
CREWS Report Series 98 - 26

WRITING AND CORRECTING

TEXTUAL SCENARIOS FOR SYSTEM DESIGN

Camille Ben Achour

CRI - Université Paris 1 - Sorbonne
Université Paris 6 - Pierre et Marie Curie
90, rue de Tolbiac. 75013 Paris - France

camille@univ-paris1.fr

Appeared in the proceedings of the Natural Language and

Information Systems (NLIS’98) Workshop 28th August 1998, Vienna,

Austria, 1998.

Writing and Correcting Textual Scenarios for System Design1

Camille Ben Achour

CRI - Université Paris 1 - Sorbonne
Université Paris 6 - Pierre et Marie Curie
90, rue de Tolbiac. 75013 Paris - France

camille@univ-paris1.fr

1 The work presented in this paper is funded by the European Community within the framework of the ESPRIT LTR project

CREWS (Cooperative Requirements Engineering With Scenarios) n°21903.

Abstract
Since a few years, scenarios have gained in

popularity in Requirements Engineering. Textual
scenarios are narrative descriptions of flows of
actions between agents. They are often proposed to
elicit, validate or document requirements. The
CREWS experience has shown that the advantage
of scenarios is their easiness of use, and that their
disadvantage stands in the lack of guidelines for
'quality' authoring. In this article, we propose
guidance for the authoring of scenarios. The
guided scenario authoring process is divided into
two main stages : the writing of scenarios, and the
correcting of scenarios. To guide the writing of
scenarios, we provide style and contents guidelines
referring to a conceptual and a linguistic model of
scenarios. Our assumption is that scenarios written
in conformance to these guidelines can be semi-
automatically analysed. Else, to guide the
correcting of scenarios, we propose a set of
enactable rules. These rules aim at the
clarification, completion and conceptualisation of
scenarios, and help the scenario author to improve
his scenarios until acceptable quality in the terms
of the former scenario models.

1. Introduction

Scenarios have recently gained attention in the
field of Requirements Engineering (RE). Scenarios
may have different forms, contents, coverage, and
purposes. However, our investigations show that in
the literature, most of the approaches lie on textual
scenarios [6], and that in the practice, in about 80%
of scenario-based projects, scenarios are described
under the textual form [4]. The growing number of
practitioners demanding for more ‘informality’ in
the requirements engineering process seems to
confirm this trend [1]. However, as show our
enquiries at several major European companies,

requirement engineers still need help in the process
of authoring scenarios [4].

In this paper, we are interested in the guidance
of the so called ‘scenario authoring’ process [8]. By
scenario authoring, we mean to write, clarify,
complete and conceptualise scenarios. In addition,
we focus on textual scenarios, that is to say
descriptions of stories of system usage in (more or
less structured) natural language. Authoring is part
of a two-step process of <scenario authoring - goal
discovery>. On the one side, scenarios are used to
discover new goals, and on the other side, goals are
the input for scenario authoring. In order to guide
the scenario author (SA), we provide writing
guidelines and verification rules. The writing
guidelines aim at conducting the SA towards a
quality writing of textual scenarios. The quality of
textual scenarios refers to a conceptual and a
linguistic model of scenarios. While he / she writes
a scenario, the SA can evaluate its quality by
applying enactable rules. These rules guide the SA
in structuring, clarifying and completing scenarios.

The next section describes the conceptual model
of scenarios referred to along this paper. Section 3
tackles the linguistic aspect of textual scenarios.
Section 4 overviews the process of scenario
authoring. and provides respectively the guidelines
for writing textual scenarios and the rules for
correcting them. The last section discusses the
results presented in this paper.

2. The conceptual definition of scenarios

A scenario expresses an example of behaviour of
a system. Thus, a scenario is « one possible
behaviour limited to a set of purposeful interactions
taking place among several agents » [7]. The
CREWS approach defends a tight coupling of goals
and scenarios into requirement chunks [7, 8]. To
any scenario is attached a goal. Goals express in
part the requirements for the designed system. They

are written as a verb together with one or several
parameters, and they are illustrated by scenarios. In
the following, we call a scenario by the name of the
goal it illustrates. The figure 1 presents the model
of scenarios, and figure 2 provides two examples of
scenarios.

Scenario
Composed of : Action

Flow of Action : IsA Action
Composed of : Action

Sequence : IsA Flow of Action
Constraint : IsA Flow of Action
Concurrency : IsA Flow of Action

Based on : Flow condition
Repetition : IsA Flow of Action

Based on : Flow condition
Atomic Action : IsA Action

Name
From : Agent
To : Agent
Parameter : Object

Agent : IsA Object
Resource : IsA Object

Figure 1 : The conceptual model of scenarios

The scenario model defines a scenario as
composed of one or several actions. Actions are of
two types : atomic actions and flows of actions.

An atomic action is going ‘from’ one and only
one agent ‘to’ one and only one agent, and affects
some ‘parameter’ ‘object’. The agents may be the
designed system, its users, its component objects,
etc, and the resources the passive objects that they
manipulate. For example ‘The CAD system sends
the mobilisation order to the relevant ambulance
crew’ is an atomic action. Its agents are ‘the
system’ and ‘the relevant ambulance crew’, and its
parameter is the resource ‘the mobilisation order’.
Agents and objects may be involved into several
atomic actions.

The composition of actions is expressed in
flows of actions which are refined into sequence,
concurrency, iteration and constraint, that refer to
the connectors of strict sequence, co-beginning
parallelism, loop, and condition. For example, the
sentence ‘The CAD system locates the incident
place, and then decides which division is going to
deal with the incident’ expresses a sequence
between two atomic actions. Contrarily to the
concurrency and sequence flows of actions, the
iteration and constraints are ‘based on’ flow
conditions. Flow conditions express the
assumptions for which a meaningful behaviour of
the scenario agents is defined. In the sentence ‘If

the call is not in duplicate, then the CAD system
locates the incident place’, the flow condition ‘If
the call is not in duplicate’ identifies a case of CAD
usage. The cases of usage of the CAD system with a
call already received for the same incident should
thus be described in a separate scenario. As defined
in Figure 1, flows of actions can be themselves
composed of other flows of actions. Thus, a
sequence of actions can be iterated, concurrent
actions constrained, several constraints embedded,
etc.

Provide the
ambulance
service to
London
patients

A caller sends an urgent call to the central
ambulance control. Then, the central ambulance
control allocates the incident to an ambulance
crew, and the ambulance crew delivers the
medical service to the patient.

Allocate
incidents to
an
ambulance
crew in a
normal
way

1. The details of the call are entered in the
CAD system.
2. If the call is not in duplicate, then

3. The CAD system locates the incident
place.
4. It decides which division is going to
deal with the incident.
5. The resource status and incident details
are displayed to the division resource
allocator.
6. If an ambulance and a crew are
available at the division, then

7. The resource allocator identifies the
resource to be mobilised.
8. He must enter the mobilisation
decision within two minutes.
9. The system sends rapidly the
mobilisation order to the relevant
ambulance crew.

Figure 2 : Unstructured and semi-structured
textual representations of scenarios.

3. The linguistic definition of scenarios

A scenario should be written correctly in
reference to the scenario model. Thus, the scenario
model provides the structure of scenarios. Scenarios
are themselves written in natural language.
Consequently, there is a relationship between the
text structure and the scenario model structure
which is highlighted in figure 3.

Flow of Action : IsA Action
Composed of : Action
Expressed by : Sent. St.

Atomic Action : IsA Action
Expressed by : Clause St.

Sentence Structure : IsA Structure
Composed of : Structure
Has for Semantics : Sent. Sem. P.

Clause Structure : IsA Structure
Has for Semantics : Cla. Sem. P.

Sentence Semantic Pattern : IsA Semantic Pattern
Composed of : Semantic Pattern
Clause Semantic Pattern : IsA Semantic Pattern

Figure 3 : Relationships between text
structure and the action structure.

As scenario actions are refined into atomic
actions and flows of actions, the text structures can
be decomposed into more elementary structures
which are either clause structures or sentence
structures. For example the scenario extract ‘The
central ambulance control allocates the incident to
an ambulance crew, then the ambulance crew
delivers the medical service to the patient’ has a
sentence structure which can be decomposed into
two elementary clause structures. Structures
correspond to the surface representation of the
textual specification, also referred to as the syntax.
The semantics is provided by semantic patterns.
Sentence and clause semantic patterns reflect
respectively the deep aspect of sentence and clause
structures. Thus, clause semantic patterns provide
the semantics of atomic actions and sentence
semantic patterns provide the semantics of flows of
actions : the sequence, the concurrency, the
repetition and the constraint.

Our approach of scenario authoring uses natural
language. As presented in section 2, the scenario
model focuses on the notion of action. However, in
textual scenarios, actions are expressed informally.
Thus, there is a need to fill the gap between the
textual representation of actions and their formal
counterpart in the scenario model.

As shown in [9], the use of free natural
language in RE raises difficult problems. For
example ambiguous and implicit statements
requiring contextual or domain knowledge are
especially dangerous in the framework of
requirements engineering where the least
misunderstanding may have dreadful
consequences. In order to avoid such problems, we
restrict the language of scenario expression to : a
restricted set of terms, the syntax defined by a
finite set of structures, the semantics defined by the
scenario model, and the statements that do not
require contextual or domain knowledge to be

interpreted. We use patterns of a Case Grammar [3]
to fill the gap between the informal and the formal
representation of scenarios. We justify this choice
by the fact that it is consistent with these
assumptions, and that it focuses on the notion of
action, as shows our ontology of semantic patterns
presented in [8].

Each structure has a semantics defined in a
semantic pattern. The semantics of sentence
structures is in sentence semantic patterns, and the
semantics of clause is in clause semantics patterns.
The other way round, one semantic pattern can be
expressed following several different surface level
structures.

In addition, each concept of the scenario model
has a semantic identified in a semantic pattern. For
example atomic actions correspond to the
communication and action clause semantic patterns.
The patterns of sequence, constraint, concurrency
and repetition identify the flows of actions of the
scenario model ; that is to say respectively the
sequence, constraint, concurrency, and iteration.
The semantic patterns being expressed using pre-
defined surface structures, each concept of the
scenario model can be expressed in a restricted
natural language. As an example, the following
piece of scenario specification :

Atomic action :
Name : ‘enter’
From Agent : ‘the control assistant’
To Agent : ‘the CAD system’
Parameter : ‘the details of the call’

corresponds to the pattern instance :

Communication (‘enter’) [Agent : ‘the control
assistant’ ; Object : ‘the details of the call’ ;
Source : ‘the control assistant’ ; Destination :
‘the CAD system’]

This communication action clause semantic pattern
can be expressed using the structure :

[[‘The details of the call’](Subject)Obj [‘are
entered’](Main Verb)Communication [‘by the control
assistant’](Complement)Ag+So [‘in the CAD
system’](Complement)Dest](VG
passive)Communication

which corresponds to the clause :

‘The details of the call are entered by the
control assistant in the CAD system’.

Identifying the concepts of the scenario model from
natural language is a two stage process which
requires first the semantic analysis of the text and
then the mapping of the resulting semantic patterns

onto the concepts of the scenario model. However,
the conceptualisation of scenarios is possible only
if the scenarios are well written. These two aspects
are dealt with in the following sections.

4. The scenario authoring process

In the CREWS goal-scenario approach, the
activity of scenario authoring is complementary to
the goal discovery. Both can be performed
iteratively, until full completeness, validity and
agreement. The goal discovery is described in [8].

The scenario authoring is in two stages : the writing
of the scenarios, and the correcting of scenarios.
Once written and corrected, scenarios can be used
for discovering new goals or for negotiating the
requirements concerning the designed system.

To guide the Scenario Author (SA) in the
writing of scenarios, we propose writing guidelines
(Figure 4). When he / she wants to write
a scenario, the SA has already defined a
goal that the scenario will illustrate.
Thus, the guidelines drive the SA in
illustrating a given goal by a scenario.
The guidelines consist in a list of advice
on how to write a scenario and what to
put in the scenario. We expect that the
quality of the scenarios produced
improves when the guidelines are
correctly applied. However, they are
mandatory : they can be followed or not.
The writing guidelines are of two
complementary types : style and contents
guidelines. Style guidelines provide
recommendations on the style of the
expected prose, in conformance with the
expected text structure presented in section 3.
Contents guidelines advise the SA on the expected
contents of his / her prose. Contents guidelines are
adapted to the scenario model of the section 2 and
to the expected text semantics presented in section

3. Both guidelines are illustrated with the example
presented in figure 5.

At the moment of writing a scenario, the
scenario author can use the help provided by the
guidelines. The scenarios produced following the
guidelines should be of acceptable quality ; in other
word, their syntax and their semantics should
correspond to the ones expected through the
scenario model, the structures, and the semantic
patterns. If so, the textual scenario can be
conceptualised, to support automated reasoning on

the system
requirements.
However, it is
necessary to verify that
the scenarios are
sufficiently well-
written to be
conceptualised, and to
correct them if they are
not. The correcting
rules aim at identifying
conflicts between a
scenario, and a

guideline. They are described as sequences of steps
aiming at :

• identifying sus pect situations,
• proposing solu tions to modify the scenarios,
• acquiring complementary info- rmation about
the scenario contents, and

• improving the scenarios.

The correcting of scenarios involves :
conceptualisation, clarification and completion. The
conceptualisation of scenarios is performed
according to the relationships between the scenario
structure, its semantics, and the model of scenarios,

NL inputs

NL dialogue

Front End
Support

Communication
Support

•Style
guidelines

•Contents
guidelines

RULES

Clarification

Analysis

Completion
Mapping

Back End Support

GUIDANCE TOOL

Scenario
Author

Internal
Representation of
the Scenario Spec.

Figure 4 : Overall architecture of the scenario authoring process.

The user inserts his card in the ATM. The system checks if the card is

valid. Then, a prompt for code is given and the user inputs the code. If

the code is valid, a prompt for amount is displayed. The user enters an

amount. If the amount is valid, the ATM delivers the cash, but before

the ATM ejects the card and a receipt is printed. Else the prompt for

amount is displayed again ...

Style Guidelines
... You should be consistent in the scenario terminology. Therefore, avoid the use of
synonyms (one object with two different names) and homonyms (two different
objects with the same name)

Contents Guidelines
The expected scenario prose is a description of a single course of actions.
Alternative scenarios, interruptions or exceptional treatments are described
separately. A course of actions typically describes sequentially ordered actions ...

Figure 5 : Example of application of writing guidelines and
correction rules

respectively presented in the sections 3 and 2.
Conceptualisation is (at least in part) necessary to
enact other correction rules. It involves structure
analysis, semantics analysis, and model
instantiation. The clarification rules help the SA
identifying and correcting ambiguous actions. The
completion rules guide the SA in the search of
missing elements in the scenario, for example
atomic actions with unprecise parameters, etc.

Let's take the example of a scenario author who
has written the scenario partly shown in figure 5.
As underline in the upper grey box, this scenario
does not respect the guideline stating that 'the
scenario terminology should be consistent'. Indeed,
the 'ATM' is also referred to as the 'system'.
Conceptualising such a scenario would lead to
erroneous result. Having identified this problem,
the correcting rule proposes to the scenario author
to rephrase various references to the 'ATM' in the
scenario. In addition, the scenario does not respect
the definition of scenarios expressed in the contents
guidelines by 'The expected scenario prose is a
single course of actions ...'. Indeed the scenario
addresses two different cases as expressed by the
'Else' statement in the last sentence. Once raised,
this issue is solved by the writing an additional
scenario considering the alternative case separately.
For the sake of place, the rules and guidelines can
not be extensively described here. However, more
complete information can be found in [2], and [7].

5. Conclusion

Very few approaches say how to author textual
scenarios. Based on a formal conceptual model of
scenarios, this paper aims at guiding the process of
scenario authoring. This guidance emphasises two
stages : writing and correcting.

To help the scenario author writing 'quality'
textual scenarios, we propose a set of guidelines.
Besides, we propose a set of rules to guide the
clarification, completion and conceptualisation of
scenarios. As for the guidelines, the linguistic
foundation for these rules is the Case Grammar
which is tailored for the scenario conceptual model.
The grammar defines linguistic structures and
semantic patterns lying on the concepts of the
scenario model. The former identify the numerous
ways to express atomic actions, flows of actions,
conditions in natural language. The latter expresses
the semantics of the scenario contents. The
grammar permits us to go beyond the simple
solution of sentence templates by providing tools to
support the writing and correcting of scenarios.

We are currently evaluating these guidelines by
empirical evaluations with students and engineers,
in collaboration with the City University (UK). In
addition, examples of application of the guidelines
and of the rules have been already explored with the
ATM case study [7], and with a real case study
borrowed to an Electricity Company [5]. Future works
will concern the evaluation of the linguistic aspects
of our approach and the extension of the Visual
Basic - PROLOG implementation to support the
entire set of rules. In particular, we shall search for
evidence of the scalability of the approach through
the exploration of numerous and extensive case
studies.

6. References
[1] A. Cockburn, Structuring Use Cases with Goals. Technical
report. Human and Technology, 7691 Dell Rd, Salt Lake City,
UT 84121, HaT.TR.95.1, http://members.aol.com/acocburn/
papers/usecases.htm, 1995.
[2] C. Ben Achour, Guiding Scenario Authoring. Proceedings of
the 8th European Japanese Conference on Information Modelling
and Knowledge Bases, pp. 181-200, Ellivuori, Finland, May 26-
29, 1998.
[3] C. Fillmore, The case for case. In E.Bach, R. Harms (eds.)
‘Universals in linguistic theory’, Holt, Rinehart and Winston
Publishing Company, pp. 1-90, 1968.
[4] M. Jarke, K. Pohl, P. Haumer, K. Weidenhaupt, E. Dubois,
P. Heymans, C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyte,
A. Sutcliffe, N.A.M. Maiden and S. Minocha, Scenario Use in
European Software Organisations - Results from Site Visits and
Questionnaires. CREWS deliverable W1: Industrial problem
capture Working Group, 1997.
[5] S. Nurcan, G. Grosz, C. Souveyet, Describing Business
Processes with a Guided Use Case Approach. Proceeding of the
CAiSE’98 Conference on Advanced Information Systems
Engineering, to appear in June 1998.
[6] C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté, A.
Sutcliffe, N.A.M. Maiden, M. Jarke, P. Haumer, K. Pohl,
Dubois, P. Heymans, A Proposal for a Scenario Classification
Framework. Requirements Engineering Journal, 3 :1, 1998.
[7]. C. Rolland, C. Ben Achour, Guiding the Construction of
Textual Use Case Specifications. Data and Knowledge
Engineering Journal, Vol 25 N° 1,1998.
[8] C. Rolland, C. Souveyet, C. Ben Achour. Guiding Goal
Modelling Using Scenarios. Submitted to the TSE Journal,
special issue on scenarios, 1998.
[9] K. Ryan, The Role of Natural Language in Requirements
Engineering. Proceedings of the IEEE Int. Symposium on RE,
San Diego California, pp. 80-82, 1993.

