies 1996)) or
embedded in an integrated CASE environment (e.g. Teamwork/TqT (CADRE 1992)).

The majority of present traceability tools offer tabular representations of dependency
structuresin a relational database formalism. Thus, they are well suited to support the low-end
user who requires little differentiation between link types and only very simple allocation and
dependency analysis. A few tools allow the user to specialize link types but it is hard to attach
semantics to them. Others offer a fixed high-end set of link types with hardcoded semantics but
tend to force the user to actualy supply this detailed information in all cases, even if a smpler
model would suffice. Moreover, most tools just offer mechanisms for persistent storage and
display of traceability information, but they do not support the process of capturing and
reusing traces by guidance or enforcement in a systematic manner; those that do tend to have
very rigid process models.

Not surprisingly, our empirical studies showed that users are not very happy with the
current mechanisms supporting traceability. Some high-end development teams have built
elaborate in-house extensions and work-arounds to existing tools which, however, also tend to
become inflexible and difficult to maintain. Even high-end users do not always use the
sophisticated models presented in section 5. Instead, as indicated when discussing the various
link types, they carefully consider the trade-off between the effort needed to capture complex
traceability information and the subsequent value of having this information in each situation in
the development process. These observations indicate that a new generation of traceability
mechanisms will be needed which we shall try to characterize in this section.

The key observation is the situated nature of traceability capture and use. The
implications of this observation include:

» the need for abstraction mechanisms that alow the variation of granularity (aggregation
abstraction) and sophistication (generalization abstraction) in traceability tasks

» the need for inference services supporting the semantics of the different traceability link
types

» the need for maintaining a baseline of thick descriptions of traces (e.g., using multimedia),
in case the initially chosen level of trace analysis needs to be re-assessed later on

» the need for mechanisms that alow project managers and developers to define and enact a
model-driven trace process accompanying the development process.

We discuss these implications in turn. In the final subsection, the design of the KBSA ADM
tool by Andersen Consulting illustrates how some of these principles have been applied in
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practice.

8.1 Abstraction Mechanisms in Trace Representation

The relational representation used in most existing tools does not lend itself naturally to
the simultaneous representation of traces at multiple levels of granularity (e.g., milestone level,
document level, fine-grained level). The act of representation entails making judgments about
the level of granularity at which the information should be represented. Overly large grained
representations may result in the loss of useful detail, while overly fine-grained representations
may create trivial knowledge where the benefits do not warrant the cost of creating such
knowledge. Aggregation hierarchies in semantic data models offer an adequate formal means
to deal with the granularity problem. However, existing literature does not offer demonstrably
effective decision rules for making judgments about granularity; therefore, tools should
support multi-granular strategies such as presented in section 8.4.

A similar problem of over-commitment is faced when considering the generalization
abstraction. Such hierarchies allow a smooth transition from low-end to high-end traceahility
models, at least in the sense that a mix of traces captured with varying sophistication can be
interpreted uniformly in terms of the low-end models used.

Finally, the instantiation abstraction allows the definition and change of meta models,
and thus the adaptability of traceability environments to new needs via re-organization and
possibly the integrated interpretation of traces captured in heterogeneous environments.

In summary, we advocate a move towards more semantics in traceability data models.
This move will be facilitated by recent trends in object-relational database technology that offer
many of the required extensibility features on top of the proven framework of the relational
data model.

8.2 Inference Services

In large projects, the traceability knowledge base can become quite large. As the
information needs of various participants can vary widely, navigating the entire knowledge
base to retrieve relevant information can be very difficult even with sophisticated browsing
capabilities. Ability to access relevant information using ad-hoc queries can be very helpful.

Inferencing also helps maintain integrity of a knowledge base of interdependent
components that get incrementally defined and modified. Such inferencing will be aided by
mechanisms for aggregation, classification and generalization of traceability information.

The ability to make deductive inferences from traceability knowledge base is very
helpful in reducing the overhead and increasing the usefulness of the traceability knowledge
base. Further, mechanisms to maintain and manage dependencies among various components
of requirements traceability can be supported with deductive database capabilities for query
processing, deductive rules and integrity enforcement.

8.3 Grounding Traceability Models in Thick Descriptions

Requirements traceability can be represented in a variety of ways, from mathematically
formal representations (e.g., transformations that can be used to derive one problem state
from another in formal software development) to very informal representations (e.g., design
notebooks that record rationale in natural language) (Lee 1993).

A primary benefit of formal representations is that they facilitate automated reasoning.
However, formal representation of requirements traceability is often difficult as most design
situations lack well-defined forma models. Converting informal traceability information into
formal models is often extremely labor-intensive and subject to personal bias and choices.

Since design is primarily a collaborative process (Fischer et al. 1992), requirements
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traceability knowledge often consists of deliberations among individuals engaged in the
process. As Anderson et a (1991) point out, attempts to represent informa knowledge
through formal tools and notations can result in thin descriptions (Ryle 1949), with the
consequence that much of the meaning embedded in such information is lost.

Informal representations of requirements traceability can address many of these
problems. Such “thick descriptions” (Geertz, 1973) enable the user of requirementdlitsaceab
to grasp the subtleties, tacit and mutual knowledge, and glean descriptions of work practices
that are otherwise not made explicit (Jordon, 1992). Finally, unlike formal representations,
which can only be used by individuals who are familiar with the rigors of such formalisms,
informal representations can be used by a wide set of users. However, informal representations
provide another set of problems: the classification, indexing, retrieval and use of such
information in large projects can be impractical. Moreover, though understandable by humans,
such information representations are not amenable to automated reasoning. Thus, while
informal representations hold much promise with respect to their information content and ease
of capture, the difficulty of accessing and reasoning with such information can undermine their
utility.

In summary, then, formal and informal representations of requirements iligceab
complement each other in their respective strengths and weaknesses. Informal representations
are easy to capture, whereas formal representations can be manipulated by well-defined
inference procedures. Thus, as observed in recent studies on design rationale (Shum and
Hammond 1993), effective schemes for the capture and use of requirementslityasiealid
seek to combine the advantages of both forms of representations. A tight integration of formal
and informal aspects of the requirements tratigamformation will not only facilitate the
capture of various types of information in a format that is most appropriate, but also help
use/reuse the captured information in an efficient manner.

8.4 Model-Driven Trace Capture and Usage

Assuming the above-mentioned formal and representational problems have been
solved, the project manager or developer can now define the kind of information to be
recorded in a trace, i.e., specify the products of traitgallHowever, the taceallity
environment still lacks two other important features:

* It provides no means to define ttrace steps by which the defined information should be
recorded. For example, the project manager can define that decisions should be recorded
together with their arguments. But she cannot define in which situation and by which
specific process steps this should happen. In other words, we cannot define the process
guidelines according to which the trace information is captured or used during the
development process.

* It provides no tool support for the stakeholders in actually capturing the information
according to a defined trace process. Depending on the importance attached to certain
trace information in a given situation, the environment could either simply wait for the
information to be entered optionally (the default option in most current tools), it could
remind the stakeholder to record the information, it could force the stakeholder to do so by
blocking the further development process, or it could even record (some of) the
information automatically. The development of such an approach requires that the
traceabity process cannot just be defined but also effectively embedded in the
development process and its supporting CASE environment.

Domges and Pohl (1998) describe a prototypical environment in which selective, model-driven
trace capture is possible. Applied to the modeling approach taken in this paper, the approach
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works roughly as follows. Each basic element in the traceability meta model is seen as a
product, and associated with process steps that create, delete, or change this product.

In addition to these normal process steps, there are three additional kinds of trace steps.
Supplementary product steps define how to capture and maintain supplementary information
such as design rationale, process execution steps record activities in the development
environment, and dependency steps record dependencies between the artifacts created by
process steps, supplementary product steps, and process execution steps. While process
execution steps and dependency steps can often be performed largely automatically, by simply
observing the process in the development environment, the other two kinds of steps usualy
require human intervention. Based on these conventions, the project manager is thus
empowered to define
» thetrace information which should be captured
» thethree kinds of trace steps defining how this information should be recorded
» the interleaving of the trace steps with the norma process steps, i.e.,, when the trace

information is to be captured.

In a sufficiently flexible process-centered software engineering environment, the thus extended
process can now be enacted, thus guaranteeing the desired traceability sub-process. However,
it must be noted that there are very few process-centered software environments on the market
at the moment, so the practical feasbility of this approach can only be assessed from a few
case studies conducted with the available prototypes.

8.5 An Example: Multi-Granular Rationale Capture in KBSA ADM

In this subsection, we use the Rationale Capture part of Andersen Consulting’s KBSA
ADM tool to illustrate the practical application of the principles discussed in this section : the
role of multi-granular abstraction, of inference services, formal and informal representations of
traceabity, and to some degree of model-driveade capture and usage. The combination of
these principles is mainly aimed at achieving systematic customizing of iliacesd®ds
spanning the distance between the high-end and low-end reference models.

Abstraction in Rationale M odels. The design goal of KBSA-ADM was to offer a coherent
series of rationale models based on results of the REMAP project (Ramesh and Dhar 1992) for
maintaining rationale at different levels of detail.
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Figure 19: Smple Rationale M odel

The model sketched in Figure 19 is used for capturing rationale at a simple level of
detail. It links anoBJECT with its RATIONALE. The model in Figure 19 also provides for the
explicit representation 0ASSUMPTIONS and DEPENDENCIES among them. Thus, using this
model, the assumptions providing justifications to the creation of objects can be explicitly
identified and reasoned with. As changes in such assumptions are a primary factor in the
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evolution of complex systems, this representation will help in the development of support
mechanisms to manage such evolution.

In situations where a more detailed representation of rationale is necessary, an
intermediate rationale model may be used. In this model, the ISSUES that are GENERATED by the
OBJECT as well as DECISIONS that RESOLVE them are explicitly represented. Thus, this
intermediate model provides some elementary details of the decision process involved in
creating various objects. As before, the 1ISSUE and DECISION objects can be complex with
attributes of their own. Therefore, using this model, a richer context in which objects are
created can be captured.
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Figure 20: Detailed Rationale M odel

An even finer grained model for representing the detailed deliberations leading the
creation of objects may be more appropriate in critical situations. Empirical studies in the
REMAP project (Ramesh and Dhar 1992) suggest that the explicit identification of
ALTERNATIVES considered, the ARGUMENTS for and against these ALTERNATIVES, and
ASSUMPTIONS behind such ARGUMENTS themselves are part of such a deliberation. A detailed
rationale model incorporating al of these primitives is shown in Figure 20. It incorporates,
among other concepts, the Issue Based Information Systems (1BI1S) framework (Conklin and
Begeman, 1988). Such models have been used successfully in large scale system development
efforts to represent complex decision situations leading to the creation of artifacts.

The components of this detailed model also closely resemble the Rationale submodel
presented in Figure 4. All the objects used in this model are represented in the Rationale
submodel and the major links across these objects are also identified in that model.

The hierarchy of simple, intermediate, and detailed rationale models have been re-
implemented in Anderson Consulting’s Knowledge Based Software Assistant environment
ADM. This implementation has the added advantage that different stakeholders may be
interested in different depth of rationale; for example, designers might use the detailed
rationale models whereas their managers will use the simple rationale view of the same model
focusing just on the decisions finally made. Two KBSA-ADM screenshots, using an example
from (Ramesh and Dhar 1992), are shown in Figures 21 and 22.

Inference Services. As the model components have been defined with formal semantics, a
system based on these components can support sophisticated reasoning with rationale
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information. For example, a dependency network of assumptions is managed using a truth
maintenance system which propagates the effects of changes in the beliefs in assumptions to
other components of design rationale knowledge. In the detailed model, such a mechanism will
help identify the decisions that need to be reevaluated when changes in assumptions underlying
the network of rationale change. KBSA-ADM also supports truth maintenance on such
structures, using not just the simple logic-based approach, but also the Dempster-Shafer theory
of evidence to determine the belief status of the decisions made.
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Figure 21: Rationalein Simple View

Thick Descriptions. KBSA-ADM provides a few facilities for integrating formal and informal
components of traceability knowledge. First, each object in a discussion can be annotated with
multimedia clips. For example, in the discussion involving the processing of orders in a utility
company shown in Figure 22, the node representing location (i.e., graphical location of various
services provided by the utility) is annotated with a map of the service area. Further, the tool
provides a hypermedia editor within which various objects in our model can be created by
simply highlighting a section of a hypermedia document. Such an integration aso facilitates
easy capture of traceability information.

Model driven capture. KBSA-ADM provides mechanisms for specifying, executing and
monitoring process steps. This can be used to define the steps involved a system engineering
process and the conditions under which such steps should be executed. Such a facility can be
tailored to define the various types of traceability information that should be captured and
used. For example, the facility can prompt the user for design rationale information after major
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design decisions. An agenda mechanism is used to monitor compliance. However, the current
implementation does not include comprehensive model-driven traceability capture.

In summary, the KBSA-ADM example illustrates that the advanced tool features discussed in
this section are indeed feasible in industrial settings. However, the example also shows that
quite a bit of creativity is required to combine these features in a practically useful manner.
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Figure 22: Rationale in Detailed View

10. Summary

We have conducted empirical studies in a broad range of software development
organizations to come up with reference models for the objects and traceahlity links to be
recorded. These models are presented at two levels of user sophisticated, which could be fairly
clearly distinguished in the organizations and mark very different understandings of the
importance of requirements traceability.

A simple meta model derived as part of the pre-studies also indicates how, in principle,
these reference models can be extended by explicit consideration of the different stakeholders
involved (contribution and usage structures, cf. (Gotel and Finkelstein 1997, Yu and
Mylopoulos 1994)). The mapping of the conceptual trace objects to technical media, sources
and documents — the third element in our basic meta model — was addressed by a discussion of
how the different tracediy link categories can beupported by inference services and what
other requirements on tracd@yp mechanisms the intended usage of tleedabity link types
implies. The importance of the differentiation between conceptual objects and media is also
emphasized in other case studies of RE practice (Nissen et al. 1996).

In summary, we believe that the presented models constitute a good first step towards
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reference models for requirements traceability. One evidence for this statement is the
surprisingly broad acceptance of early versions of severa submodels in industry.

The accompanying longitudinal case study indicates that the uptake of these models, if
accompanied by appropriate management support and user attitudes, may indeed yield
substantial benefits in terms of quality as well as efficiency, leading to improved software
process maturity (Ramesh et a. 1997). Of course, this case study will have to be backed up by
others which would be grestly helped if our findings concerning the next generation of tools
will be addressed beyond the present status by vendors. We identified structured knowledge
representation, link-type related inference capabilities, the grounding of (possibly multiple)
trace models in thick multi-media descriptions, and a model-driven tool-supported trace
process as important ingredients. Our current efforts are devoted to maturing such tool
technologies and evaluating them in industrial settings.
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