CREWS Report 98-11

Appeared in
Proceedings of the Eight annual Workshop on Information Technologies and Systems WITS'98. Computer Science and Infor-
mation Systems Reports TR-19, University of Jyvaskyla, Finnland.

CASE Environment Adaptability:
Bridging the Islands of Automation

by

K. LYYTINEN*, P. MARTIIN*, J.-P. TOLVANEN?*,
M. JARKE*, K. POHL*, K. WEIDENHAUPT*

(*): Department of Computer Science
and Information Systems

University of Jyvaskyla, Finland

(**): Lehrstuhl Informatik V, RWTH Aachen
Ahornstral3e 55, 52056 Aachen, Germany
+49 (0)241 80 21 501
{haumer,pohl}@informatik.rwth-aachen.de

CASE Environment Adaptability:
Bridging the I slands of Automation

Kalle Lyytinen Matthias Jarke
Pentti Marttiin Klaus Ponhl
Juha-Pekka Tolvanen Klaus Weidenhaupt
Department of Computer Science Informatik V
and Information Systems RWTH Aachen, Germany

University of Jyvaskyla, Finland

Abstract

In current CASE environments a user has to choose between efficient computerized sup-
port using a fixed methodical framework which may not fit his situation, or the freedom to
do what seems appropriate in the given circumstance, but at the cost of losing efficient
technological support. In this paper we examine adaptable metamodel based environments
as a means to resolve this dilemma. Metamodel based environments provide means to rep-
resent and modify knowledge about development products, processes, and representation
schemes to improve the designer-task fit. Metamodel based adaptability is not a new inno-
vation. Yet, earlier metamodel based approaches have tended to create islands of automa-
tion that focus on improving adaptability either in ontologies, notations, or process defini-
tions. The paper applies a framework which integrates these aspects and thereby increases
environment adaptability that covers a wider spectrum of development situations. The
metalevel based integration is demonstrated by describing how two metamodel based tools
focusing on different aspects of adaptability can be integrated. The resulting integrated
environment encompasses both product (ontol ogy/notation) and process aspects.

1 Introduction

Information systems development (ISD) is a knowledge intensive and complex undertaking,
and adequate tool support for its improvement has been hard to come by. In fact, the state of the
art in support functionality is far from adequate (cf. [10]). In current CASE environments a user
has to choose between efficient computerized support using a fixed methodical framework
which may not fit his situation, or the freedom to do what seems appropriate in the given cir-
cumstance, but at the cost of losing efficient technological support. In this paper we argue that
one main reason for this has been a focus on *“islands of automation” in thinking of support
functionality, which neglects sufficient levels of adaptability in combining tool support. Only
through achieving high levels of adaptability that are easy to implement and broad enough in
terms of functionality we can expect advances in CASE environments.

The need for adaptability can be explained by differences across development processes, deliv-
erables and varying contingencies at different stages. Therefore ISD methods combined with
tools have to be modified to take into account development contingencies such as uncertainty,
size, time, resources, and available skills [4], [13], [15], [6]. The need for adaptability is further
emphasized because the contingencies are likely to evolve over time within and across projects.
Several surveys [20], [8] and case studies [1], [14] confirm the need for higher levels of adapt-
ability. Method developers (e.g. [3]) building standardized methods have also noticed the need
for situational adaptability. From these observations two requirements in developing tool envi-
ronments arise. First, the choice of methods in terms of concepts, notations and processes

should be as little as possible constrained by chosen technologies. Second, the environment
must be sufficiently flexible in that enough degrees of freedom in tool use are available at any
process stage i.e. any possible route to adequate system solution should be supported.

Two questions we will ask in this paper are: 1) how such adaptability can be achieved, and 2)

what remains to be done to achieve such adaptability? To the first question we suggest a meta-

modeling approach, i.e. an approach in which knowledge about the system and its devel opment

processes can be changed in the tool environment at one level higher [0 through metamodels.

These metamodels span over method’s ontologies, notations, and processes to achieve a higher
level in adaptability. This is but one approach in achieving adaptability: the others include con-
trol integration through standardized tool interfaces [23] or bus architectures [21]. However,
these are insufficient because they neglect the explicit modeling of systems development
knowledge.

Although metamodeling in itself is not a new innovation, we want to pinpoint that current
metamodeling approaches result in “islands of automation” in that they focus primarily on one
aspect of the metamodeling area. To overcome this limitation we apply a (meta) framework
which shows how these islands can be bridged and how this bridging helps in achieving adapt-
ability of CASE environments. This will answer the second question. The environment adapt-
ability is demonstrated in more detail by describing integration of two metamodel based tools
which as “islands of automation” focus on different aspects of adaptability: One in adaptation
of ontologies and notations (i.e. product) and the other in adaptation of processes. The envi-
ronment integration is described at two levels. At the metalevel we discuss on alternatives to
integrate product and process based metamodels. At instance level we use the proposed inte-
gration schema to demonstrate integration of ISD methods. The resulting integrated environ-
ment encompasses both product and process aspects.

The paper is organized as follows. Sect. 2 describes a framework for adaptable metamodel
based environments. Sect. 3 describes examples of metamodel based adaptability from both the
product and the process side. In Sect. 4 we discuss the alternatives to achieve adaptable inte-
gration between different tools and demonstrate integration using the framework. Sect. 5 con-
cludes the paper by suggesting directions for future research.

2 Framework for Metamodel Based Adaptation

We will analyze metamodel based adaptation by applying a framework called diamond model
[10]. The model (cf. Fig. 1) consists of two parts: (1) a triangle, which describes a possible
space of choices when adapting methods. This space is organized in terms of ontologies, nota-
tions and processes; and (2) the goals of an ISD project at the top which drive the choices made
in the adaptation triangle. In this paper we focus on the choices inside a method, i.e. triangle
part of the framework.

The idea of the triangle shape is to illustrate that these three aspects are neither exclusive, nor
orthogonal, i.e. each viewpoint complements the other viewpoints and all are required to yield
"complete" adaptability in systems development and its Goal

computer support.

Each aspect of the triangle has been modeled and re
sented independently using various alternative repre-
sentation schemes and mechanisms (cf. [10] for a sur-
vey). These approaches focus on different aspects of
method adaptability (arrow 1 to 3 in the Fig. 1) and re-
sult in different types of metamodels. This explains why
“islands of automation" in terms of computer suppo

1

3
S onows [oces

6%
/7
v ¥4

have been built. In the following, we first describe each node of the model individually (arrow
1-3in Fig. 1) and then focus on the rel ationships between them (arrows 4-7).

2.1 Method Adaptation within a Single Node

2.1.1 Ontological Adaptability

Because it is impossible to represent a system in its full detail methods focus on a small num-
ber of abstractions based on a set of generic concepts. The enumeration of the concepts used in
the conceptualization is called ontology [24]. An example of such an ontology would be use
case based requirements engineering [3] in which concepts like actor and use case are defined.

Accordingly, ontological adaptation deals with establishing applicable abstractions based on a
set of generic concepts. Due to differences in systems, development contingencies and different
philosophical positions there exist a wide variety of ontologies, and their concepts. Arguments
in favor of different ontological constructs in entity-relationship (ER) modeling are good ex-
amples for the needs to different ontologies. An example of ontology adaptation at the detailed
level would be adding of an isA-relationship between entities. An example of ontological ad-
aptation at higher granularity level would be defining an ontology for use case based require-
ments engineering.

2.1.2 Notational Adaptability

Notations are used to represent and manipulate ontological constructs. Notations can take vari-
ous presentation styles including graphical, matrix, tabular, textual, symbolic, or mixed syn-
taxes. The simplest form of notational adaptability isto offer a selection of a symbol from a set
of graphical symbols, e.g. choose between a line with a small triangle or an arrow to represent
isA-relationship in ER diagrams. Other examples of notational adaptability which do not affect
ontologies is a change in the notation still using the same presentation style (e.g. DFD of De-
Marco [5] to Yourdon [26], or use different presentation styles (e.g. a graphical representation
of entitiesinstead of alist).

2.1.3 Process Adaptability

Process models capture a set of partially ordered steps intended to produce the desired product
[16]. In creative domains, like ISD, the entire process cannot be fully predefined in advance.
Instead, the process should be defined for small, well-known fragments and adapted and ex-
tended while process knowledge increases [9]. Organizations and individuals continuously ex-
periment with the most appropriate way of working even if a consensus on the ontology and
notation has been reached. Hence, process adaptations most often neither change the concepts
nor the representations but merely influences how processes are carried out. Examples of proc-
ess adaptation are defining new strategies for integrating two ER schemas, or changing the or-
der in which the entities and relationships should be identified from a use case description and
added into the ER diagram.

2.2 Integrated Adaptability

The majority of adaptations cannot be done adequately by changing one aspect of a method
only. In the diamond model, these adaptation possibilities are illustrated by the relationships
between ontology, notation and process (cf. Fig. 1). Depending on the view taken on meta
modeling, several starting points are possible: In the case of ontology-centered metamodeling,
integrated adaptability starts by defining the underlying conceptua structure, then relating no-
tations to the concepts, and finally defining processes for manipulating these concepts (arrow 5
and 6, Sect. 2.2.1). In a notation-centered metamodeling scenario, the type of documents built
with modeling techniques determine the ontologies used and process followed (arrow 7, Sect.

2.2.2). In a process-centered metamodeling scenario, changes in a process can suggest new or
changed concepts and their representation (arrow 4, see Sect. 2.2.3).

2.2.1 Ontology-driven Adaptability

Changes in an ontology can reflect either or both to notations and processes (arrow 5 and 6 in
Fig. 1). From the notational perspective, new or changed ontological concepts result in adding,
changing or purging representations. For example, aline with a small triangle may be required
to represent a newly introduced isA-relationship in ER diagram. Another example is a defini-
tion of diagram representation for use case models.

Modifications in an ontology always induce changes in a process because an ontology affects
the overall way of working. For example, if the ontology for use case modeling has been added,
a set of elementary process steps for manipulating these concepts (e.g. creation, modification,
deletion of actors and use cases, relation of actors to use cases etc.) is required. Note that each
ontological construct can only be manipulated via an associated notational element. Therefore,
process steps are normally defined through changes in a notational system (illustrated by a
dotted linein Fig. 1).

2.2.2 Notation-driven Adaptability

Notation oriented metamodeling can lead to changed process steps (arrow 7 in Figure 1). These
steps deal with notational aspects of representations (cosmetics) without affecting the underly-
ing conceptual structure. Examples of such are diagonalizing a matrix, or sorting entities in a
list. In the latter case, adding an entity list together with ER-diagram necessitates that the proc-
ess model defines when and how entity lists are created and sorted. As a result, the readability
of the representation isimproved and user can infer more information from it although the rep-
resentation itself provides equal information. Although some changes could also lead to change
the ontology we think it is not common nor desirable scenario for method adaptation.

2.2.3 Process-driven Adaptability

Process adaptation is typically triggered by changes in an ontology or notation, since processes
act on top of notational (and indirectly upon ontological) primitives. In other words, a process
definition requires the existence of a notation (and an ontology). However, process model
changes can conversely also call for adaptations in the other corners of the diamond. We be-
lieve that such adaptations mainly affect notations without changing the underlying ontology.
For example, consider a process fragment "Simplify ER schema' which guides the user in
checking a set of entities whether they can be omitted for ssimplifying the ER schema. If the set
of entities to be checked is large, one would like to distinguish checked entities from non-
checked ones. This cals for the definition of special symbols for checked entities.

3 Support for Adaptability

We now present two adaptable environments that provide partial solutions to the adaptability
problems presented in section 2. MetaEdit+ [11] is a notation and ontology-oriented meta-
CASE tool, which provides tools for specifying an ontology and a related notation and gener-
ating automatically (on the fly) a set of modeling tools to support the method. PRIME" [18]
focuses on process-driven metamodeling. It alows to specify processes, to enact them, and to
reflect the process enactment directly in the behavior of the modeling tools.

! PRIME: PRocess Integrated Modeling Environments

3.1 MetaEdit+

MetaEdit+ is a multi-user CASE environment in which each MetaEdit+ client contains a set of
modeling tool for ISD and a set of metamodeling tools for making the adaptation.

At the IS modeling side, MetaEdit+ provides three modeling editor types (Diagram Editor,
Matrix Editor, Table Editor) which are adapted based on the metamodel. Hence, diagram editor
can support both structured methods and object-oriented methods. Each editor type contain a
set of predefined operations which are independent from any ontology or notation. Examples of
these are scrolling and zooming in Diagram Editor, diagonalising in Matrix Editor for and
sorting in Table Editor. Each of the editor related operations are predefined and no adaptation
among them is possible. Other parts of the process are dependent on the method followed in an
editor.

At the adaptation side, MetaEdit+ provides meta- - % — %1 1-
modeling tools for defining concepts and associ- inclusion A

ated notations, which can be graphical, matrix and
|

tabular ones. The metamodeling tools have been

applied to model tens of methods in terms of their § oo S
ontology and notation. An ontology is defined by A T

using the GOPRR [11] (Graph, Object, Property, ’—A—\\x ’—AT
Role and Relationship®) metamodeling formalism properslnk

(see Fig. 2). Graph specifies a technique (graph W{)rapheleme..t Link Collection
type), Object, Role and Relationship specify ee- \\ eer

]

ments of a graph type and Property specifies
property types to describe these elements as well

ﬁA |
Relationship

Object Role Add to

as graph types. The structure of how these ele- graph
ments are bound together is managed in a graph involvement palticipation
type. In addition, GOPRR supports explosions [X

and decompositions (specifies what object types | _| %

i includes
ER diagram ISA Triangle

can be linked to graph types) and links between
property and object types. Each GOPRR concept
can contain a graphical representation which de- Fig. 2: GOPRR meta-metamodel
fines the appearance of the concept.

Pure notational adaptation is straightforward in MetakEdit+ thanks to the separation between
conceptual and notational elements. A user can change between graphical, matrix and tabular
notations which all are based on the same conceptual data. For example, an ER diagram is eas-

ily changed to aform of entity list by just opening a Table Editor for an existing graphical dia-

gram. Modification of notational elements are done by using metamodeling tools. For example,

when changing the symbol of ‘isA’ we need to select it in Relationship tool and update the
symbol by using a Symbol Editor. The changes are seen immediately when opening a model
containing ‘isA’ relationships. Related to the process part, no modifications is possible based
on notational changes. In other words, MetaEdit+ provides a set of fixed elementary operations
for manipulating notations (e.g. size, color, etc).

Next we discuss how to create a new relationship type ‘iSA’ between entity types in ER model
and a new representation for it (notational adaptation affected by ontological changes). Firstly,
we create ‘isA’ relationship type by using Relationship tool. Secondly, we add ‘isA’ to the ex-
isting graph type (i.e. ER diagram) and make a new binding type: ‘isA’ involves two role types,

2 In the following, instances of types are in lowercase, e.g. object, types are appended with 'typ€, e.g. object type, and
metatypes are initially capitalised, e.g. Object.

a ‘super part’ and a ‘sub part’, both of which is participated by an ‘entity type’. Also additional
constraints can be added here, such as possibility to create n-ary relationships. Thirdly, we at-
tach a triangle symbol for ‘isA’. After these steps we can generate modifications to be used in
editors.

The result of the adaptation is illustrated in the grayed part of Figure 2. ‘ISA -relationship is
part of ER diagram and it has a representation definition. The fixed process structure is illus-
trated in the figure through the operations defined at the GOPRR. GOPRR provides predefined
elementary operations, such create and remove, which in case of relationships include adding a
relationship into a graph. This operation is possible for all relationships independently of the
specific ontology and notation.

To illustrate how to add a whole ontology and associated notation we have selected use case
diagrams. We first define a graph type called a ‘use case diagram’, and its concepts as object
types (‘actor’ and ‘use case’), relationship types (‘communication’, ‘extends’ and ‘uses’), and
role types (‘receives’, ‘extends/uses’, and ‘is extended/used’). Each type is modeled as separate
and reusable fragment. Each of them can be identified and described with property types as
follows: the property types ‘name’ and ‘description’ are attached to the graph type ‘use case’
and the object types ‘actor’ and ‘use case’. For each property type there exist an entry field in a
dialogue, which appears to be filled when creating or editing instances of these types. When
composing the use case technique object, relationship, and role types need to be bound together
(see isA example above). To allow hierarchical models we define a decomposition from the
‘use case’ to the ‘use case diagram’. After we have defined the ontology we attach notational
elements for each type, a help description, and consistency checking reports. An appropriate
“human” symbol is attached to the object type ‘actor’ and an ellipse is attached to the object
type ‘use case’. Role types are presented with various types of lines (black line for communi-
cation, grayed line for others) and line-end symbols (black arrow for communication, grayed
arrow for ‘is extended/used’). Relationship types do not have symbols in the use case diagram.

3.2 PRIME

PRIME aims at incorporating fine-grained, adaptable process guidance into CASE environ-
ments, thereby forming BRocessttegratedViodeling Environment. PRIME is based on an
environment metamodel for homogeneously modeling both processes and tools and a generic
architecture for process-integrated tools which adapts tool behavior to the definition in the en-
vironment model. PRIME is implemented as an object-oriented framework and has so far been
specialized to develop tools for two environments: PRO-ART 2.0, a requirements traceability
environment [17], and TECHMOD, an chemical engineering environment.

In contrast to traditional process-centered environments like SPADE [2] or ProcessWeaver [7],
PRIME-based tools (1) are process-sensitive and (2) able to request the enactment of process
fragments from the process engine. Process-sensitive tools reflect process model enactment in
their user interface by dynamically adapting access to and highlighting those products and op-
erations which are allowed and useful in the current enactment state according to the process
definition. Requesting enactment means that the tools do not only offer at their user interface
their elementary operations (like creation, modification and deletion of products), but also al-
low the invocation of more complex process model fragments which are applicable in the cur-
rent situation.

The central part of PRIME’s environment meta-metamodel (upper half of figure 4)Garhe

text [19], [20]. A context represents a process fragment and relates a tetatiion the user

wants to achieve with Situation in which the intention is applicable. A situation describes a
constellation of the products under development. How a context is performed is detailed by

SpeC| al |Z| ng the Context IntO thl’ee dlStl nCt related Situation related_Intention

Situation)) Intention

categories: (1) an executable context oper- o 8 Context #mm == == = = = M odel
ates through an action on the products un- S composed.. 2 :

der development and represents an atomic - l l | Vet odel
process step; (2) a plan context is com- Conten Conton N
posed of a set of contexts and defines a e oo oy ' | |Concapts
control structure among the contexts of | e Action @ & : ",f{;%#o"n’ o
this set; (3) a choice context describes a | > [T proyices o
decision point within a process fragment provides ""’V;’”“,/ | Mogel
and is defined by the set of applicable al- | Feae o | oo Gemem

ternatives contexts. If a choice context is .
activated, the user can decide among these
alternatives.

The lower part of the environment meta-

model offers concepts for modeling the basic capabilities of atool category. Tools are not only
modeled in terms of the actions they provide and the products they operate on, but also by
which graphical shapes (i.e. notational elements) an editor is able to display a product (i.e. an
ontological construct). The interaction capabilities are modeled by the command elements (i.e.
menus, command icons, short keys) atool offers.

By interrelating the process model and the tool model through a small number of relationships
an integrated environment model is formed. These relationships assign executable and choice
contexts to certain tool categories. PRIME-based tools interpret the definitions in the environ-
ment model and thereby reflect process adaptations in an accordingly changed tool behavior,
e.g. offer new process fragments as new command in their user interface (for details see [18]).

We now illustrate by a brief example how PRIME supports the process adaptability scenarios
sketched in section 2. Pure process adaptability involves the definition of new or modification
of existing process fragments which solely relies on existing ontologies and notations. A large-
grained example for pure process adaptability is to define a new plan context which guides the
user during schema integration of two ER models. The plan context could specify that the user
should first identify synonyms and homonyms in the two ER models, then create a new dia-
gram, and finally transfer the entities and relationships from the old diagram to the new dia-
gram with appropriate identifications of identical entities and renamings of conflicting entities.
These substeps are also modeled as contexts, e.g. a choice context in which the user can decide
if he wants to merge two entities with the same name to one or to rename them differently. At
the lowest decomposition level, executable contexts are defined and operationalized by actions
of the ER editor. The new plan context can be made visible in the ER editor by relating it to a
choice context of the ER editor and assigning a control element (e.g. menu point) of the ER
editor to the new plan context.

Notation-driven process adaptability is primarily determined by the support for notation adap-
tation offered by PRIME. Currently, limited flexibility is provided in that the method engineer
can choose among a predefined set of graphical primitives for a certain ontological construct.
This enables for example the method engineer to define a process fragment when the ER editor
should display entities by a rounded box instead of using rectangular boxes.

Similarly, the method engineer is empowered to select between a set of predefined ontological
elements provided by the tools. For example, he could hide the concept of ,IsA" relationship in
the ER editor from the IS developer by removing the corresponding association between the
product ,IsA-Link* and the tool category ,ER Editor”. At the process level, this would require

to remove all existing process fragments which manipulate the isA concept. Hence, process

I 1
Pull-Down Command Short-
Menu Icon Key

support can be adapted according to the subset of ontological constructs actually used in a spe-
cific environment.

3.3 Summary and Comparison

Table 1 compares the adaptability strengths of MetaEdit+ and PRIME with respect to the ad-

aptation scenarios applied in section 2. The support provided in a certain scenario is classified

into full flexibility (+), limited flexibility, i.e. choice among a predefined set of alternatives (O),

and no flexibility or consideration of this aspect (). Of specific interest are the rows 4 - 7,
which deal with integrated adaptability, i.e. changes in one diamond node triggered by a change
in another node. Here the adaptability support has to consider the diamond node from which a
change is originated as well as the diamond node which is affected by the’change

Adaptation scenarios | Granularity | Example Support provided by
ME+ | PRIME
1. Ontological adaptability | Technique Define use case ontology + -
Concept Add inheritance type between entity types + ¢]
2 .Notational adaptability Notation Create list of entities + -
Not. Element | Change a symbol for an isA relationship type + O
3. Process adaptability Large Define the task for schema integration O -
Small Change order for creating entities and relationships 4
4. Notational adaptability | Notation Process fragment for deriving ER model from a use case model hgs) -
affected by process changgs been defined ==> Create use case description template
Not. Element | Process fragment for systematically checking (a large number|of) (+) (@)
entities has been defined
==> Create symbols for checked entities
5. Notational adaptability | Notation Use case ontology has been defined + -
affected by ontological ==> Add a use case diagram
changes
Notational IsA concept has been added to ER ontology + (©)
Element ==> Add representation for an isA relationship
6. Process adaptability Large Use case ontology and representation has been defined ==> Defin® (+)
affected by ontological and when and how use cases diagrams are related to ER diagram
notational changes
Small IsA concept and representation has been defined ==> Define how te (+)
check other models when an isA link between entities is createfl
7. Process adaptability Large List representation for ER models has been added ==> Define|whe@ (+)
affected by notational entity lists are created
changes Small List repr. has been added ==> Define when to sort entities — (3]

Table 1: Adaptability scenarios and support provided by ME+ and PRIME.

To summarize, MetaEdit+ provides high levels of ontological and notational adaptability. Cur-
rently it provides no process support, i.e. the actions offered are largely driven by static infor-
mation about the generic behavior of ontological constructs and presentation styles and inde-
pendent on any process definition. There is no notion of composing elementary operations to
more complex process fragments, or to restrict availability of operations on certain modeling
objects depending on the situation. Furthermore, regarding the tool support, each editor type
contains a fixed tool functionality (e.g., zooming, scrolling, diagonalizing, or sorting) relevant
for the editor type in concern and independent from methods. This strategy has its advantages
such as easiness to manage method-tool companionship. Hence, the main limitations are seen
in the process adaptability aspectsin figure 1, which can not be supported in MetaEdit+.

PRIME is best suited for supporting pure process adaptability, i.e. if there is no need to define
new ontological constructs or notational elements. Hence, the focus of metamodeling in

3 The adaptability classification is put into parenthesis if the triggered change is in principle supported, but in practice the
adaptation scenario does not occur since the triggering adaptability is not adequately supported in the environment. For exam-
ple, in row 6 it would be no problem in PRIME to define new process fragments for systematically treating a new defined isA
concept once the basic operations for creating, modifying, deleting and representing it are available in the ER editor. However,
since PRIME does not allow to extend an existing ontology (on a metamodeling basis) this scenario cannot be fully exploited.

PRIME is to define and adapt processes in a flexible manner and to incorporate them in the
tools on top of existing tool support for ontologies and notations used in the environment. Fur-
thermore, PRIME allows to choose the representation of a concept among a set of predefined
shapes, e.g. to change the appearance of an entity from arectangular box to arounded one. Cur-
rently the set of basic operations on an ontological concept as well as its appearance choices are
to certain degree fixed in the tool supporting these concepts. Hence, process adaptation origi-
nated by the introduction of new ontological or notational elementsis not supported in PRIME.

4 A Comprehensive Metamodel-Based Adaptability Approach

An interesting observation drawn from table 1 is that the adaptability strengths of both envi-
ronments are clearly complementary. In this section we combine the adaptability ideas under-
lying MetaEdit+ and PRIME in order to address all corners of the method adaptability diamond
and their relationships (Sect. 4.1). An example for enhanced adaptability which separate tools
can not adequately support is sketched in Sect. 4.2.

4.1 Integrated Metamodels

The key strategy for comprehensive adaptability is to integrate the complementary metamodels
and underlying adaptability mechanisms of MetaEdit+ and PRIME. Figure 4 gives a (simpli-
fied) overview of the integrated metamodel. The numbersin the figure refer to the relationships
of the diamond model supported by the integrated metamodel.

The integration strategy is to replace the product part of PRIME's metamodel by the more

powerful GOPRR concepts. One the one hand, this enables the use of existing support for
adaptability: Ontological constructs and notational primitives supported by MetaEdit+ and pro-

cess adaptability supported by PRIME. On the other hand, to enable integrated adaptability,
process fragments are defined on top of the GOPRR based elementary ontological and
notational actions with PRIME’s process modeling concepts.

More precisely, complex product constellations both referring to the conceptual structure and to
their representation are defined using @tation concept. Furthermore, each elementary
GOPRR action is ,wrapped, by dxecutable Context. Based on these definitions more com-

plex process fragments can be modeled, either as choice contexts or plan contexts. Thus, on the
one hand access to GOPRR based actions can be made dependent on the current process con-
text (by defining choice contexts on top of them). On the other hand, the definition of plan
contexts serves for composing sequences of process steps. (number 6 in Fig 5.).

This integration leads to a comprehensive v

metamodel which covers the ontology, nota
tion, and process aspect of a method. In con-
trast to the situation described in section 3,
tools now are not only able to adapt their be-
havior according to the GOPRR based to@i="
models which specify the products a tool ma:

the processes defined in the contextual proce
models.

mmmmm

4.2 Examplesof Integration cor

We now can view the integrated adaptatio
scenarios in the light of the integrated meta-{, o]
modeling formalism and the associated gene

mechanisms. We illustrate through a short example the benefits gained by combining MetakE-

dit+'s ontology and notation adaptability and PRIME’s process adaptability. Consider an ISD
organization which uses the traditional ER approach. The development of ER models is sup-
ported in the CASE environment by an ER editor. After a while the ISD organization decides to
use the Extended ER modeling. This imposes new requirements on the ER tool affecting all
possible adaptation scenarios. Accordingly, in an integrated environment the adaptability can
be approached either from ontology, notation or process point of view. Since adaptations are
already partially supported in current tools the illustration is based on the adaptation scenarios
which could not be supported with separate metamodels and thus with separate tools (hum-
bered 4,6,7 in Fig. 1 and Table 1).

Ontology driven adaptation deals with adding a new concept for expressing specialization of
entities, namely the concept of isA-relationship. This modification leads to enhance the nota-
tion, namely to add an arrow for representing isA-relationships, and the definition of necessary
actions (e.g. creating, delete, modify, etc.) related to that concept. Next we can define new pro-
cess situations involving the new isA concept and elementary process fragments, i.e. executable
contexts. Accordingly, the process model then provides these executable contexts for the iSA-
relationship. More complex and larger-grained process fragments are then modeled as choice
and plan contexts, which, e.g., prohibit the IS developer from defining circular isA-
relationships

Process driven adaptation emphasizes that we first define the process which is required to
identify, create and refine isA relationships depending on the context and current modeling
situation. For example, a guidance chunk, which models the possible choices for the refinement
of an existing entity, must be augmented by an additional alternative, namely creating a sub
entity and establishing an isA-Relationship between the old entity and the newly created entity.
In our adaptation scenario pure process adaptability is not enough since process changes need
also to be reflected to ontological and notational constructs. This can now be achieved as de-
scribed in the previous paragraph.

Notation driven adaptation in this case deals with distinguishing the actions which could guide
when and how the new concept should be represented, e.g. when it is appropriate to display an
ER model in diagram representation or matrix representation. Elementary actions are depend-
ent on the editor type, e.g. in diagram editor isA relationships are shown as lines whereas in
matrix editor they are shown through cells between two or more entities at axis. Notational
actions are also dependent on the method supported. In a case of isA-relationships and its rep-
resentation, the process model could prescribe that in the diagram editor the sub-entity types
should for example appear below the supertypes and at the same horizontal level.

5 Conclusions and Future Work

In a companion paper we have introduced an adaptability framework [10] which distinguishes
ontology, process, and notation. In this paper we have focused in more detail on CASE envi-
ronment adaptability involving two or three of these aspects at a time. Based on the observation
that current environments only focus on certain aspects while neglecting the others, we have
then compared two environments with complementary adaptability strengths: MetaEdit+ and
PRIME. While MetaEdit+ provides high degrees of ontological and notational adaptability,
PRIME offers very flexible means for incorporating fine-grained, adaptable process guidance
into tool environments.

To combine these strengths synergistically, we have presented an integration of both environ-
ments’ meta-metamodels. The key idea is to re-use MetaEdit’s product part as a basis for pro-
viding elementary actions. On top of these elementary actions we can define more complex

process guidance using PRIME’s process modeling concepts. As a result, we can define the
context of process fragments more precisely in terms of product constellations which refer to

the current state of both ontology and notation. This is demonstrated through a small example
illustrating how such an integrated metamodeling formalism paves the way to a comprehensive
adaptability solution.

The integration of metamodels is only one step towards a fully adaptable CASE environment.
Future work has to concentrate on how to integrate the associated adaptability mechanisms
provided by MetaEdit+ and PRIME. A step forward is to analyze how the metamodels can be
stored and retrieved efficiently during tool execution. Furthermore, we need also to study nec-
essary mechanisms for maintaining the integration between different types of metamodels (i.e.
product and process). This means identification of metamodeling guidelines when adaptation
requirements raise from one aspect of adaptation. Currently, we are examining the interdepend-
encies of these mechanisms at the architectural level, thus allowing for an assessment of the
potentials and difficulties of a technical integration of both environments.

Acknowledgement. This work was partly supported by the European Commission via ESPRIT
Long Term Research project 21.903 (CREWS).

6 References

[1] Adlto, J-M. (1993) Experiences on Applying OMT to [13] Necco, C.R., Galon, C.L. and Tsai, N.W. (1987) Sys-

(2]

(3]

[4]
(5]
(6]
[7]

(8]

[9]

[10] Jarke, M., Pohl, K., Weidenhaupt, K., Lyytinen, K.,
Marttiin, P., Tolvanen, J.-P., Papazoglou, M., (1997)

[11] Kelly,

[12] Marttiin, P. (1994) A Comparative Review of CASE
Shells: a preliminary framework and research outcomes.

Large Scale Systems. In: Proceedings of the Seminar on
Conceptuad Modeling and Object-Oriented Program-
ming, (Eds. A. Lehtola, J., Jokiniemi), Finnish Artificia
Intelligence Society, pp. 39-47.

Bandinelli, S., Fuggetta, A. and Ghezzi, C. (1993) Soft-
ware Process Model Evolution in the SPADE Environ-
ment. |EEE TSE, 19(12), pp. 1128-1144.

Booch, G., Jacobson, I., and Rumbaugh, J. (1997) Uni-
fied Modeling Language: The summary. Rational Soft-
ware Corporation.

Davis, G. (1982) Strategies for information requirements
determination, IBM Systems Journal, 21(1), pp. 4-30.
DeMarco, T., (1979) Structured Analysis and Systems
Soecification. Englewood Cliffs, N.J., Prentice-Hall.
Euromethod (1994) Euromethod Architecture. Eu-
romethod project deliverable work package 3.

Fernstrom, Ch. (1993) Process WEAVER: Adding Proc-

tems Analysis and Design: Current Practices. MIS
Quarterly, December, pg61-475.

[14] Nissen, H., Jeusfeld, M., Jarke, M., Zemanek, G. and
Huber, H. (1996) Managing multiple requirements per-
spectives with metamodels. |IEEE Software, March, pp.
37-48.

[15] Olle, T.W., Hagelstein, J., MacDonald, I.G., Rolland, C.,
Sol, H.G., Van Assche, F.J.M. and Verrijn-Stuart, A.A.
(1991) Information Systems MethodologieS A
framework for understanding, Addison-Wesley Publish-
ing Company, Wokingham, England.

[16] Pohl, K. (1996a) Process-Centered Requirements Engi-
neering. Wiley&Sons, New York.

[17] Pohl, K. (1996b) PRO-ART: Enabling Requirements

Pre-Traceability. In: Proceeding of th& 2nternational

Conference on Requirements Engineering, Colorado

Springs, Colorado, USA.

ess Support to UNIX. In: Proc™Intl. Conf. on Soft- [18] Pohl, K., Weidenhaupt, K. (1997) A Contextual Ap-

ware Processes, Los Alamitos, CA, USA, pp 12-26.

Fitzgerald, B., (1995) The use of system development

proach for Process-Integrated Tools. In: Proc.
ESEC/FSE '97, Zurich, Switzerland, Sept. 23-25, pp.

methods: a survey. Paper ref 9/95, University College 176-192.

Cork.

Jarke, M., Pohl, K., Rolland, C., Schmidt, J.-R. (1994)
Experience-based Method Evaluation and Improvement:

[19] Rolland, C., Souveyet, C., Moreno, M. (1995) An ap-
proach for defining ways-of-workingnformation Sys-
tems, 20(4), pp.337-359.

A Process Modeling Approach. In: IFIP WG 8.1 Confer20] Russo, N., Wynekoop, J. and Waltz, D. (1994) The use

ence CRIS '94Maastricht, The Netherlands.

and adaptation of system development methodologies.
In: Procs. of International Conference of IRMA, Atlanta,
May 21-24, pp.

Meta modeling: A formal basis for interoperability and21] Schefstrém D. (1993) System Development Environ-

adaptability. In:Information Systems Interoperability (B.
Kramer, M. Papazoglou), John Wiley RSP.
S., Lyytinen, K. and Rossi, M.

(1996)

ments: Contemporary Concepts in Tool Integration and
Frameworks. (Eds. Schefstrém D., and G. van den
Broek), Wiley&Sons, Chichester.

METAEDIT+ — A Fully Configurable Multi-User and [22] Smolander, K., Lyytinen, K., Tahvanainen, V.-P. and

Multi-Tool CASE and CAME Environment.

Springer, pp. 1-21.

Information and Management, 25, pp. 11-31.

In: Ad-
vanced Information Systems Engineering, LNCS#1080,

Marttiin P. (1991) MetaEdit - A flexible graphical envi-
ronment for methodology modelling. In: Advanced In-
formation Systems Engineerin¢eds. R. Andersen, J.
Bubenko and A. Sglvberg), LNCS #498, Springer-
Verlag, pp. 168-193.

[23] Thomas I. and Negimeh B.A. (1992) Definitions of Tool
Integration for Environments. |IEEE Software, March,
pp. 29-35.

[24] Wand, Y. (1996) Ontology as a foundation for meta-
modelling and method engineering. Information and
Software Technology, 38, pp. 281-287.

[25] Wijers, G. (1991) Modelling Support in Information
Systems Development. Ph.D. dissertation, Thesis pub-
lishers, Amsterdam.

[26] Yourdon, E., (1989) Modern Sructured Analysis. Pren-
tice-Hall, Englewood Cliffs, New Jersey.

