
CREWS Report 98-36

submitted to

4th International Symposium on Requirements Engineering, RE’1999.

Human Errors and System Requirements

by

Alistair Sutcliffe, Julia Galliers and Shailey Minocha

Centre for HCI Design
School of Informatics

City University
Northampton Square
London EC1V 0HB

United Kingdom

+44 (0)171 477 8412
{a.g.sutcliffe, Error! Bookmark not defined.

jrg@csr.city.ac.uk

2

Human Errors and System Requirements1

Alistair Sutcliffe, Julia Galliers and Shailey Minocha

Centre for HCI Design,
School of Informatics,

City University,
Northampton Square,

London EC1V 0HB, UK
E-mail: a.g.sutcliffe@city.ac.uk

Tel: +44-171-477-8411
Fax: +44-171-477-8859

Abstract

This paper reports a method of assessing the implications for human error on system
requirements, a topic not usually considered during requirements engineering (RE). In
our previous work, we proposed a taxonomy of influencing factors that might
contribute to human error. This paper takes the taxonomy and elaborates it to suggest
generic requirements to deal with problems in different layers of the taxonomy.
Components of the taxonomy are combined into a causal model for error, represented
as a Bayesian Belief Net (BBN). BBNs model the error influences arising from user
knowledge, ability, and the task environment. These are combined with factors
describing the complexity of action and user interface quality in scenarios of projected
system usage. The BBN model predicts probabilities of slips and mistakes. These are
assessed according to action types in the scenario to suggest generic requirements to
prevent the error or to deal with its consequences. The method is illustrated by a
service engineer support system application.

 1 Introduction

Few methods advise on how to investigate the consequence of human errors for system
requirements. Analytic methods have been reported in the safety critical literature
ranging from use of design rationale and formal techniques for failure analysis
(Johnson 1996) to more general approaches with guidelines to prevent human error
(Leveson 1995, Hollnagel 1993). In RE, Fields et al. (1995) have investigated tasks as
a means of linking error analysis with requirements investigation. The Inquiry Cycle
(Potts et al. 1994, Hsi & Potts 1995) takes a wider ranging view of problems, called
obstacles, which give rise to system requirements by analysing user-system
dependencies; however, no detailed guidance for requirements engineers has been
reported. In our previous work, we proposed a Scenario based Requirements Analysis
Method (SCRAM) (Sutcliffe 1995, 1997) that employed scenario scripts in a
walkthrough method that validated design options for ‘key points’ in the script.

In safety critical systems accurate foresight is a pressing problem, so we used
taxonomies of human error (Reason 1990, Hollnagel 1993), to investigate scenarios of
future system use (Sutcliffe et al.,1998). Although we could draw the analyst's attention
to the potential sources of human (and system) error that may need to be considered
during requirements analysis, this advice still required considerable interpretation, and

1 This research has been funded by the European Commission ESPRIT 21903 ’CREWS’ (Co-operative
Requirements Engineering With Scenarios) long-term research project.

3

did not predict which action-steps in a scenario may be more prone to error. This paper
reports work we have undertaken to address this problem by employing Bayesian
Belief Networks (BBNs) to analyse scenarios for human error and identify
requirements to deal with them. The paper is organised in three sections. First, we
introduce our method for assessing the possible impact of human error on system
requirements. In section 3, we describe application of BBNs as a method and tool
support for error-related scenario analysis. Section 4 illustrates the method and BBNs
with a case study taken from a service engineer support system application. The paper
concludes with a brief discussion of the potential of BBNs in RE.

2 Framework and Method for Error Analysis

The method is based on three simple ideas: first, that requirements are analysed by
creating scenarios as threads of behaviour though a use case, adopting an object -
oriented approach (see Jacobson 1992). Second, scenarios are walked-through
asking if an error may occur at each stage given a set of influencing factors that
contribute to the likelihood of errors. Generic requirements are proposed to deal
with the consequence of errors and to mitigate any problems that may arise due to
the influencing factors. Generic requirements are reusable knowledge that can be
used as an agenda of issues pointing towards areas for further requirements
investigation, or requirements that can be refined with more domain-specific
knowledge, or high level design solutions that may be added directly to a
requirements specification. The components of the method are given in Figure 1.

Domain
Scenarios

users, work
environment,
tasks

Influencing
factors

Use Case (s)

agents, interaction
action types

elicited
 from

predict
errors in

Generic
requirements

applied
to fix
errors in

BBNs

Figure 1 Components of the method: Influencing factors are elicited from domain scenarios
and predict human error in use cases. Generic requirements are proposed to prevent errors or

as remedial measures

The method described in this paper uses two types of scenarios. First, ’domain’
scenarios that capture information about the system, its users, workplace context,
and other environmental information. Such scenarios are descriptions of the current

4

system, its environment with ’day in the life of’ stories of use. Secondly, scenario
’scripts" as test data threads generated from a use case and requirements are refined
through investigation of errors that originate in the environment from users or other
agents.

2.1 Method Stages

The method stages are summarised in Figure 2. The method is iterative, so with a
set of first cut use cases, all the other stages proceed concurrently leading to
refinement of use cases and the requirements specification.

Users

Model Use
cases

 Specify
Influencing
 factors

Generate
scenarios

 Refine
Requirements

Use
cases

Requirements
Specification

Generic
influencing
factors

domain
facts

event
pathsdomain

factors
BBN error
model

domain
scenarios

error
probabilities

scenario
scipts

Figure 2 Lower level method stages and associated models.

Stage 1 Use Case Modelling

Use case modelling follows standard OO procedures (Jacobson 1992), so it is not
described with in this paper. A preliminary system investigation identifies the
major agents, their activities, and goals of the system. Use cases are created for
system goals, and describe the agents involved and the event/information flows
between them. Use cases are expressed as interaction diagrams that map out the
sequential dependencies between human and system agents, following standard
UML (UML 1997) notation.

Stage 2 Specify Influencing factors

5

A set of influencing factors are provided, separated into different layers for task-
workload, personnel and training, and the environment. Factors within each layer are
investigated to see if they are relevant to the application domain being modelled.
Domain scenarios describing the working environment are a good source of
information on influencing factors. Tables of influencing factors, their probable
consequences and generic requirements to prevent or counteract the consequent errors
are provided to help the requirements engineer deal with issues in each layer. Each
factor is rated on a 3 point scale (high, medium, low) to estimate the severity of its
potential impact on errors. Factors are aggregated to give an overall likelihood of error
using BBNs. The influencing factors are used to estimate the overall probability of
error emanating from the users and the system environment.

Stage 3 Generate scenarios

This step generates scenarios by walking through each event sequence or pathway
in the use case. Each pathway becomes a scenario. Thus one use case will give rise
to many scenarios if there is any non-determinism or concurrency in the use case
model. Scenario generation is supported by the CREWS-SAVRE tool (Sutcliffe et
al. 1998) which automatically identifies all possible pathways through the use case.
The BBN influencing factor analysis is then used to ‘walkthrough’ a scenario script
and assess which events and user behaviours may be prone to failure. Every
scenario is walked through and the analyst inquires whether an error may occur at
each stage.

Stage 4 Refine requirements for human error

Influencing factors are used to determine which types of error (slips and mistakes)
are more likely to occur. The analyst identifies the actions which are more error-
prone using the BBN analysis with a description of the cognitive and physical
complexity of each action-step in the scenario. Actions are typed as input/output or
decision support. A set of generic requirements linking error to action types are
provided to stimulate further requirements analysis. High probability errors
indicate a branch in the original scenario hence a new ‘abnormal course’ scenario
is created to describe error recovery actions. The outcome is a set of formatted use
cases, scenarios and elaborated requirements specifications.

2.2 Influencing Factors

To help the software engineer anticipate when exceptions may occur and assign
probabilities to abnormal events, a set of influencing factors are provided. Influencing
factors analysis has two purposes, first it supplies high level generic requirements
associated which each set of factors, and secondly the factors form input for a causal
model of error that is used in the BBN analysis (see section 3).

In a previous paper (Sutcliffe et al. 1998), we reported four groups of factors
(environmental conditions, management, task/domain and user/personnel qualities) that
affected human internal variables such as fatigue, stress, workload and motivation. In
this paper we only deal with two layers of influencing factors for the task/domain and
user/personnel. Modelling event causality is complex, and the analysis effort that is
warranted will depend on the safety criticality system, so two approaches are offered.

6

First is to use the method as a paper-based ‘tool for thought’. Alternatively, the factors
may be entered into the BBN tool to perform a scenario analysis.

Domain scenarios, describing the working environment, the people who will operate,
control and manage the system, are used to capture influencing factors. Such scenarios
can either be taken from real-life or made up to cover a variety of organisational and
work situations that may occur in the domain. The implications of user factors are
summarised in Table I. Some of these factors can be measured objectively by using
psychological questionnaires. For instance general ability and accuracy/concentration
can be measured by intelligence aptitude scales, decision making and judgement by
locus of control scales, while domain and task knowledge can be measured by creating
simple tests for a specific task/domain. The main implications of the personnel factors
are for personnel selection and training. while generic requirements indicate the need
for computer based intelligent assistants, critics, and aide memoir information displays.

Table I User / Personnel Factors with problems for slip and mistake type errors and
generic requirements to counteract these problems

Personnel
Qualities

Skilled Task
Problems

Decision / Problem
Solving Tasks

Implications / Generic
Requirements

General
Ability

More slips especially
complex tasks, longer
learning time

Inability to deal
with unexpected
events

Personnel selection
appropriate for task / job
description

Knowledge of
domain

More slips, longer
learning time

Slow performance,
failure in complex
problems

Improve training on the job
experience, scenario-based
training

Skill / task
knowledge
training

Slow operation, more
slips

Mistakes, slow
performance

Improve training, help
manuals, aid memoirs,
mentors

Judgement /
decision-
making

- poor initiative,
more mistakes,
wrong decisions

Select personnel appropriate
for task

Concentration
/ accuracy

More slips, more
ordered events

more mistakes, poor
decisions, poor
checking

Discipline and training to
improve performance, select
appropriate personnel

Motivation More slips, slow
operation, short cuts

Increase mistakes,
slow performance,
short cuts

Improve incentives, job
satisfaction, select
appropriate personnel

Human error, following the distinction drawn by Reason (Reason 1990) is divided into
slips, which result from lapses in attention and sensory-motor co-ordination, and
mistakes which are more complicated failures in reasoning. The impact of poor
personnel factors will be worse skilled performance and action-slip errors, as shown in
column 2; while for tasks that require decisions and problem solving there will be
worse performance and more mistakes. These are illustrated in column 3, with generic
requirements and recommendations for training are listed in column 4. In addition, user
personnel factors are used with assessment of task complexity (see Table II), to match
users' abilities to tasks of appropriate complexity, while also giving people sufficient
challenge and responsibility in their job. Task allocation and work design are
complicated issues, beyond the scope of this paper, however see (Bailey 1982) for
more details.

7

Table II Task / Domain factors with implications for errors and generic requirements.

Task factor Implications Requirements / Training issues
High Volume Delays, bottlenecks,

performance degrades,
fatigue

Buffer & smoothing workloads, automate if
possible, design breakpoints, batch schedules

Complexity User fatigue and stress,
mistakes, problem
solving failure

Match complexity to user abilities and experience,
decompose task, simplify procedures

Repetitiveness Boredom, poor
attention, slips, missed
events

Automate if possible, provide task variety, swap
operators frequently

Interruptions Attention slips, missing
and mal-ordered
events, capture errors

Provide aid memoirs, agendas, status / progress
checks, screen-out unwanted events

Time pressure Late events, slips,
capture errors,
omissions

Smooth event arrival, automate task, give user time
to think, provide holding actions

Multitasking /
task switching

Attention slips, missing
and mal-ordered
events, losing thread
problems

Aid memoirs, agenda managers, clear mode / status
indicators, schedule switching if possible

Task/domain factors are elicited by questions about the task complexity and
environmental constraints on operators. As with the other factors, the complete
documentation of the method (Sutcliffe & Minocha 1998) provides a comprehensive
list of questions and elicitation techniques. Implications for task/domain factors for
user performance and errors are listed in column 2 of Table II, with generic
requirements and user training recommendations in column 3. Increases in
interruptions, and more task switching make slip type errors more likely, whereas
higher volumes and time pressures lead to more errors and delays. Complexity and
repetitiveness, on the other hand, have implications for task allocation and increased
mistakes if users are not given tasks that match with their abilities, or training to carry
out their allocated tasks. It should be noted that many task performance problems also
have ’knock-on’ effects on users through increased levels of stress and fatigue.

Domain specific models may be created by selecting a sub-set of the influencing
factors that apply to an application. Many combinations of influencing factors are
possible and each domain requires a particular model, hence we provide a general
modelling tool that can be instantiated with domain specific information. The generic
model takes a sub set of the key factors that apply to most domains. The tool allows
influencing factors to be entered as a rating on a three point scale (e.g. high, medium,
low complexity) and then calculates the event probability from the ratings. The model
is configured by assigning a set of probabilities for each combination of influencing
factors. A set of default formulae for inter-factor weights are provided, but these can be
adjusted depending on the user’s knowledge of the domain.

3 Bayesian Belief Network Analysis

In this section, we introduce BBNs as a means of combining the influencing factors
into a more formal and predictive model of human error. BBNs are graphical networks

8

that represent probabilistic relationships between variables. They offer decision
support for probabilistic reasoning in the presence of uncertainty and combine the
advantages of an intuitive representation with a sound mathematical basis in Bayesian
probability (Pearl, 1988). BBNs are useful for inferring the probabilities of events
which have not as yet, been observed, on the basis of observations or other evidence
that have a causal relationship to the event in question. For example, a doctor might
have observed a variety of symptoms in his patient. Using a BBN, s/he can determine
the probabilities that these symptoms are caused by each of the several possible
alternative diseases, and hence further complications that might arise.

A BBN is made up of nodes and arcs. The nodes represent variables and the arcs
represent (usually causal) relationships between variables. The example in Figure 3 is
a fragment of the net described in more detail in the following section of this paper. It
shows the complexity of an action as a variable that is affected causally by two factors -
the level of physical detail and the cognitive complexity of the task. Variables with
either a finite or an infinite number of states are possible in a BBN, so the choice of
measurement scale is left to the analyst’s discretion. In the case study we assign these
variables to one of the three possible states: high, medium or low.

Action
Complexity

cognitive
aspects

physical
aspects

Figure 3 Simple BBN fragment, the two prior nodes have a causal influence on the
posterior node of task complexity

In the above fragment, if we know that both the cognitive and physical aspects of a
particular action are high, then the probability of the overall complexity being high is
greater than if we know the action has a low level of physical detail and involves little
cognitive ability. In the BBN we model this by filling in a node probability table
(NPT). Table III shows the NPT for the task complexity node.

Table III Node Probability Table (NPT) for the task complexity node

Cognitive high medium low
Physical high medium low high medium low high medium low

action high 0.9 0.7 0.6 0.8 0.5 0.4 0.7 0.2 0.1
complexity medium 0.1 0.2 0.3 0.15 0.3 0.3 0.2 0.3 0.2

low 0.0 0.1 0.1 0.05 0.2 0.3 0.1 0.5 0.7

Nodes with incoming arcs are associated with a table of conditional probabilities as
shown in Table III. Each arc and tables of conditional probabilities represent
knowledge about one node that is useful for predictions about another node. Hence in
Table III, column 1 the requirements engineer has asserted that if cognitive aspect of
the action is high and the physical detail of the action is high then the probability of

9

overall action complexity being high is 0.9, and medium 0.1 with a zero probability of
being low. The table is configured by estimating the probabilities for the output
variables by an exhaustive pairwise combination of the input variables. BBNs can
accommodate both probabilities based on subjective judgements (elicited from domain
experts) and, probabilities based on objective data.

When the net and NPTs have been completed, Bayes theorem is used to calculate the
probability of each state of each node in the net. The result of this calculation is a
probability distribution for the states of each node. Then, if evidence is available to
determine the states of particular nodes from particular scenarios, the values entered
are propagated through the network, updating the values of other nodes. These
calculations are entirely automated by a BBN tool - Hugin Explorer (see Hugin A/S
web site, www.hugin.dk). The result is a network from which predictions can be made
regarding the probability of certain variable(s) being in particular state(s), given the
combination(s) of evidence entered.

The generic model of influencing factors that give rise to human error is illustrated in
Figure 4. Three groups of factors (task/domain, user knowledge and personnel
qualities) affect 3 other factors (situation, aptitude and expertise). These, in turn, are
combined with motivation to influence slips and mistakes. We have modelled all the
user factors listed in Table I apart from concentration which varies between individuals
and tasks, so it is difficult to estimate. From the task/domain table, multitasking has
been merged with interruptions because both disrupt the normal flow of work;
repetitiveness and volume have not be used as these were judged to be less important
influences on error. Complexity is modelled at the action rather than task level.

Outer

Inner

Figure 4 Generic BBN network for error analysis

Time, interrupts and fatigue all describe the environment’s situation and the NPT is
configured so that it contributes to slips more strongly than to mistakes. User

10

knowledge, composed of domain and task sub-sets, contributes to both types of errors
but more strongly to mistakes, while general ability (aptitude and judgement)
influences mistakes more strongly. User motivation affects both types of error. So far
the BBN has described general properties of the user and task context. This outer layer
net is then merged into the inner layer net that describes design qualities of the user
interface, and characteristics of each user action in the scenario. User actions are rated
according to their cognitive complexity and physical operational detail. These factors
in turn affect the probability of human errors as either mistakes or slips which are
finally manifest as event exceptions in either human-computer interaction or in human
action.

3.1 Impact Analysis Method

Domain scenarios are used to gather inputs for the outer BBN variables (see Figure 4)
of the user’s knowledge, ability and the situation. The BBN is then run against a
scenario script of the user’s behaviour with the system, essentially following a use case,
or scenario as one pathway through a complex use case. Scenario scripts can also be
generated from interaction diagrams of use cases. The BBN is run to produce an error
probability for each action in a scenario script for a particular environment scenario
(see Section 4).

Scenarios are run with the NPT-configured BBN by setting the values for the input
nodes. For instance, in the service engineer application, the variables describe a
generalised model of service engineers. In one scenario, the domain and task
knowledge are set to high, as training and experience should equip all engineers, apart
from trainees, with knowledge of the equipment they service. Ability and judgement
are set to medium reflecting the usual educational qualifications and abilities of
personnel recruited into these jobs. Motivation is set to medium as company loyalty
was not judged to be high, while time pressure and interruptions were high as many
calls have to be completed to tight deadlines and interruptions in customer premises are
common. This scenario is then run against a scenario script for diagnosing faults in
photocopiers.

For each run the following estimates have to be made at the action level in the script:

(a) The action has to be assessed as high/medium/low cognitive complexity. Any
actions requiring complex decision-making, problem-solving or judgement are rated as
high complexity. Conversely simple physical actions and computer I/O are rated low.

(b) Physical complexity is rated for each action-step. Complex manipulations involving
precise movements and detailed co-ordination are rated high, whereas single action-
step, discrete actions (e.g. stop/start machine) are rated low.

(c) If the action involves a human computer interface then its usability is assessed.
Measures for usability can be acquired from evaluation of users’ observed problems.
Alternatively, usability can be rated by answering the following questions, which also
point to generic requirements for the user interface:

• does a command or function exist for the user to achieve their goal ? If not, then a
missing requirements is indicated.

• can the used find the command or action to achieve their goal ? If not, then the
menus or the user interface metaphor needs attention

11

• is it clear how to carry out the action with the computer ? If it is not, then the
prompts, cues and user interface metaphor need to be improved.

• can the user perceive and understand the effect of their action ? If not, then
feedback should be added or made clearer.

 Usability evaluation is a complex subject and the above questions provide the
minimum guidance, for more details the reader is referred to (Sutcliffe et al., in press)
or (Monk et al. 1993). If a prototype interface does not exist the usability score is set to
medium for all potential human computer actions and low (=no design problems) when
actions are unlikely to involve human computer interaction.

 In use cases, human actions tend to be complex cognitive, and are frequently not
analysed in detail, whereas user system interactions are decomposed into lower levels
of detail and tend to be simple and physical. It is important, therefore, to ensure human-
cognitive actions are explicitly modelled in the use case, e.g. in diagnosing a problem,
the user’s reasoning is modelled as a complex, cognitive action rather than the simple
action ‘find fault’ that may be the outcome of such reasoning. The BBN is run using
ratings of influencing factors representing the user and task/domain that are taken as
constants in the application, in combination with the other input variables representing
the different environment scenarios. This produces an error probability for each action-
step in the scenario script derived from the use case.

 3.2 Linking probable errors to Requirements

 Slip and mistake errors predicted by the BBN analysis are linked to generic
requirements by analysing the type of action, or interaction, for each step in the
scenario. To specify the errors that may occur a list of exception types is provided, as
summarised in Table IV. They are divided into two groups. First abnormal event
patterns drawn from Hollnagel’s (Hollnagel 1993) event ‘phenotypes’ classification,
and secondly, information abnormalities that refer to the message contents (e.g. the
information is incorrect, out-of-date, etc.). Each exception type is associated with one
or more generic requirements that propose high level solutions to the problem.

 Table IV Summary of Exception types for errors prone actions and generic
requirements to deal with these problems.

 Exception type Generic Requirements
 event does not happen - omitted time-out, request resend, set default
 event happens twice (not iteration) discard extra event, diagnose duplicate
 event happens in wrong order buffer and process, too early - halt and

wait, too late - send reminder, check task
 event not expected validate vs. event set, discard invalid

event
 information - incorrect type request resend, prompt correct type
 incorrect information values check vs. type, request resend, prompt

with diagnosis
 information too late (out of date) check data integrity, date/time check, use

default
 information too detailed apply filters, post process to sort/group

12

 information too general request detail, add detail from alternative
source

 The recommendations or general requirements in the method provide a basis that can
be developed with more specific domain knowledge. The exception types are employed
with the following heuristics that associate different types of actions, BBN predicted
errors and exceptions:

• Input actions which are prone to slip-errors are likely to result in omissions or
wrong order exceptions. Besides the generic requirements listed in Table IV, other
defences are to provide editing facilities to correct input slips, spelling checkers to
detect typographical errors, and validation checks on input fields.

• Input actions with high mistake probabilities have different consequences. Mistakes
are not usually detectable in input as these reflect valid events which are not what
the user intended. Remediation facilities need to be added to the requirements
specification such as undo functions, status indicators for selected options and clear
feedback on the user’s progress.

• Output actions are the responsibility of the system so any event omissions point to
missing requirements. If an output action is prone to error by the user who receives
the data, then slips will be manifest as mis-reads of data, transposition errors or
failure to see the output. Defences are to make key data salient by highlighting
techniques. A high tendency for mistakes when using or interpreting output will
result in incorrect actions or decisions being taken when data is misinterpreted.
Requirements to mitigate such problems are to improve data presentation by sorting,
grouping, summarising and prioritising information. Information presentation is a
complex subject in its own right so the requirements engineer is referred to more
detailed sources of guidelines (Galitz 1993).

• Decision actions may contain a mixture of input and output interaction, so many of
the above requirements also apply. If user slips are probable, validation checks,
editors to correct input, forgiving command and confirmation of dangerous actions,
are advised. For mistakes, the decision support system requirements are to check the
likelihood of alternative decisions taken against available data, to make dangerous
decisions difficult and add warnings. The ability to monitor human decisions
depends on the ability to capture and interpret input. If the decision remains within
the human domain this may not be possible. Other generic requirements to mitigate
the effects of mistakes are to make the assumptions and dependencies of decisions
clear and to provide an accurate and realistic model of the decision domain for the
user. This improves the user's 'situation awareness' in decision making.

Generic requirements are necessarily high level, but they do draw the requirements
engineers' attention to problems which need to be considered. Moreover, the method
gives pointers to richer sources of guidelines in the literature. Our work is progressing
to improve the quality of requirements advice by investigating classes of user task, so
requirement to remediate slips and mistakes can be suggested for diagnosis, planning,
scheduling and other generic tasks (see Sutcliffe and Carroll 1998).

4 Case study

13

The case study is a service engineer support system. We report analysis of the use case
‘Diagnose fault & repair’ (see Figure 5). Sixteen environmental scenarios were run to
model different permutations of engineer training (novice v. expert), their motivation
(high or low) and the work situation (good or bad). We report four of the 16 scenarios,
an optimistic one with well trained, motivated engineers in a good situation, the inverse
pessimistic scenario and two intermediates. Each environment scenario was run against
actions in the use case which were classified into four types:

Simple: low cognitive and physical complexity- 10 out of 13 actions
Physical: low cognitive but high physical complexity, action 9, collecting spare parts
Cognitive: high cognitive but low physical complexity, action 11, checking the
machine performance
Complex: high cognitive and physical complexity, action 10, repairing the machine.

In all cases the user interface property was set to medium. The results are given in
Figure 6 (a-d). Mistake and slip errors will be high for novices in the most pessimistic
scenario (Figure 6a), and increasing the novice’s motivation makes little difference
(Figure 6c). This highlights that the work situation is probably more important for
novices. Experts with poor motivation perform better than novices for mistakes but for
slips the difference is not great (Figure 6b). When experts are well motivated and the
work situation is favourable, in the most optimistic scenario, performance is good and
‘low’ mistake errors are predicted on all action types apart from complex ones;
however, some slips are predicted for all action types, apart from the simple category.
When combined with other scenarios which are not illustrated, the main implications
of the analysis were to reduce bad situation factors (i.e. give engineers plenty of time
for repairs and reduce interruptions), and that investment in training was vital to keep
novice mistakes to an acceptable level. Although the BBN analysis may over-estimate
the error probabilities, it is the differences between the scenarios that point out issues
for the requirements engineer’s attention.

The interpretation of the resulting probabilities for errors in the bands ‘high, medium,
low’ has to be calibrated for the domain. In this example low was taken to be an
absolute frequency which would not significantly impede normal system operation, i.e.
<0.05 % errors per 100 task operations. Medium was estimated as a range from 0.05 to
5% errors/100 task operations with high as >5.0%. The results, shown in Figure 6 (a-
d) predict that mistakes will be a problem for novice engineers for actions 9-11, but are
also of considerable concern for simple actions. The implication is that thorough
training is important. Slips will be a problem for all actions when the situation is bad,
as is often the case when engineers work under time pressure with interruptions, or
may be under fatigue. This is particularly noticeable for the physical action 9 and the
more complex actions, so additional effort needs to be placed into refining
requirements to prevent slip errors in actions 9-11 and ways of minimising the physical
complexity of searching for spare parts should be found. The generic requirements in
Table IV indicate the issues that should be investigated. Clear informal displays for
diagnosis are a priority and development of intelligent assistants or tutoring systems
may be justified for novice engineers.

14

Figure 5 Interaction Diagram for the Use Case - Diagnose Fault and Perform Repair

15

0
10
20
30
40
50
60
70
80
90

si
m

pl
e

ph
ys

ic
al

co
gn

iti
ve

co
m

pl
ex

si
m

pl
e

ph
ys

ic
al

co
gn

iti
ve

co
m

pl
exAction-type

%
 p

ro
b

ab
ili

ty
 o

f
er

ro
rs

high

medium

low

mistake-errors

slip-errors

Figure 6a Error probabilities for slips and mistakes, for the Novice engineer scenario
with low motivation and a poor situation

0
10
20

30
40
50
60

70
80

si
m

pl
e

ph
ys

ic
al

co
gn

iti
ve

co
m

pl
ex

si
m

pl
e

ph
ys

ic
al

co
gn

iti
ve

co
m

pl
exAction-type

%
 p

ro
b

ab
ili

ty
 o

f
er

ro
rs

high

medium

low

mistake-errors

slip-errors

Figure 6b Error probabilities for slips and mistakes, for the Expert engineer scenario
with low motivation and a poor situation

16

0

10

20

30

40

50

60

70

80
si

m
pl

e

ph
ys

ic
al

co
gn

iti
ve

co
m

pl
ex

si
m

pl
e

ph
ys

ic
al

co
gn

iti
ve

co
m

pl
exAction-type

%
 p

ro
b

ab
ili

ty
 o

f
er

ro
rs

high

medium

low

mistake-errors

slip-errors

Figure 6c Error probabilities for slips and mistakes, for the Novice engineer scenario
with high motivation and a poor situation

0

10

20

30

40

50

60

70

si
m

pl
e

ph
ys

ic
al

co
gn

iti
ve

co
m

pl
ex

si
m

pl
e

ph
ys

ic
al

co
gn

iti
ve

co
m

pl
exAction-type

%
 p

ro
b

ab
ili

ty
 o

f
er

ro
rs

high

medium

low

mistake-errors

slip-errors

Figure 6d Error probabilities for slips and mistakes, for the Expert engineer scenario
with high motivation and a good situation

5 Discussion

17

This paper has reported modest progress towards improving the quality of
requirements elicitation to deal with problems arising from human error. BBNs are a
promising approach, nevertheless, there are disadvantages with the set up effort
required. Configuring the tables with probabilities is time consuming and the
combinatorial explosion of variables makes creating tables with more than 3 input
variables per node difficult. The network we have produced is a plausible, although an
incomplete model of the psychological influences on human error, and it will benefit
from further tuning of the network probability table. However, it is a reusable analytic
resource which, we believe, accounts for the more important causal influences on
human error.

We have demonstrated an analytic technique to direct requirements analysis effort
towards certain actions of a scenario, with the generic requirements that provide advice
on solutions for slips or mistakes according to the type of action. However, the
quantitative analysis of BBNs has several other benefits; for instance, different
scenarios of user interface design quality and user training can be run to inform trade-
offs between investing in user training or software development to improve the user
interface and hence reduce errors. BBNs highlight the actions in use cases where
failure is a critical concern prompting the requirements engineer to invest more time in
defining user support and error recovery. Finally, with a prototype design, the BBNs
can be used as a quality assurance tool to benchmark designs with a known user
population, task and prototype user interfaces to predict the probability of performance
errors. In safety critical systems such assessments can provide useful evidence in safety
cases.

Quantitative techniques in RE have received little attention to date; however, we note
that when trade offs need to be made, metrics have been used by Boehm and In
(Boehm & In 1996) in the QAARC tool and in product procurement (Jacobs and
Klethers 1994). The approach we have reported provides a more formal means for
quantitative assessment of system requirements which, we believe, will return
increasing benefits for the effort involved when tuned to particular domains. In our
future work we will tune the BBN network by comparing its predictions with data on
observed errors and improve the quality of the generic requirements by investigating
how predictions can be tied to models of generic tasks.

Acknowledgements

This research has been funded by the European Commission ESPRIT 21903 long term
research project ’CREWS’ - Co-operative Requirements Engineering With Scenarios.
The project partners include RWTH-Aachen (project co-ordinator), City University,
London, University of Paris I, France, FUNDP, University of Namur, Belgium.

References

(Bailey 1982) R. W. Bailey, ‘Human Performance Engineering’, Prentice Hall, 1982.

(Boehm & In 1996) B. Boehm and In Hoh, ‘Identifying Quality-Requirement
Conflicts’, IEEE Software, pp. 25-35, Mar. 1996.

18

(Fields et al. 1995) R. E. Fields, P. C. Wright, and M. D. Harrison, ‘A Task Centered
Approach to Analysing Human Error Tolerance Requirements’, IEEE International
Symposium on Requirements Engineering (RE’95), pp. 18-26, 1995.

(Galitz 1993) W. O. Galitz, ‘It’s time to clean up your windows: Designing GUIs that
work’, New York, Wiley-QED Applications.

 (Hollnagel 1993) E. Hollnagel, 'Human Reliability Analysis Context and Control',
Academic Press, 1993.

(Hsi & Potts 1995) I. Hsi and C. Potts ‘Towards Integrating Rationalistic and
Ecological Design Methods for Interactive Systems’, Georgia Institute of Technology,
Graphics, Visualisation and Usability Centre Technical Report, 1-15, 1995.

(Jacobson 1992) I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, ‘Object-
Oriented Software Engineering: A Use-Case Driven Approach’, Addison-Wesley,
1992.

(Jacob & Klethers 1994) S. Jacobs and S. Klethers, ‘Improving communication and
decision making within quality function deployment’, Proc. First International
Conference on Concurrent Engineering, Pittsburgh, 1994.

(Johnson 1996) C. W. Johnson, ‘Documenting the design of safety critical user
interfaces’, Interacting with Computers, vol. 8, no. 3, pp. 221-239, 1996.

(Leveson 1995) N. G. Leveson, ‘Safeware: System Safety and Computers’, Addison-
Wesley Publishing Co., 1995.

(Monk et al. 1993) A. Monk, P. Wright, J. Haber, and L. Davenport, ‘Improving your
Human Computer Interface’, Prentice Hall, 1993.

(Pearl 1988) J. Pearl, ‘Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference’, Morgan Kaufman, 1988.

(Potts et al. 1994) C. Potts, K. Takahashi and A. I. Anton, 'Inquiry-Based
Requirements Analysis', IEEE Software, vol. 11, no. 2, pp. 21-32, 1994.

(Reason 1990) J. T. Reason, 'Human Error', Cambridge University Press, 1990.

(Sutcliffe 1995) A. G. Sutcliffe, 'Requirements rationales: integrating approaches to
requirements analysis', in Proceedings of Designing Interactive Systems (DIS'95),
ACM Press, New York, pp. 33-42, 1995.

(Sutcliffe 1997) A. G. Sutcliffe, 'A Technique Combination Approach to Requirements
Engineering', Proceedings 3rd IEEE International Symposium on Requirements
Engineering, IEEE Computer Society Press, pp. 65-74, 1997.

(Sutcliffe & Carroll 1998) A. G. Sutcliffe and J. M. Carroll, ‘Generalising Claims and
Reuse of HCI Knowledge’, People and Computers XIII Proceedings of the BCS-HCI
Conference, Sheffield, Eds. H. Johnson, L. Nigay, and C. Roast, pp. 159-176, Springer
Verlag, 1998.

(Sutcliffe & Minocha 1998) A. G. Sutcliffe and S. Minocha, ‘CREWS-Scenarios for
Acquisition and Validation of Requirements - The Method’, Tutorial, 1998.

(Sutcliffe et al. 1998) A.G. Sutcliffe, N. Maiden, S. Minocha and D. Manuel,
‘Supporting Scenario-based Requirements Engineering’, to appear in IEEE
Transactions on Software Engineering, Nov. 1998.

19

(Sutcliffe et al. in press) A. G. Sutcliffe, M. Ryan, M. V. Springett and A. Doubleday,
‘Model mismatch analysis: Towards a deeper explanation of users’ usability problems’,
to appear in Behavioural and Information Technology.

(UML 1997) UML, ’Unified Modelling Language: Method’, Rational Corporation,
1997.

