
CREWS Report Series 98 - 19

Process Centred Approach for Developing

Tool Support of Situated Methods

C. Souveyet, M. Tawbi

Université Paris 1 - Sorbonne

C.R.I 90, rue de Tolbiac. 75013 Paris - France

email {souveyet, tawbi}@univ-paris1.fr

Appeared in the proceedings of the Ninth International DEXA
Conference on Database and Expert Systems Applications, University of

Vienna, Austria, 24-28 August, 1998.

Process centred approach
for developing tool support of situated methods

Carine Souveyet, Mustapha Tawbi
email {souveyet, tawbi}@univ-paris1.fr

Centre de Recherche en Informatique (CRI), University of Paris1 Panthéon Sorbonne,
90 rue de Tolbiac 75013 Paris, France, tel + 33 1 40 77 46 34 (46 04).

abstract :
A reuse based approach to construct software tool supporting a specific method built « on the
fly » is presented in this paper. Its originality is to apply a process view on the reusable
component which is either method chunk or software chunk. Our process view leads to
construct method and software tool by assembling chunks. Chunks which are either method or
software ones can be assembled in different ways depending on the situation of the project at
hand. One of these ways is called a method or a software path. Our aim is to support the
construction of a specific method path and its use in a CASE environment. The paper focuses
on (i) the description of a process centred approach for software tool development (ii) its use
in the development of the tool « l’écritoire » and (iii) the support of software engineer through
a set of guidelines.

Keywords : Software Engineering, Reuse, Process, Method Engineering

1 Introduction

Reuse is nowadays a way of working which applies in many situations. Reuse was initially
introduced by the software engineering community[Krueger 92], [Meyer 91] [Booch 87] in
order to avoid repetitions in coding. As a technique, reuse was introduced in object oriented
programming languages through concepts such as class, class template and inheritance.

However, reuse has crossed the boundaries of programming and demonstrates its effectiveness
in most of the steps of the system development life cycle. In fact it is argued that the
effectiveness of reuse is increased in the early stages of the software development. Following
this line reuse is introduced in domain analysis [Priéto-Diaz 87a,b] [Priéto-Diaz 90] with the
purpose of capturing and storing domain knowledge in a domain knowledge base. Reuse of
this domain knowledge facilitates eliciting the requirements imposed to the system to be
developed.

Reuse based approaches have been recently introduced in the Information System Engineering
(ISE) community [IFIP 96] [Harmsen 94] [Plihon 98] to construct methods « on the fly » by
assembling method chunks stored in a method base. The aim in this case is to avoid the use of
a method which is inappropriate to the situation of the project at hand. Reuse is combined with
capitalisation of chunks of good practice and constitutes a means to benefit from past
experiences in a given project.

In the context of the CREWS1 project, we have defined a collection of method chunks to
support elicitation of requirement engineering (RE) by coupling goal modelling and scenario
authoring [Rolland 98a] [Rolland 98b]. These chunks can be assembled in different ways
depending on the situation of the RE project at hand. We will refer to one of this way as a
method path. The aim of the project is complementarily to support the construction of a
specific path and its use in a CASE environment. In order to fulfil this objective we developed
a process centred approach for software tool development which is the subject of this paper.
We associate to each method chunk a software chunk and by analogy with the notion of
method path we view the software tool as a path among software chunks. For each specific
situation, one of the predefined path can be reused or a new one can be constructed by
assembling the predefined software chunks. A software chunk is a module which is composed
of two parts : a body which codes the method guidelines and an interface which defines the
adaptation parameters. We shall see that its use requires two types of parameter : the method
related ones to ensure method chunks (MC) coupling and the technical ones to ensure the
interoperability of the tool with the technical environment in which it functions.

The notions of a method chunk and method path are presented in section 2 whereas the
corresponding notions of software chunk and software path are developed in section 3.
Section 4 presents the current implementation of « L’écritoire », the prototype implementing
the CREWS situated method. In section 5, we propose guidelines to help the software
engineer in implementing the software path. Finally, some conclusive remarks are made in
section 6.

 2 The notions of method chunk and method path

2.1 Method chunk

A method chunk is a reusable component embedding guidelines to achieve a specific intention
(or goal). As shown in figure 1, a method chunk has an interface and a body.

The chunk interface is a pair <situation, intention>. The situation is the part of the product
required as a pre-requisite for the fulfilment of the intention. The intention is the goal to be
achieved in that particular situation. For example the following interface <situation=(Goal : g)
intention=Elicit scenario using CREWS authoring guidelines> expresses the fact that a Goal is
a required product part for achieving the intention to elicit a Scenario. The interface
<situation=(Scenario : s), intention=verify scenario by checking the vocabulary> characterises
a method chunk to guide the verification of a scenario by checking the vocabulary which is
applicable in a situation where a scenario has been already elicited. As shown by these two
examples, the interface of a method chunk situates its context of application.

1 This partly funded by the Basic Research Action CREWS (ESPRIT n°21.903). CREWS stands for
Cooperative Requirement Engineering With Scenarios.

Method chunk

Interface Body

situation intention

From/ To/ Complementary/ Aternative

reusability knowledge

applicability knowledge

knowledge to reuse

figure 1 : Overview of knowledge embedded into a method chunk.

The body chunk contains the guidelines to be applied when the chunk actually used. For
capturing a large range of guidelines, the body is either formal or informal. The former implies
to define guidelines as proposed by the Nature process formalism [Rolland 94] [Plihon 95].
Detailed examples of such a description can be found in [Rolland 96], [Rolland 98 c]. The
latter describes guidelines in natural language.

In addition to facilitate the selection of a chunk when constructing a situated path a method
chunk includes contextual information. These are expressed (see figure 1) by three types of
relationships from/to, alternative and complementary.
The from/to relationships indicates chunks which can be used before or after a given chunk.
For example, <situation=(Scenario : s), intention=verify scenario by using linguistic
completion rules> may be preceded by a chunk analysing the semantics of a scenario content.
The interface of the chunk is as follows :
< situation=(Scenario : s), intention=analyse scenario semantics with a linguistic case
grammar>. Therefore, a from relationship is used to connect the first chunk(verify) to the
second one (analyse) and a to relationship is used to related the « analyse » chunk to the
« verify » chunk.

The alternative and complementary relationships allow to classify method chunks achieving
the same goal with different manners. For example, « elicit scenario in full prose », « elicit
scenario with template » and « elicit scenario by using CREWS authoring guidelines » are
three chunks with the same goal (write a scenario) but several manners to achieve the goal.
The first chunk supports a free text approach whereas the second constraints its user a
template text approach and the last one promotes an intermediate approach with authoring
guidelines.

A complementary relationship is used between two chunks when their ways of achieving the
same goal are complementary. For example, « Verify scenario by checking the scenario
vocabulary », « verify scenario by using linguistic completion rules » and « verify scenario by
disambiguating anaphoric references » are complementary manners to verifying a scenario.
These chunks can be used in the same method in order to achieve scenario verification.
Consequently, complementary way relationships can be used between these three chunks.

2.2 Method path

A method path is based on the distinction between two types of method chunks : step chunk
and flow chunk (figure 2). The former helps in the satisfaction of an intention impacting the
product under development whereas the latter helps in selecting the next intention to make the
process proceed.

In this view, we consider a process as being intentional. The process performance is a route
between steps that we called the process flow. Steps achieve intentions and result in product
transformation whereas the flow represents the sequence of intentions that have been
considered [Si Said 97]. Our claim is that a method must support the engineer by providing
guidelines to both help fulfilling an intention and selecting the most appropriate intention to be
achieved in the next step.

method chunk

step chunk flow chunk

is-a link

method Pathis a collection of

figure 2 : Method path definition.

As illustrated in the previous example a step chunk supports the fulfilment of an intention in a
specific situation. For example, <situation=(Goal : g), intention=elicit scenario using CREWS
authoring guidelines>.

A flow chunk guides the progression in the process. The chunk <situation=(Scenario : s /
state(s)=conceptualised), intention= progress by goal discovery strategy » is a flow chunk
which provides guidelines to select a way of progressing from a step where a scenario has been
conceptualised. The different ways for progressing proposed by a chunk all followed the same
strategy, namely a goal discovery strategy.

A method path is defined by a collection of step and flow chunks. For instance, the method
path associated to the intention « Author a scenario specification » is defined by the following
collection of chunks :
• step : <(Goal :g), elicit scenario by using CREWS authoring guidelines>,
• step : <(Scenario :s), analyse scenario semantic with a linguistic case grammar>,
• step : <(Scenario : s), verify scenario by checking terminology>,
• step : <(Scenario : s), verify scenario by using linguistic completion rules>,
• step : <(Scenario : s), verify scenario by disambiguating anaphoric references>,
• step : <(Scenario : s), conceptualise scenario>,
• flow : <(Scenario s / state(s)=elicited), progress by analysing its semantic>,
• flow : <(Scenario s / state(s)=elicited), progress by applying a verification strategy>,
• flow : (Scenario s / state(s)=elicited), progress by conceptualising it

3 The notions of Software chunk and Software path

3.1 Software chunk (SC)

A method chunk is implemented in a software chunk (see figure 3). A software chunk is reused
when a new method path has been conceived and required to be implemented in a tool
environment. In order to minimise the activity of reusing software chunk we propose to
package its code according to a predefined template presented in figure 3.

Input vari ables
Output variables

piece of code aiming at supporting the
way of working & modelling of a method chunk

the function : start ()

InputSerialization (situation) : procedure initializing
the variables from the «Product» manager

OutputSerialization () : procedure transferring
the variables to the «Product» manager

execute (situation) :
procedure invoking the performance
of the whole software chunk

(*) grey elements are abstract element which will have to be implemented

method chunk

software chunk

implements

is described by the
template

figure 3 :template of a software chunk.

The template has been designed in order to make the software code inter-operable with
different product managers. Indeed a software chunk manipulates product parts and it is
important to make its code as independent as possible of a particular product manager. This
independence shall ease the SC reuse in different repository managers and/or DBMS.

In order to fulfil this inter-operability goal, the template separates the body of the software
chunk from its input and output variables.

Input and Output variables correspond to the product parts which are used as inputs and
outputs of the chunk body. Complementarily, the InputSerialization and OutputSerialization
procedures are required to map the product structure as managed by the product manager into
the variables format adapted to the SC body. The InputSerialization procedure allows to
initialise the input variables from the « product manager » whereas the OutputSerialization
procedure aims at transferring the output variables to the « product manager ». These two
procedures are abstract procedures which are not implemented in the software chunk but must
be developed when the chunk is reused.

The body of the software chunk is an abstract module as it is shown in figure 3. This abstract
module is defined as follows :

• the definition of variables which are local to the software chunk
• the signature and the code of the procedure execute (<situation>). The situation

given as input parameter is the situation of the related method chunk,

• the signature and the code of the function start() returning a boolean expressing if
the goal of the related method chunk is achieved or not,

• the signature of the abstract procedure InputSerialization (<situation>). The
situation given as input parameter is the situation of the related method chunk,

• the signature of the abstract procedure OutputSerialization ().

Invocation of the function execute provokes the SC execution. This includes the execution of
the InputSerialization procedure, the start function and the OutputSerialization procedure
when the intention assigned to the method chunk has been achieved. The function start is used
to return a boolean value telling if the chunk has been completely executed and thus if the
intention has been achieved.

Figure 4 presents the example of the software chunk implementing the method chunk
« <(Scenario : s), conceptualise scenario >.

conceptualize scenario

RCId : integer, comment ‘identification number of a requirement chunk’
SemPatterns : text, comment ‘text containing the semantic patterns of the scenario’

input
variables

output
variables

RCId : integer, comment ‘identification number of a requirement chunk’
SemPatterns : text, comment ‘text containing the completed semantic patterns of the scenario’
structuredText : text, comment ‘structured text of the scenario’
actionSet : action[], comment ‘set of actions described by an identification number and a type (flow or atomic)
FlowSet : flow[], comment ‘definition of each flow of action mentioned in the scenario
AtomicSet : aatomic[], comment ‘definition of each atomic mentioned in the scenario

procedure execute (idRC : integer)
{ InputSerialization (idRC)
 if start () then OutputSerialization()
 end if
}

execute (situation)

start ()

Product manager
OuputSerialization()InputSerialization(idRC)

figure 4 : Software chunk associated to the method chunk « conceptualise scenario ».

3.2 Software path

A software path implements a method path. Therefore it is composed of a collection of
software flow chunks and software step chunks. The former define possible orderings of the
latter. A software path is realised by including in every step chunk the invocation of the flow
chunk which corresponds to the possible way of progressing from this step.
In order to guide the software engineer in the realisation of the path, we propose the template
presented in figure 5.

software chunk

step software chunk

is-a link

interface :
 input variables : <definition>
 output variables : <definition>
 abstract methods :
 InputSerialization (<situation>)
 OutputSerialization()
body :
 variables : <definition>
 methods :
 implemented methods :
 boolean start () {...}
 execute (<situation>) {...}
 abstract methods :
 InputSerialization(<situation>)
 OutputSerialization ()

interface :
 abstract methods :
 GoToNext(<situation>)
 GoToPrevious (<situation>)
body :
 methods :
 implemented methods :
 execute (<situation>) {...}
 abstract methods :
 GoToNext (<situation>)
 GoToPrevious (<situation>)

figure 5 : Definition of a step software chunk.

The template shows that we propose to overload the execute function of every step chunk.
This corresponds to two abstract procedures goToNext() and goToPrevious(). These two
procedures will have to be implemented by the software engineer. The goToNext procedure
invokes the flow chunk supporting the selection of the next step intention whereas the
goToPrevious procedure permits backtracking to the previous step. The former corresponds to
the normal process proceeding. The latter occurs when the performance of the step chunk has
been aborted. These two procedures are abstract because the step software chunk must be
independent of what it is performed before or after it. Their implementations are made when
the software chunk has to be customised according to the software path it is reused.

We are going to illustrate the use of this component-based approach for designing the software
tool named « l’écritoire ».

4 Illustration of one CREWS method path in « L’écritoire » software tool

Figure 6 visualises one of the CREWS method paths which is implemented in the software
prototype called « l’écritoire ».

The path is composed of twelve step chunks and three flow chunks. For sake of readability, we
grouped in figure 6 step chunks corresponding to different ways of fulfilling a single intention.
Thus, the path is composed of, sort to speak, 6 macro steps (in shadowed boxes). There is a
predefined flow from the elicit scenario to conceptualise scenario through analysis &
verification of scenarios. When the application engineer has initiated the process by choosing
the elicit scenario intention, he will be guided through the predefined flow. Of course at any
moment, he can decide to not follow the on-going flow. On the contrary the steps to construct
the glossary and the various ways to elicit goal are not integrated in a predefined flow. This
means that at any moment the application engineer using l’écritoire may decide to select any of
these two intentions.

s5 : Verify scenario by checking the terminolgy
s6 : Verify scenario by using liguistic completion rules
s7 : Verify scenario by disambiguating anaphoric references

s4 : Analyse scenario semantic
with a linguistic case grammar

s8 : Conceptualize scenario
f1 : <(scenario : s / state(s)=elicited), progress by analysing its semantic>
f2 : <(scenario : s / state(s)=analysed), progress by applying a verification strategy>
f3 : <(scenario : s / state(s)=analysed), progress by conceptualising the scenario>

f1

f2

f1

f3

s1 : Elicit scenario by using style guidelines
s2 : Elicit scenario by using content guidelines
s3 : Elicit scenario by consulting glossary

s9 : Elicit goal by using compositon rules
s10 : Elicit goal by using refinement rules
s11 : Elicit goal by alternatives rules

s12 : Construct glossary

figure 6 : Example of method paths implemented in L’écritoire.

The programming environment we have chosen to explore the framework and to implement
l’écritoire is Visual Basic. Every software component was designed and implemented using this
programming language.

The product manager we have selected is Access DBMS because of its inter-operability with
Visual Basic. The product handled by the method path shown in figure 6 is described by the
following set of schema relations :

• Verb (name) : represents the relation storing the verbs of the glossary,
• Object (name) : corresponds to the objects list of the glossary,
• Actor(name) : is the actors list of the glossary,
• RC (sid, RcName, goal, manner, type, LNText, semanticPatterns, state) :allows to

store information about a requirement chunk,
• Action (sid, actid, actionType) : permits to represent the list of actions in a scenario

content of a requirement chunk,
• Flow (sid, actid, flowType, flowcondition, action1, action2) : explains all the flows

of actions mentioned in a scenario content of a requirement chunk,
• Atomic (sid, actid, verb, from, to, parameter, text) : provides the list of atomic

actions found in a scenario content of a requirement chunk with their definition.

The software chunks of this software path have been adapted to this product manager. It
means that InputSerialization and OutputSerialization procedures of each software chunk
have been implemented in order to get (resp. to transfer) product parts from (resp. to) the
product manager. It implies the implementation of the GoToNext and GoToPrevious
procedures of each step chunk. Figure 7 illustrates this adaptation of the software chunk
related to s8 (conceptualise scenario). The input and output variables used in these procedures
are mentioned in shadow style.

conceptualize scenario

private Sub InputSerialization (idCur As integer)
Dim analyse, analyse1 As Recordset
Dim mydb As Database
Dim rech As String
Set mydb = Workspaces(0).OpenDatabase("Product.MDB")
Set analyse = mydb.OpenRecordset("RC", dbOpenTable)
rech = "select * from RC where [sid] = " & idCur
Set analyse1 = mydb.OpenRecordset(rech)
analyse1.Edit
SemPatternsSemPatterns=analyse1.Fields("semanticPatterns")
analyse1.Close
mydb.Close
End Sub

private Sub OutputSerialization ()
Dim analyse, analyse1, atomic, action, flow As Recordset
Dim mydb As Database
Dim rech As String
Set mydb = Workspaces(0).OpenDatabase("Product.MDB")
Set analyse = mydb.OpenRecordset("RC", dbOpenTable)
rech = "select * from RC where [sid] = " & RCIdRCId
Set analyse1 = mydb.OpenRecordset(rech)
analyse1.Edit
analyse1.Fields("semanticPatterns")=SemPatternsSemPatterns
analyse1.Update
analyse1.Close
Set action= mydb.OpenRecordset("Action", dbOpenTable)
for i =0 to nbAct -1
 action.AddNew
 action.Fields("sid")=RCIdRCId
 action.Fileds("actid")= actionSet(i, 0)actionSet(i, 0)
 action.Fileds("actionType")= actionSet(i, 1)actionSet(i, 1)
 action.Update
next i
action.close
Set flow= mydb.OpenRecordset("Flow", dbOpenTable)
for i =0 to nbFlow -1

flow.AddNew
 flow.Fields("sid")=RCIdRCId
 flow.Fileds("actid")= flowSet(i, 0)flowSet(i, 0)
 flow.Fileds("flowType")= flowSet(i, 1)flowSet(i, 1)
 flow.Fileds("flowCondition")= flowSet(i, 2)flowSet(i, 2)
 flow.Fileds("action1")= flowSet(i, 3)flowSet(i, 3)
 flow.Fileds("action2")= flowSet(i, 4)flowSet(i, 4)
 flow.Update
next i
Set atomic= mydb.OpenRecordset("Atomic", dbOpenTable)
for i =0 to nbAtomic -1
 atomic.AddNew
 atomic.Fields("sid")=RCId
 atomic.Fileds("actid")= atomicSet(i, 0)atomicSet(i, 0)
 atomic.Fileds("verb")= atomicSet(i, 1)atomicSet(i, 1)
 atomic.Fileds("from")= atomicSet(i, 2)atomicSet(i, 2)
 atomic.Fileds("to")= atomicSet(i, 3)atomicSet(i, 3)
 atomic.Fileds("parameter")= atomicSet(i, 4)atomicSet(i, 4)
 atomic.Fileds("text")= atomicSet(i, 5)atomicSet(i, 5)
 atomic.Update
next i
mydb.Close
End Sub

Figure 7 : Illustration of the technical adaptation of the « conceptualise scenario »chunk.

In addition each step chunk of this software path has been connected to the flow chunk helping
to progress from it or to backtrack to its previous step. The adaptation of the step chunk to the
method path is illustrated in figure 8 by showing the code of the GoToPrevious and GoToNext

procedures. The flow chunks invoked are mentioned in a shadow style. As a reminder, we give
the code of the execute procedure which is similar to all the steps.

private Sub GoToPrevious()
// RCId is the local variable of the chunk
// containing the RC identification
// number
f1f1.execute (RCId)
End Sub

public Sub execute (idRC As integer)
InputSerialization (idRC)
if start () then OutputSerialization()
 GotoNext ()
 else GoToPrevious ()
 End If
EndSub

verify & analysis scenario

private Sub GoToNext()
f3f3.execute (RCId)
End Sub

Figure 9, 10 and 11 illustrate three steps namely to elicit, to analyse and to conceptualise a
scenario. In figure 9, the three ways of eliciting a scenario implemented in s1,s2 and s3 by the
corresponding button. The figure shows an excerpt of a textual scenario produced by the
application engineer using the style guidelines. When the application engineer pushes the OK
button, the f1 flow chunk is executed and the window presented in figure 9 is displayed.

figure 9 : The elicit scenario chunk.
The scenario elicited in the previous step appears in the upper text field of the window. In
order to perform the s4 chunk, the application engineer has to pushed the button « linguistic
check ». This trigger the analysis performed using a linguistic case grammar. The result
appears in the two text fields as shown in figure 10.They correspond to (a) the instantiated
case patterns and (b) the errors detected by the semantic analysis. By pressing the OK button,
the verify scenario step is suggested by the f2 flow chunk. Let assume that the verification has
been performed and that following f3 flow chunk the « conceptualise » step is triggered as
presented in figure 11.

Figure 10 : the analysis step chunk.
A shown in figure 11 the conceptualisation step generates a formalised scenario description
presented in an indented format. This is achieved by pushing the « map » button. This
formalisation uses the semantic patterns instances generated in the previous step.

Figure 11 : the conceptualise chunk.
Pushing the OK button of the window shown in figure 11 ends the predefined flow initiated by
elicit scenario. Thus, the tool presents the main menu which has shown in figure 12 comprises
the three top level intentions of the path namely elicit scenario, construct glossary and elicit
goal.

Figure 12 : The main menu of « L’écritoire ».

The development of the software tool « l’écritoire » has followed a specific process that we
describe in next section. These guidelines help software developers to use our reuse centric
approach to build a software tool.

5 Guidelines supporting a software path definition from a method path

The purpose of this section is to help the method engineer to build his software path from a
method path definition. As a reminder, a method path is a collection of method chunks which
are either steps or flow chunks. Therefore, the software path of a given method path is built by
selecting the software chunks implementing the method chunks belonging to this method
chunk.
The purpose of the software tool development is to reuse the software chunk associated to
each method chunk used in this road map. The reuse of software chunk requires their
adaptation to the environment in which they must be invoked. Therefore, guidelines are
provided to support the method engineer in his task.

<situation=(MethodPath : m) ,intention= develop the CASE tool supporting m> can be viewed
as a "design by reuse" process composed of 8 steps :

step 1 : <situation=(MethodPath : m), intention=select product management policy > :

• The development of the product management policy leads to (i) define the product, (ii)
select the product manager. This could be repository-oriented, database-oriented or file-
oriented, and finally (iii) implement the product schema into the selected manager.

step 2 : <situation=(MethodPath : m , ProductManager : p, SoftwarePath : s),
intention=optimise the steps implementation>

• group step chunks specified into the method path having « complementary or alternative»
relationships (see figure 6 for « l’écritoire »).

• adapt software path to this grouping.

step 3 : <situation=(MethodPath : m , ProductManager : p, SoftwarePath : s),
intention=optimise the flows implementation>

• group flow chunks specified into the method path if it is necessary.

step 4 : <situation=(MethodPath : m , ProductManager : p, SoftwarePath : s),
intention=implement the InputSerialization & OutputSerialization procedures for each
software chunk mentioned in s>

• Implement the InputSerialization and the OutputSerialization procedures of each software
chunk mentioned in s.

• The InputSerialization procedure must take into account the decision taken in step 1. The

input parameter of this function is the situation on which the chunk should be applied. The
extracted information is stored locally into input variables of the chunk.

• The OuputSerialization procedure transfer created or updated information (stored in output
variables) to the product manager.

step 5 : <situation=(MethodPath : m , ProductManager : p, SoftwarePath : s),
intention=implement the GoToNext and GoToPrevious procedures for each step software
chunk mentioned in s >

step 6 : < situation= (SoftwarePath : s / for each i in s, state (i)=implemented), intention=
Verify the vivacity of the software chunks>

• For each flow chunk or step chunk not invoked by at least one step chunk (resp. one flow
chunk), we determine if it is a mistake or if it is a head of a path which will be invoked by
the application engineer. If it is the case, this flow chunk (resp. a step chunk) becomes a
menu option in the CASE tool.

step 7 : < situation= (SoftwarePath : s / for each i in s, state (i)=verified), intention= construct
the Main Window of the CASE tool>
• Each root of a path which is either a flow or a step chunk becomes a menu option. Because

this chunk has a situation as input, a dialogue box should be implemented to support the
application engineer in the selection of the situation on which he wants to apply this chunk.
Therefore, GUI event handler of this dialogue box must invoke the execute procedure of the
chunk with the corresponding situation.

step 8 : < situation= (SoftwareApplication : a), intention= optimise the code>
• Avoid to execute a procedure or a function without code or with only one instruction.
• If the situation transferred from one step to another is always the same, avoid to initialise

the following step from the product manager but from variables shared between these two
steps.

6 Conclusion

The paper has presented a component-based approach for developing software tool supporting
a method built « on the fly ». The main characteristic of this approach is to be a reuse-centric
approach for constructing the method and its software tool. It means that the method as well
as the software tool are constructed by assembling method chunks (resp. software chunks).
The originality of this component-based approach is to propose a process centred framework
which considers process as being intentional. And the process performance in this view is a
route between steps that we called the process flow. Steps achieve intentions and result in
product transformation whereas the flow represents the sequence of intentions that have been
considered. This novelty approach is applied in the both domains method engineering and
software engineering. The former aims at building methods « on the fly » whereas the latter
leads to build a software tool by reusing, assembling and adapting software chunks.
This approach has been experimented in the CREWS project by developing one of the
CREWS method paths in the software tool « l’écritoire ». The experimentation has led that the
process centred approach can be generalised to built faster software tool of a specific method
path. But it also shown that Visual Basic is not the best programming environment for
supporting the definition of abstract modules, their adaptation and their reuse. We will shift to

a more appropriate programming environment such as Java because it manages abstract
classes, classes, inheritance and its portability is a strong criteria to take into account.
In addition, a design for reuse will be also defined in order to support method engineer as well
as software engineer in the method base improvement.

References

[Booch 87] G. Booch : « Software components with ADA : structures, tools and sub-
systems », Benjamin Cummings, 1987.
[Harmsen 94] F. Harmsen, S. Brinkkemper, H. Oei : « Situational Method Engineering for
Information System Project Approaches », Proc of the conference on Methods and Associated
Tools for Information Systems Life Cycle, eds A.A. Verrijn-Stuart and T.W. Olle, pub. North
Holland, IFIP WG. 8.1, 1994.
[IFIP 96] Proc. Of the Conference on Method Engineering , IFIP WG 8.1, ed. Chapman & all,
Atlanta 1996.
[Plihon 95] V. Plihon, C. Rolland : « Modelling Ways of Working », Proc. Of the 7th

International Conference on Advanced Information Systems Engineering, CAiSE’95, Springer
Verlag 95.
[Plihon 98] V Plihon, J. Ralyte, A. Benjamen, N.A.M. Maiden, A. Sutcliffe, E. Dubois, P.
Heymans : « A reuse-Oriented Approach for the Construction of Scenario Based
Methods »,ICSP’98 (submitted).
[Priéto-Diaz 87 a] R. Priéto-Diaz : « Domain Analysis for reusability », Proc. Of
COMPSAC’97, Tokyo, Japan, 1987.
[Priéto-Diaz 87 b] R. Priéto-Diaz , P. Freeman : « Classifying software for reusability », IEEE
software, vol 4, n°1, january 1987.
[Priéto-Diaz 90] R. Priéto-Diaz: Domain Analysis : an introduction », ACM SIGSOFT
software engineering, vol 15, n°2, april 1990.
[Rolland 94] C Rolland, G. Grosz : « A General Framework for describing the requirement
engineering Process », IEEE conference on Systems, Man & Cybernetics, CSMC’94, San
Antonio, Texas, 1994.
[Rolland 95] C Rolland, C. Souveyet, M.Moreno : « An approach for defining Ways of
Working », Information Systems Journal, Vol 20, N°4, pp337-359,1995.
[Rolland 96] C Rolland, V. Plihon : « Using generic chunks to generate process model
fragments », Proc. Of the 2nd Conference on Requirements Engineering, ICRE’96, Colorado
Springs, 1996.
[Rolland 98 a] C. Rolland, C. Ben Achour : « Guiding the construction of textual use case
specifications », accepted to Data Knowledge Engineering Journal.
[Rolland 98 b] C Rolland, C. Souveyet, C. Ben Achour : « Guiding », submitted to TSE
journal.
[Rolland 98 c] C Rolland, V. Plihon, J. Ralyte : « Specifying the reuse context of Scenario
Method chunks », paper accepted to the Conference on Advanced System Engineering
(CAiSE’98), 1998.
[Si Said 97] S. Si Said : « Guidance for requirements engineering process », Proc. Of the 8th

conference on Databases & Expert Systems Applications, DEXA’97, Toulouse, 1-5 September
1997.

