
1

Abstract
CREWS-SAVRE is a prototype software tool for
systematic scenario generation and use. This paper
reports on two interleaved strands of research and
development of CREWS-SAVRE. The first is
theoretical research into classes of exceptions in
software-intensive systems. The second is the
development of a software prototype which has
been used to acquire requirements from current
scenario users. This paper reports these user
requirements and design implications for the
current version of the prototype. The paper ends
with a discussion of the advantages of integrating
basic software engineering research with user-
centred system design.

1: Introduction

There has been considerable recent interest in the
use of scenarios to acquire and validate system
requirements. However, few methods or software
tools are available to achieve systematic scenario
use, or even to generate useful scenarios in the first
place. A recent analysis of scenario use by
practitioners reveals that current commercial
methods and software tools provide insufficient
and unsystematic guidance for requirements
acquisition and validation [1]. This paper presents

1 This research has been funded by the
European Commission ESPRIT 21903
’CREWS’ (Co-operative Requirements
Engineering With Scenarios) long-term
research project.

2Current address: Cairo Information Systems, Old
Station, Station Rd., Great Chesterford, Saffron
Walden, Essex, UK

a prototype software tool called CREWS-SAVRE
(Scenarios for Acquisition and Validation in
Requirements Engineering), developed as part of
the European Union-funded ESPRIT 21903
’CREWS’ (Co-operative Requirements Engineering
With Scenarios) long-term research project. The
CREWS-SAVRE software tool has been
developed to encourage systematic scenario
generation and use. This paper describes the
innovative features of this tool and demonstrates
them with an example of the tool’s use.
Despite the recent interest in scenarios,
development of new scenario-based methods and
tools has been limited to a small number of
academic institutions [2], research-oriented
organisations [3], consultancies and method
vendors [4]. Current software tools provide little
prescriptive guidance for scenario generation and
walkthrough. In most organisations, such tasks are
still a craft undertaken by a few skilled individuals.
To remedy this, CREWS aims to make scenario
generation and use more systematic and hence
more useful, widespread and cost-effective. To this
end it synthesises existing theoretical research in
disciplines such as computer science and cognitive
science with software engineering research,
described later in this paper, to inform design of
the CREWS-SAVRE tool’s functions and user
guidance.
Basic research in software engineering has often
resulted in products which ignore the requirements
of their intended end-users [5]. To avoid this
problem theoretical research has taken place in
parallel with user-centred system design. An initial
prototype of the tool was developed using
intermediate results from the theoretical research
and shown to requirements engineers who use
scenarios for acquiring requirements for a range of
software-intensive system types, from fast-attack
submarines to complex medical systems. Where

CREWS-SAVRE: Systematic Scenario Generation and Use1

N.A.M. Maiden, S. Minocha, K. Manning2 and M. Ryan

Centre for Human-Computer Interface Design
City University, London, UK

2

possible these requirements were acquired in a
systematic manner using SCRAM (the SCenario
Requirements Acquisition Method), a method
which itself uses scenarios to enrich the
exploration of software prototypes. This "drip-
feeding" of basic research results into a working
prototype enabled the authors to acquire both end-
user requirements for the product and obtain early
feedback on the research results.
The paper is in four sections. The next section
walks the reader through one usage scenario with
the CREWS-SAVRE tool. Section 3 describes the
theoretical research which underpins the design
and implementation of the CREWS-SAVRE tool.
Section 4 describes user feedback on and acquired
requirements for the tool. Section 5 outlines future
versions of CREWS-SAVRE, and discusses the
integration of theoretical research findings into
user-centred system design.

2: The CREWS-SAVRE Software Tool

The CREWS-SAVRE tool is a simple software
tool which semi-automates generation of useful
scenarios according to parameters entered by a
user. A software automaton, known as the wizard,
then enables and supports systematic walkthrough
of generated scenarios to ensure that all scenario
courses are explored and all system requirements
are acquired and validated. During the
walkthrough, the tool proposes generic
requirement statements which the user can add to a
requirement specification stored in commercial
requirements management software tools. This
paper focuses on a first prototype, developed to
inform design of the subsequent versions of the
tool.
Each scenario describes hypothetical situations in
the environment in which the required system will
be used. It acts as a ’test-script’ for the
requirements specification, to acquire new system
requirements or to validate the completeness and
correctness of existing ones. CREWS has
developed theories of normal and alternative
courses for scenarios to inform design of the tool
to make scenario walkthroughs more systematic.
These theories, described later, are operationalised
in two databases and a dialogue controller whose
design is informed by the CREWS-SAVRE
process model. The first database contains patterns
of normative behaviour which belong to all
instances of categories of problem domain [6]. The
second contains classes of non-normative events
and states for all problem domains. The CREWS-
SAVRE tool uses the contents of these two
databases to provide the basis for ’intelligent’

guidance for scenario generation and use. The tool
has been implemented using Microsoft Visual
Basic 4.0 under Microsoft Windows NT 4.0. The
next section demonstrates the main functions and
’look-and-feel’ of this prototype during a
retrospective scenario analysis of part of 1992
London Ambulance Service (LAS) Computer
Ambulance Despatching (CAD) system.

2.1: The LAS-CAD System

In 1992 the LAS was looking to computerise core
activities such as incident management. The aim of
the CAD system was to automate as much of the
call-taking and resource identification,
mobilisation and management functions as
possible. A complex and integrated software and
hardware system was designed and implemented.
It included a computer-based gazetteer, a resource
allocation system and an automatic vehicle
location system. However, following the system’s
introduction, a number of social and technical
problems arose. The entire system descended into
chaos and the LAS reverted to the manual
despatching system. The next section demonstrates
the advantages of the CREWS-SAVRE tool for
systematic scenario generation and use. It
describes how the tool can generate scenarios
which describe communication between the
control room operator and ambulance crew
members, and how a tool-led scenario walkthrough
might have identified some of the now-recognised
CAD system failures.

2.2: Generating and Using Scenarios for
the LAS-CAD System

A fictitious requirements engineer called Roger is
using the CREWS-SAVRE tool to generate
scenarios for the LAS-CAD system. CREWS
scenarios describe hypothetical situations in the
environment in which the required system will be
used. Each describes events, actions and agents in
the LAS’s operational system. Figure 1 shows the
first stage of interaction, in which Roger generates
a use case. CREWS-SAVRE makes an important
distinction between use cases and scenarios. It
treats a use case as a collection of actions and the
temporal rules that govern how the actions may be
linked together. In contrast a scenario is one
sequence of events, the ordering of which is tied to
the start- and end- events for actions in the use
case. Therefore it is possible to have one or more
scenarios for a use case, each defining one possible
sequence of actions "through" the use case.

3

Roger can either specify use cases from scratch,
retrieve reusable use cases from the database, or
choose NATURE object system models [6] from
which to generate a use case. In our example
Roger chooses to generate a new use case from
reusable actions in these models, which he first
browses and retrieves from the database of over
250 such models, structured into 13 basic
hierarchies. For example, there are a large number
of object sensing models to model sensing
different numbers of objects in different
environments for different purposes. Roger can use
keyword searches or simple data base browsing to
retrieve models pertinent to the LAS-CAD
problem domain, then reuse descriptions of
actions, events, agents, objects, state transitions
and states from these models.
Figure 1 shows that two reusable models have been
retrieved by Roger. The first, object messaging
(OM), describes actions, events, objects and states
common to message communication between
sender and receiver agents. The second, object
reading (OR), describes events, actions, objects
and states common to reading information from an
object device. Roger instantiates these models
using the simple action template shown in Figure 1
to describe the normal events (e.g. start to send),
actions (read mobilisation decision) and agents
(e.g. sender-device) during control-room to
ambulance-crew communication.

Figure 1: Selection of use cases and
composition of actions using temporal
links [13] as a basis for scenario
generation.

CREWS-SAVRE’s wizard then guides Roger to
develop and generate one or more scenarios from
the use case using the command buttons shown on
the left-hand side of Figure 1. At each stage Roger
selects one or more options from the lists made
available by the tool. The command buttons enable
Roger to add and remove exception classes which

give rise to different forms of alternative courses in
the generated scenarios:
• the ’Generic Exceptions’ command button

enables Roger to add simple alternative courses
which arise from exceptions about events,
actions, objects and states, for example a
scenario can include events which repeat or do
not occur;

• the ’Permutations Exceptions’ button enables
Roger to add alternative courses which arise
from combinations of events, actions, objects
and states, for example two events which occur
at the same time;

• the ’Permutation Options’ button allows Roger
to add more complex, tailorable alternative
courses about frequencies and other temporal
links between events and actions;

• the ’Problem Exceptions’ button enables Roger
to add alternative courses to explore familiar
but non-normative events and states involving
human and machine agents, their
communication and their interaction. Figure 2
shows selection from a subset of the available
machine-machine communication exception
classes. Roger chooses all exception classes for
machine-machine communication, so that he
can explore communication failures between
the control room and ambulances in the
generated scenarios.

The selected exception classes provide the input
parameters for the scenario generation mechanism.
Roger then presses the ’Generate Scenarios’ button,
and the tool generates a collection of scenarios for
the use case. Now let us walk through one
generated scenario with Roger.

Figure 2: Selecting exception classes for
inclusion in use cases.

Figure 3 shows CREWS-SAVRE’s standard
presentation during scenario walkthroughs. The top
left-hand corner shows process guidance given by
the wizard. The bottom left-hand corner shows the
normal course of the generated scenario as a

4

sequence of events which start or end actions in
use cases. The type of each action (P for physical,
C for cognitive, M for communicative) is also
shown. Roger uses the "Back<<" and "Next>>"
buttons to navigate through the scenario and select
events. On the right-hand side are alternative
courses generated automatically from Roger’s
earlier selection of generic, permutation and
problem exception classes. These courses are
presented in the form of what-if questions. For
each selected event, the tool presents alternative
courses linked by the tool to that event, and advises
Roger to decide whether each alternative course is
(a) relevant, and (b) handled in the current
requirements specification. Figure 3 also shows
part of the requirement specification to be
validated.
In Figure 3 Roger is exploring event-5 (start
[ambulance-crew reads information about the
mobilisation decision from the mobile data
terminal]). The tool proposes 5 alternative courses
which were generated from the generic exceptions
selected earlier. Roger is examining G1, what if
event-5 does not occur. Each alternative provides a
’seed’ event or state that Roger can explore using
techniques such as cause-consequence and fault-
tree or event-tree analysis. Roger decides that this
course is relevant but not handled in the current
specification. For example in 1992, when an
ambulance crew attended an incident, it might not
be able to communicate with the control room
because communication devices were in the
ambulance. As a result Roger adds one or more
requirement statements to the specification. The
wizard guides him to explore the four other
alternative courses G2-G5 in the same way.

Figure 3: Scenario walkthrough, exploring
an alternative course arising from a
generic exception. Possible additional
requirements are discovered from
exploring this course include giving crew-

members portable communication devices
such as walkie-talkies.

Figure 4 shows another step in the scenario
walkthrough. Roger again examines event-3, but
this time he explores alternative course PE6, what
if environmental interference occurs during the
action. This time he decides that this course is
relevant and not handled by requirements in the
current specification. The reason for this is that
London has communication blackspots. In 1992
these led the automatic vehicle location system to
fail, the ambulance database to become incorrect
and ambulance allocation to become sub-optimal.
Furthermore, for this alternative course, the tool is
also able to propose one or more candidate generic
requirements shown in Figure 4. Roger can select
one or more of these requirements and add them to
the current requirement specification as he sees fit.
In this example he chooses requirement GR2
"tolerate the environmental interference where
possible - add toleration functions to other parts of
the system", and edits it to fit the LAS-CAD
problem domain, that is control-room staff shall be
able to reposition ambulances manually if the
system becomes incorrect.

Figure 4: Scenario walkthrough, exploring
an alternative course arising from a
problem exception. At this stage the tool
proposes three possible generic
requirements to resolve or avoid the
alternative course selected by Roger for
investigation.

This simple example demonstrates some of the
main functions of the CREWS-SAVRE tool. These
functions include precise use case specification,
automatic scenario generation, a software
automaton which enforces systematic scenario
walkthrough, and a database of exception classes
for generating useful alternative courses. The next
section describes the theoretical research which

5

enables the CREWS-SAVRE tool to provide such
functionality.

3. Theoretical Research Underpinning
CREWS-SAVRE’s Tool Design

CREWS is developing two theories of normative
and non-normative problem domain behaviour
relevant to socio-technical system use:
• generic domain models describing normative

events and actions in different categories of
problem domain. The ESPRIT 6353 ’NATURE’
basic research action posits a set of object
system models which describe different
patterns of objects, behaviours, structures and
states of instances of about 250 categories of
problem domains [6]. Object system models
enable the CREWS-SAVRE tool to predict
useful normal courses in scenarios;

• exception classes enable CREWS-SAVRE to
predict useful alternative courses in scenarios,
based on existing research from areas such as
human error from cognitive science, machine
failures from safety-critical systems and
computer engineering, and interaction
problems from human-computer interaction.

This paper outlines the current state of these
exception classes and semantics for use case
specification, and how this ongoing research
informs CREWS-SAVRE’s design.

3.1: Use Case Semantics

Unlike existing methods such as OOSE [4] and
SOMATiK [7], CREWS treats a use case as a
collection of actions and rules that govern how
actions may be linked together. Each action has a
start event, one or more end events, one or more
involved agents, and one or more possible sub-
actions. The action-link rules include strictly
sequential (A then B), sequential but with the
second action starting only after the first has
started but necessarily not finished (A and
meanwhile B), concurrent where there are no rules
about ordering of the start and end events of the
action (A and B), and alternatives between use
cases (A or B). Concurrent start, concurrent end
and parallel links have been added to version-2 of
the CREWS-SAVRE tool. Returning to our
example, Roger specifies the larger "Resource
Mobilisation" use case as a strict sequence of 5
actions (OM.com THEN OM.mes THEN OR.rea
THEN OM.com THEN OM.mes). Roger can also
define mappings between objects in these 5 actions
using a set of object-mapping rules. For example,

the CAD agent in the OM.com action is the same
as the CAD agent in the OM.mes action.

Use cases and scenarios: as already stated, the
distinction between a use case and a scenario is
central to the CREWS-SAVRE approach to
scenario generation. Each scenario has a specific
ordering of events that should satisfy the rules for
the action-link rules from which it was derived.
Therefore, more than one scenario can be
generated from a single use case. The sequential
ordering of events makes it simpler to present
scenarios in a text format and to walk through
scenarios in a systematic way.

How generation works in the CREWS-SAVRE
tool: an algorithm has been developed to generate
all possible normal course scenarios from a single
use case. For each use case, the algorithm uses the
action-link rules between actions to determine all
possible normal sequences of events which start
and end these actions. Each possible sequence is a
candidate scenario which the user can accept as a
useful scenarios or reject as not useful. A
combinatorial explosion in the number of scenarios
which are generated can be avoided via careful use
of the action-link rules and warning messages
given to the user during scenario generation.
Figure 5 shows scenario generation from a simple
use case with 3 actions. The action-link rules
define a strict sequence between actions 1 and 2,
and a partial sequence between actions 1 and 3,
where action 1 starts before action 3 but can finish
at an undetermined time. From this use case the
algorithm generates 4 scenarios. The difference
between each is the timing of event E3 to end
action 3. Separating the generation of the normal
and the alternative courses of the scenario in this
way reduces the risk of a combinatorial explosion
because the more numerous alternative courses are
handled in a different way during the scenario
walkthrough process.

6

event S1

event E1

Action1

event S2

event E2

Action2

THEN

event S3

event E3

Action3

MEAN
WHILE

event E3

event E3

SC2 SC3 SC4USE CASE

S1

S3

E1

E3

S2

E2

S1

S3

E1

E3

S2

E2

S1

S3

E1

E3

S2

E2

event E3

OR

SC1

S1

S3

E1

E3

S2

E2

E3

Figure 5: A graphical depiction of scenario
generation from a simple use case. The
use case definition leads to the 4 possible
scenarios (SC1-4) shown. The difference
between each is the timing of event E3 to
end action 3.

3.2: Classes of Exceptions

Scenarios are useful for exploring exceptional
situations. CREWS has synthesised a first version
of exception class hierarchies from considerable
research of human error in cognitive science,
interaction failures in human-computer interaction
and machine failures. The CREWS-SAVRE tool
accesses the database of these classes during
scenario generation and walkthrough.

Generic and permutation exception classes:
CREWS defines an exception as:

"a state or event that is necessary but not
sufficient for the occurrence of an undesired
or non-normative behaviour of the required
system. If the exception is regarded as being
sufficient for the occurrence of such a
behaviour, it is said to be the cause".

CREWS distinguishes between generic,
permutation and problem exception class types.
Generic and permutation exception class
definitions are based on the properties of events,
actions, objects and states. For example, an event
is an instantaneous real world phenomenon with
properties such as totals and frequencies of
occurrence, so CREWS defines generic exception
classes about event frequencies and occurrence. An
action is an operation that changes or maintains
the state of the system or the outside world, with
properties such as information inputs and
information outputs, so CREWS defines exception
classes for abnormal action inputs and outputs.
Examples of alternative courses generated from

such generic exception classes are shown in Figure
3. The current database contains 25 generic
exception classes and 15 permutation exception
classes.

Problem exception classes: CREWS has
undertaken a more extensive classification of
problem exceptions. It has developed 8 orthogonal
classifications, each of which has a particular focus
and literature. The first five classifications draw on
CREWS definitions of actions and agents. An
action can involve one or more human agents
and/or one more machine agents, and a
communication action can be between two or more
human agents, two or more machine agents, or a
combination of two or more human and machine
agents. This minimum set of possible
communication actions enables us to define 5
problem exception classifications:
• human agents: people often give rise to

numerous alternative courses in a scenario. Our
classified exceptions cause such courses from
existing taxonomies of human error from
cognitive science [8] and human factors
research [9]. However, human exceptions can
also be described by non-cognitive factors, for
example physical exceptions (anatomical,
sickness, fatigue, age);

• machine agents: machine themselves also give
rise to numerous alternative courses, for
example power failures and device failures.
Such failures are classified as machine
exceptions;

• human-machine interaction: alternative courses
are generated from our classification of
interaction failures from human-computer
interaction and consequences from poor
interface design [9];

• human-human communication: alternative
courses often arise from communication
breakdowns between people. Exception classes
have been derived from theories and experience
from computer-supported collaborative
working [10];

• machine-machine communication: these
exception classes give rise to alternative
courses, see Figure 4.

Other exception class hierarchies include
information-model exception classes (e.g. the
information is incorrect, out-of-date etc.), work-
domain exception classes (e.g. poor lighting, noise
etc.) and organisational situations (e.g. policies,
social climate, management attitudes). All of these
classes enable the tool to generate useful
alternative courses in a systematic manner. Figures
3 and 4 show 15 such alternative courses. The

7

current data base contains just over 100 exception
classes and the authors expect this number to rise
over the duration of the project.

How alternative courses are generated in the
CREWS-SAVRE tool: the tool uses a small
number of rules to generate all permissible links
between alternative courses and events in the
normal course of a scenario using the type model
shown in Figure 6. Each event starts or ends an
action which involves agents and which can
change the state of objects. The CREWS meta-
model defines permissible types for each action
(physical, cognitive, communicative), agent
(human, machine, composite) and exception class
(human, machine, different types of
communication, etc.). Sixteen rules use these types
to select alternative courses for each event (ev),
action (ac), agent (ag) and problem exception class
(pe) in a scenario, for example:
• IF ((ev1 starts ac1) OR (ev1 ends ac1)) AND

ac1(type=cognitive)
 THEN (pe(type=human) applies-to ev1).
We believe that these 16 rules provide an
important basis for constraining the generation of
alternative courses for each event.

action

starts ends

agent

involves

action
type

isA

isA

exception
class

isA

generic
requirement

solution is

alternative
course ruleset

event

agent
type

exce-
ption

class
type

scenario normal
course

scenario alternative
courses

Figure 6: Event, action, object and
exception class types and links modelled
in the CREWS-SAVRE tool.

Proposing generic requirements: generic
requirement statements such as those shown in
Figure 4 are linked to exception classes. Generic
requirement statements are mitigation and
defensive mechanisms which handle the
occurrence of one or more exception classes. The
CREWS-SAVRE tool retrieves generic
requirement statements for each inferred exception
class. CREWS is developing a large set of such
requirement statements to provide the tool with the
capability to provide advice about possible
solutions to problems identified during the
walkthrough. Three examples are shown in Figure
4.

4: User-Centred Systems Design for the
CREWS-SAVRE Tool

Prototype development of the CREWS-SAVRE
tool has provided its authors with the chance to
evaluate the tool, elicit feedback on the research
and acquire user requirements for future versions.
The tool was shown to 8 different groups of
stakeholders using designer-led walkthroughs [11],
academic presentations and informal discussions.
The two formal walkthroughs were undertaken
with Philips Research Laboratories (10
stakeholders present), who use use-cases to
develop both medical systems and commercial
appliances, and Logica UK (2 present) who are
using scenarios to acquire requirements for a
European air traffic control system. Less formal
demonstrations took place with the Rational
Software Corporation (2 present) and developers
of a scenario authoring software tool for an
emergency planning system (3 present). Three
formal presentations of the prototype were made to
7 members of the CREWS industrial steering
committee, to 2 system designers from a large
aerospace organisation and to 7 members of a large
defence systems engineering organisation. The
scenario sequence shown during all presentations
was similar to that shown in Figures 1-4. A
facilitator prompted those present for feedback,
criticisms and user requirements at different stages
in the walkthrough of scenario generation in a
lending library application.
Overall the feedback was very positive. All
participants recognised the need for a software
automaton to enforce systematic scenario
generation and use. Most confirmed that the
direction of research in CREWS is relevant to their
practice and that the tool has features which can
improve their requirements engineering processes.
The following user requirements were acquired.
The paper flags each requirement as already
included in the shown first version of the CREWS-
SAVRE tool (√1), at least planned for the current
second version (√2) or not envisaged beforehand
for the tool (x). Requirements for use case
specification and scenario generation were:
• the tool shall generate scenarios which can

scale to large and complex problem domains
(x);

• the tool shall include thematic links between
scenarios, so that interrupt events in one
scenario are also start events in a second,
different scenario (x);

• the tool shall provide graphical depictions of
the use case structure and size prior to scenario

8

generation. Simple graphs can show exception
class hierarchies linked to sequences of events,
actions and agents in the normal course of the
scenario (x);

• the user shall be able to attach domain-specific
properties to agents and objects involved in
actions. This will, in turn enable more refined
selection of alternative courses. For example,
electrical power failure is only asked about a
machine agent which has a ’electrical’ value for
its power property (√2);

• the tool shall provide comprehensive
configuration management and version control
facilities to manage complex scenarios
throughout the life time of the system (x);

• the system shall support full traceability both
between use cases and scenarios and from use
cases/scenarios to requirement statements
(√1&√2);

• the tool shall link exceptions to the scenario as
a whole as well as to specific events, actions,
agents and courses in the scenario (x);

• the tool shall use the exception class
hierarchies to generate domain-specific
checklists for validating requirements, with or
without a scenario to walkthrough (√2);

• the database of exception classes shall be
tailorable to specific applications, for example
to model common and important exceptions in
fighter cockpit system usage (√2).

The following user requirements were acquired
about scenario walkthroughs:
• the tool shall allow the user to record

contextual information and comments about a
scenario, for example about scenario users, the
scenario author, background assumptions for
the scenario, etc. (x);

• comments can be typed according to
granularity, for example does this comment
relate to the current event or is it a general
comment about this scenario? (√2);

• the system shall output different forms of
scenario, for example system specification for
the designers, design alternatives, test cases for
the test engineers, usage scenarios for authors
of user guides, etc. (√1);

• the user shall be able to see changes in the state
of the system as the user walks through the
scenario. One means of achieving this
requirement is presentation of inferred object
states before and after each event in the
scenario (√2);

• the user shall be able to adjust the granularity
of the current view of the scenario whilst it is
being presented and analysed (√2);

• the tool shall provide tailorable, parameterised
guidance for the user depending on the user
type and the resources available (e.g. time,
people etc.) for the scenario walkthrough (x);

• the system shall provide rich question-and-
answer templates for problem exceptions to
enable a thorough investigation of their causes
and effects during a scenario walkthrough (√2);

• the tool shall be integrated with a decision
support system to advise the user about which
risk analysis or other technique to use when
predicting and investigating alternative courses
(√2);

• the user shall be able to ’drag and drop’
alternative courses into the normal course of
the scenario if the users deem that the
frequencies of these courses are sufficiently
great (x).

The number of "x"s and "√2"s in the list indicate
the value of undertaking user-centred system
design alongside theoretical research. We are
integrating these and other more detailed user
requirements also elicited during these sessions
into the current second version of the tool.

5: Discussion and Future CREWS
Work

The prototype version of the CREWS-SAVRE
software tool has enabled its authors to evaluate
and elicit feedback from potential users about the
tool’s theoretical foundations and functionality.
Scenario users recognise the need for a software
automaton to enforce systematic scenario
generation and use. Most confirmed that the
direction of research in CREWS is relevant to their
practice and that the CREWS-SAVRE tool has
features which can improve their requirements
engineering processes. The authors believe that
CREWS-SAVRE is one of the first "knowledge-
based" scenario development tools, a belief borne
out from its demonstrations.
However, the current mechanistic approach to
scenario generation can generate an unmanageable
number of useless scenarios. To avoid this, the
authors propose to integrate CREWS’s domain-
oriented approach with goal-oriented scenario
generation around obstacles, which are similar to
CREWS exceptions, which impede the
achievement or maintenance of a goal [2, 12]. We
shall use goal refinement approaches to direct
scenario generation around critical exceptions
identified first from the tool’s database. Another
weakness with the mechanistic generation is the
lack of a theme or storyline to the scenario which
other authors [12] consider important. To this end

9

we are examining the design of an authoring tool
as part of CREWS-SAVRE, with which the user
defines the main themes and events of the scenario
or use case, then CREWS-SAVRE automatically
generates scenarios around this central theme.
Finally, we believe that integrating basic research
with user-centred system design, as reported in this
paper, has been a surprisingly effective way of
undertaking basic research. Within CREWS we
advocate a gradual evolution of the research,
methods and software tools, rather than developing
revolutionary ideas and products often found with
the research-then-transfer approach [5]. The
authors are also looking to make CREWS-SAVRE
more domain-specific prior to its evaluation during
case studies. Potts argues that "much of the
research-then-transfer work that seeks to develop
completely general tools is naive". If future case
studies are successful they will demonstrate the
importance of gradual evolution of research
prototypes, as advocated by Potts.

Acknowledgements

We thank all who gave feedback on the CREWS-
SAVRE tool. The research is funded by the
European Commission ESPRIT 21903 ’CREWS’
long-term research project.

References

1. Weidenhaupt K., Pohl K., Jarke M. & Haumer P.,
1998, ’Scenario Usage in System Development: A
Report on Current Practice’, IEEE Software, March
1998.

2. Potts C., Takahashi K. & Anton A.I., 1994,
’Inquiry-Based Requirements Analysis’, IEEE
Software 11(2), 21-32.

3. Gough P.A., Fodemski F.T., Higgins S.A. & Ray
S.J., 1995, ’Scenarios - an Industrial Case Study
and Hypermedia Enhancements’, Proceedings 2nd
IEEE Symposium on Requirements Engineering,
IEEE Computer Society, 10-17

4. Jacobson I., Christerson M., Jonsson P. &
Overgaard G., 1992, ’Object-Oriented Software
Engineering: A Use-Case Driven Approach’,
Addison-Wesley.

5. Potts C., 1993, ’Software Engineering Research
Revisited’, IEEE Software, 19-28.

6. Maiden N.A.M. & Sutcliffe A.G., 1994,
’Requirements Critiquing Using Domain
Abstractions’, Proceedings of IEEE Conference on
Requirements Engineering, IEEE Computer
Society Press, 184-193.

7. Graham I., 1996, ’Task Scripts, Use Cases and
Scenarios in Object-Oriented Analysis’, Object-
Oriented Systems 3, 123-142.

8. Reason J.T., 1990, ’Human Error’, Cambridge
University Press.

 9. Nielsen J., 1993, ’Usability Engineering’, Academic
Press.

10. Shneiderman B., 1992, ’Designing the User
Interface: Strategies for Effective Human-
Computer Interaction’, Addison-Wesley.

11. Sutcliffe A.G., 1997, ’A Technique Combination
Approach to Requirements Engineering’,
Proceedings 3rd IEEE International Symposium on
Requirements Engineering, IEEE Computer
Society Press, 65-74.

12. Potts C., 1995, ’Using Schematic Scenarios to
Understand User Needs’, Proceedings DIS95:
Designing Interactive Systems, Ann Arbor, 247-
256.

13. Allen J., 1983, ’Maintaining Knowledge about
Time Intervals’, Communications of the ACM
26(11).

