Scenario Usein European Software Organizations -

Results from Site Visits and Questionnair es*

M. Jarke, K. Pohl, P. Haumer, K. Weidenhaupt
RWTH Aachen

E. Dubois, P. Heymans
FUNDP Namur

C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté
Université Paris-1 Sorbonne

A. Sutcliffe, N.A.M. Maiden, S. Minocha
City University London

1 Introduction

A pervasive, but not well-studied phenomenon in every-day systems development is the use of
examples, scenes, narrative descriptions of context, mock-ups and prototypes. Loosely all
these ideas can be called scenario-based approaches, although an exact definition is not easy
beyond saying that all these techniques emphasize some description of the real world.
Recently such approaches have begun to attract considerable attention in Requirements
Engineering (RE), Human Computer Interaction (HCI) and Information Systems (IS) research.
While from the research point of view there are now first attempts to provide a comprehensive
classification of thestate of the art in scenario-based approaches [Rolland et al. 97], little is
known on the practical relevance of these techniques, i.e. studies on the statesoft the

practice are still missing so far.

In this paper, we report on our insights into today’s industrial practice gained during 15 site
visits at industrial systems development projects and from a questionnaire disseminated to a
larger number of organizations. These efforts have been carried out as part of the long term
research ESPRIT project CREWS (Cooperative Requirements Engineering With Scenarios).

Our survey showed that usage of scenarios is widely adopted in industrial practice, but seldom

well-defined and exploited systematically. Our study therefore aimed at

» making the implicit, but mostly not well-documented practices more explicit;

» examining how scenario-based techniques fit in the overall development process/current
methodologies used in the industrial projects;

» determining the main benefits and problems of scenario-based approaches;

» providing an outlook to the future plans of the organizations and the needs research is
expected to fulfill

* This work was in part founded by the European Community under ESPRIT Reactive Long Term Research project 21.903
CREWS

The rest of the paper is organized as follows: in section 2 we give an overview of the research
method employed during the state of the practice survey. Next we present the results of the
site visitsin section 3. In section 4 we evaluate the results of the questionnaire.

2 Research Method

For our survey we pursued a two-pronged strategy for information elicitation. During
February to June 1997 we conducted a series of individual site visits. Altogether, we
examined 15 projects carried out at twelve organizations in Germany (6 projects), UK, France,
and Belgium (each 3 projects). Based on the experiences gained from the first round of site
visits, we developed a questionnaire whose purpose was to augment the findings of the site
visits with more empirical evidence.

2.1 SiteVidts

2.1.1 Selection of Interview Partners

Most of our interview partner were recruited directly or indirectly from the Industrial Steering
Comitee (ISC) which accompanies the CREWS project in order to ensure the practical
relevance of its project results. The ISC consists of 17 representatives from software
companies or independent consultants from 6 European countries which have specific interest
in Requirements Engineering in general and the application of scenario-based techniques in
particular. The companies participating in the ISC vary considerably in terms of their size,
application domain and RE method background, thus providing a broad basis for exploration
of current scenario practice in different settings. Through the representatives of the companies
we were able to establish a closer contact to our interview partners. The interview partners
were project leaders or consultants of projects which already had employed scenario-based
approaches and therefore had considerabl e experiences with such techniques.

2.1.2 Interview Strategy

The CREWS classification framework [Rolland et al. 97] was used to derive a catalogue of
guestions for scenario characterization according to the four views of form, purpose, content,
and life-cycle. Besides these scenario characteristics the interview plan also addressed two
other topics

1. project profile: to better understand scenario use in a broader context and to identify
potential correlations between project and scenario characteristics

2. experiences: to elicit main benefits gained through the use of scenarios, and to capture
known open problems and future needs.

One of the main problems we faced during our study is that up to now a clear and agreed
understanding of the term scenario has not yet emerged, neither in the research communities

nor in the industrial practice. Since we wanted to get insights in the whole spectrum of
scenario-related techniques we adopted a very broad view of the term scenario, ranging from

use cases to prototypes and systems animations to reference examples. Unfortunately, most of

our interview partners were somewhat biased towards a specific meaning of the term scenario

as inspired by the mainstream object-oriented textbook methods. For example, scenarios were
frequently only considered as Use Case Models in the sense of Jacobsons’ OOSE [Jacobson et
al., 1992] or Message Trace Diagrams according to the OMT notation [Rumbaugh et al.,
1991] or the new UML [Rational, 1997]. On the other hand our interview partners were not
aware of other usage of what we would call scenario-based techniques like the systematic

2

collection of filled-in forms, reports, lists or the use of prototypes in order to validate
requirements. Nevertheless they often employed such techniquesin their daily work practice.

Thus, in order to avoid atoo narrow view we let the interview partnersfirst talk relative freely

about their overall development process and then ask concrete and deeper questions where we

assumed usage of scenarios. We also avoided to use the term scenario explicitly but asked

more indirect questions concerning what we expect is characteristic for scenarios like:

* How do you communicate about the current system and the future system with non-
technical people like customers and end-users?

» Which role do examples play in the development process?

* How do you €licit and validate requirements?

By asking these questions we made the scope of our interest clear to the interview partners.
We then could proceed with asking more concrete questions concerning the topics mentioned
in the interview framework above.

2.2 Questionnaire

In addition to the site visits, a questionnaire was developed based on the first site visit
experiences and distributed to a larger number of software organizations.

The guestionnaire was structured according to the interview framework used during the site
visits, but significantly coarsened to keep it as easy as possible. The question schema was as
follows:

1. project profile

a) Inwhich application domain do you conduct projects?

b) What isthe typical project size?

¢) What overall systems development paradigm do you use?
Which scenario types are used?
What is the size and number of atypical scenario?
Which representation and mediais used for scenarios?
Which tools and techniques are used for scenario generation, use and management?
phases and activities

a) Inwhich phases are scenario generated and used?

b) More precisely, for which specific RE tasks are scenarios generated and used?

¢) Isthe same scenario reused in different phases?
7. stakeholders

a) Which stakeholders are involved in scenario generation and use?
b) How many stakeholders are involved in scenario generation and use?

8. Which are the main problems in scenario generation, use, and management?
9. Which are the main benefits of scenario use?
10.Which are the future plan for scenario use?
11.Which is the own definition of the term scenario?

ok wnN

For questions (2), (4), (6a), (6b), (6c), (7a) we provided a set of default answers, which could
be ranked in ascale ranging from 1 to 7, where 1 = no, 2 = rare, 3 = moderate, 4 = significant,
5 = frequent, 6 = very frequent, 7 = constant use, generation or involvement of the default
item. The remaining questions were formulated as free-form questions. We will present an
evaluation of the answer in section 4.

3 SiteVisits Results

In this section, we report on the individual site visits. Table 1 characterizes the projects
described in the following subsection in terms of their application domain, project size and if
the project was performed in-house, by a software contractor or if we got our insights from a
consultant of the project. The project size was classified into the categories small (less than 10
person years), medium (between 10 and 50 person years) and large (greater than 50 person
years). According to our interview framework we first briefly sketch for each site visit the
project (organization) profile and then highlight the main scenario characteristics as well as
the scenario generation and usage process in the project and the experiences made. On request
of (most of) our interview partners, we had to anonymize the project summaries.

no | application domain sizeand duration in-house/ Secti

contractor/cons| on
ultant

1| medical information system small software 31
contractor

2 | network documentation and management | small software 3.2
contractor

3| businessinformation system - banking | large in-house 3.3

4|business information system - public|large consultant 34

authorities

5| business information system - insurance |small consultant 3.5

6 | satellite communication medium consultant 3.6

7| air traffic control system medium in-house 3.7

8 | systems engineering for warships large software 3.8
contractor

9| medical systems/ consumer electronics |large in-house 3.9

10|c/s applications for government and|large consultant 3.10

banks

11 | radio telecommunication medium consultant 311

12| transportation medium software
contractor

13 | CASE tools for bank applications large software 3.12
contractor

14| water invoicing management system small software 3.13
contractor

15 | process engineering medium software 3.14
contractor

Table 1: Project Characteristics.

3.1 Medical Information System

3.1.1 Project Background

The aim of the first project was to develop a medical information system which was delivered

as a supply product for a portable measuring device for diabetes patients. The main functions

of the software component were to keep a patient diary, to support the assessment of the

patient’s medical history and the evaluation of the patient data. The project team consisted of
four trained developers. They had close interaction with 6-8 contact persons from the
customer side. The customer representatives were mostly engineers of the hardware measuring
device and physicians with a solid technical background and good abstraction abilities. No
end-users were involved.

3.1.2 Scenario Characteristics

A number of different scenario-related artifacts were used in this projects: informal scripts of
sample system applications, table-based usage scenarios in the form of class-responsibility-
collaboration (CRC) cards, paper-based user interface forms, and executable user interface
prototypes.

The most interesting insights gained from this project were how these various techniques were
used in conjunction. On the one hand there was an elicitation chain in which one type of
artifact was used to derive the next type of artifact, resulting in a requirements specification.
On the other hand there was a validation chain where the former artifacts were reused for
validation. Figure 1 shows the intertwined scenario generation and usage process which is
described in more detail below.

Scenario Generation and Usage

The project started with a 20 page long project description provided by the customer. Based
on the knowledge obtained from this document the project team identified main topics and
developed sample usage scenarios for each topic in the form of informal prose texts. These
scenario were discussed with the customer representatives in half-day meetings. Based on the
feedback the project team revised the sample scenarios and structured them into a table-based
representation (CRC cards). Again the CRC cards were discussed with the customer side and
then transformed into a class model which was the central part of the requirements
specification.

However it turned out that the class model in conjunction with the CRC cards and the
informal sample scenarios was not sufficient to give the customer a clear overall impression
of the future system. Therefore, user interface forms were developed for most classes which
reflected the attributes and associations to other classes in the data fields and the methods for
data manipulation in the buttons. Each of the forms was documented by describing the
meaning of the data fields (attributes), plausibility checks and the effects of pressing a certain
button. In the terminology of the project these form-centered system descriptions were called
use cases. Although the use cases provided a much more natural view on the class model the
customer still had no clear picture of the overall functionality of the system and its dynamics.
The project team therefore developed an operational user interface prototype by which the
usage sequence and navigation between different forms was illustrated. The courses of actions
defined in the CRC cards were used to validate the prototype. Additionally, the sample usage
scenarios developed at the beginning were used as source for concrete sample data.

The main tools used were the word processor and Visual Basic/Visual C++ for rapid Ul
prototype generation.

elicitation . -\ validation

specification]
|:|||:| validation
L\

———————————— >
ﬂ class model
L validation
elicitation

P preerre used for validation

Paper-baserd forms

—
(|
11
C_ E'JD
]|
= 1%

| prototype: interplay between forms :

nnnnnnn

CRC Cards

i

elicitation

L |
(- |
(| |
| &
used for validation (]| BN o
______________ » Dﬂ/ validation
(| |

=i
examples filling in example data EII|:|

Figure 1: Scenario Generation and Usage Process

3.1.3 Experiences

Our interview partner pointed out that in general the customers mostly have problems to
describe the desired system functionality on their own. Rather one should provide as concrete
as possible suggestions to which the customer can react. Scenarios in the various forms
described above are seen as a very good means to present and communicate such suggestions
to the customer. Moreover the prototype was regarded as crucial for giving an impression of
the overall functionality of the system and validating the object model.

Most problems with scenario usage faced in this project concern the management and the life-
cycle of scenarios. There is alack of guidelines and decision support on the granularity of a
scenario. If the number grows the question arises which scenarios to keep and how to retrieve
them for later usage. This is aggravated by the observation that the usage environment of the
new system is most often a moving target so that typically only 70 percent of the scenarios
developed in the early phases still reflect the reality adequately once the system is deployed.
Hence it is questionable that maintaining also the scenarios is worth the effort, especialy
without sufficient tool support. The problems with change management and consistency
between scenario artifacts, requirements specification and fina system resulted in the fact,
that scenarios loose importance in later phases (e.g. during testing or maintenance), i.e. they
were mainly regarded as transient artifacts until the prototype was approved.

Summarizing, the most interesting observation in this project was how different scenario
techniques were used in conjunction for both dliciting and validating the class model. First,
informal scenarios of sample system usages and CRC cards were progressively used to
populate the class model. When the prototype was built for validating the class model, the role
of these early artifacts changed in that they acted now as a ,guideline* how to use the
prototype for validation. Another important finding was that the class model is too abstract to

give an impression of the overall system functionality. Ul prototypes served as a user-friendly
view on the abstract class model.

3.2 Network Documentation and M anagement

3.2.1 Project Background

The project described here takes places in the context of the privatization of the
telecommunication market in Germany. The project ams at building an administration
software for the management, monitoring and billing of the telecommunication services. The
background is that the customer, a consortium of large companies, intends to use its network
infrastructure for public telecommunication services. This involves a lot of new functionality
about which the customer has nearly no prior experiences. Since nearly no processes were
known, a mainly data-driven approach was adopted which was centered around the
development of an extended ER diagram and its incremental transformation into an
operational prototype.

The project team consists of six developers. The customer side is represented by three
permanent contact persons and five additional experts. Most of the customer representatives
are hardware engineers of the network devices but also end-user of the software system to be
built. None of them had prior experience with requirements engineering methods in general,
and EER modeling in particular.

3.2.2 Scenario Characteristics

Scenario-based techniques were used both for the elicitation of the data model and its
validation. The process started with a first very coarse-grained project specification from the
customer, mostly mere product descriptions of the existing hardware components (hubs,

routers, communication lines, etc.) In interdisciplinary workshops the customer
representatives explained their problems and provided sample data. For harmonizing the
terminology a first mapping of the professional language of the customer (,a net consists of
hubs, routers, communication lines®) into the abstraction world of the developers was defined
(,a net is composed of edges and nodes*) and documented by example mappings. Based on
the workshop results the project team developed an initial EER model. However, experiences
from the early project phases that the customers were not to validate EER model since they
did not understand the concepts of this language, e.g the semantics of inheritance and or
relationship cardinalities.

For enabling a validation of the EER model by the customer the project team decided to adopt
an incremental prototyping approach. A prototype generator was developed which takes the
EER model stored in a repository as input and transforms it into a set of dialogues. This
transformation is based on a formalized styleguide which defines the standard behavior of the
generated prototype, e.g. how to display the entities in forms, which standard buttons to
provide or how to navigate between the forms along the relationships between entities.

The prototype could now be used to validate the EER model in a more natural form. Typical
problems now detected by the customers were for example that they wondered why a certain
data field appeared in the data entry form of an entity: they had not understood that this
attribute was inherited by a super entity. Another example was that the customers were
amazed about a multiple selection window. This was caused by an 1:N relationship the
corresponding entity had to another entity in the EER which the customers had not
understood. These mistakes in the data model could only be detected by the customer through
the prototype but not through the EER model itself.

v

Besides elemental changes in the data model, deviations from and enhancements of the
generated standard functionality of the prototype were discussed with the customer during
prototype demonstrations. Interestingly, such deviations were documented in the form of use
cases centered around individual dialogues. However, these use cases served only as interna
documentation for the devel opers.

3.2.3 Experiences

After bad experiences with the attempt to talk about the abstract EER data model with the
customer directly, scenarios in the form of a prototype are now seen as an ideal means for
validating the data model.

The project team tried to acquire scenarios in the form of sample system usage to be used test
cases from the customers. However, it turned out as nearly impossible to convince the
customers of the need to spend effort on this task. The reluctance of the customer was mainly
caused by his vague understanding of the desired system functionality.

Summarizing, the specific feature of this project was that the system was totally new, i.e. did
not replace a prior system, and none of the involved stakeholder had considerable experiences.
Hence, it turned out that it is difficult to elicit scenarios (sample system usage, test cases) from
customer if he has only a very vague impression of the desired functionality. Starting with an
abstract data model, an operational prototype derived from this data model quickly became the
central medium for communication with the customer. On the one hand the prototype
provided a customer-understandable view on the data model for validation, on the other hand
it was much easier for the customers to envision new concrete system functionality through
the prototype. Such enhancements of the standard functionality of the prototype were
documented in the form of use cases.

3.3 Banking Project

3.3.1 Project Background

The project described here is carried out by a service center for a group of about 450 banks in
the south-west of Germany. The aim of the project is to develop an integrated office system to
support all tasks and services in the banking sector. About 100 developers, mostly with a
mainframe background, are involved in the project. It isthe first one at the service center to be
carried out according to an (inhouse) object-oriented methodology. The overal philosophy of
this method is based on the leitmotif of a well-equipped workplace for expert human work and
uses the design metaphors of material, tools and automatons by which the domain under
consideration is structured. The overall chain of software artefacts used in the project is as
depicted in figure 2.

3.3.2 Scenario Characteristics

The upper three types of artifacts are mainly used to elicit and communicate requirements
with the end user.

Scenarios are the primary communication means between the developer and the user. By
scenario a short prose text is meant, which describes the current situation at a work place
using the professional language of the application domain. Scenarios are structured into three
levels:

Design

Clazas

— |Prototype

Pilot |/

system

Figure 2: Chain of Artifactsin the Banking Project

overall scenarios provide a coarse-grained picture of the tasks at a certain workplace. They
focus on the goals of the tasks and not on the temporal sequences of certain steps within
the task.

task scenarios describe an individual task in the form of script. Decision points are used
only sparsely, i.e. complex decisions are avoided and the scenario is rather spitted into two.

detailed studies of activities describe in detail how a single activity/step is carried out, e.g.
how to find aform in afolder

Task scenarios precise an overall scenario, while detailed studies precise steps occurring in
task scenarios. All kinds of scenarios are on the type level.

System visions describe how the situation of a workplace is supported by a future system.
Again, there are three levels:

general vision provide an overview on the system functionality and describe to what extend
tasks described in Scenarios will be dealt with support by the future system

procedural visions describe how a task will be carried out in future with the aid of tools,
automatons and materials

component vision describe functionality of individua components independent of certain
tasks,

Based on system visions, afirst Ul mockup is built which is discussed with the end-users.

Scenario Generation

The whole project is divided into a number sub projects. For each sub project a working group
with the representatives of about 15 banks is established. The representatives are domain
experts and end users of the future system. At the working places, interviews are conducted
which build the basis for writing scenarios. The scenarios are communicated with the experts
and validated in one or two feedback cycles. So far, about 230 scenarios have been devel oped.

Scenarios are also used in the form of Message Trace Diagrams, but only in the design
documentation, i.e. at the technical level, to specify DB transactions between the new system
and the legacy system.

Scenario Use

The understanding of the current tasks as described in the scenarios is transformed into system
visions where the role of the future system is stressed. Based on the system visions, first Ul
mock-ups are developed and discussed with the end-users. The consideration of scenariosin
this review should help to validate that each task currently supported is also adequately dealt
with in the new system. Based on the feedback of the end-user, the system visions/prototypes
are adapted. Scenarios, System Vision and Ul prototype build the basis for the design.

There exists an interesting bi-directional relationship between a project-wide glossary and the
scenarios/visions. When creating a new scenario, the developer has to take the terminology as
defined in a project wide glossary into account. Conversely, each glossary term holds a
reference to the scenarios in which the term is used. As a result, terms are not only defined by
an abstract circumscription but also illustrated by concrete usage examples. This helps al
involved stakeholder to adjust their interpretation of the key terms. Technical, the relation
between scenarios and glossaries is established by a hypertext infrastructure in a project-wide
intranet.

There is currently no systematic use of dedicated CASE tools, mainly because for their
development platform (OS/2) suitable ones do not exist. The main tool is therefore the word
processor.

3.3.3 Experiences

Scenarios, system visions and Ul mock-ups were seen as an ideal and sufficient
communication medium with the domain experts in the early stages of the project, especially
in conjunction with the glossary.

The amount of scenarios produced was seen as maor problem although a three level
structuring had been introduced. The project aso lacks methodical and technical support to
ensure traceability between the different documents. The re-use of scenarios as test cases was
seen as interesting opportunity, but is currently not systematically exploited.

Summarizing, the main intention of using scenarios in this project is bridging the gap between

the developers’ world and the customers’/end users’ world by an emphasis on usage of
professional language of the domain. Thus, generation of scenarios, i.e. the documentation of
the current system behavior, is mainly regarded as a domain knowledge acquisition technique
for the developers. Additionally, by reviewing scenarios through the subject matter experts
and by the project-wide glossary, it is an instrument to ensure that developers and customers
have the same understanding of the work processes to be supported by the system. It was
interesting to observe, that in this project a clear separation between current and desired
system behavior was made by distinguishing scenarios from system visions. The amount of
scenario artifacts produced calls for hierarchically structure scenarios and system visions into
three levels of detalil.

10

3.4 Public Authorities Project

3.4.1 Project Background

The aim of the project described here is to build a common software to be used by all
authorities of a specific sector in the 16 German States. The project started in 1994 and is
expected to be finished by the year 2003. The whole project involves more than 100 people.
These people are split up into 25 groups consisting of 3-7 people each. 10 of them deal with
technical matters, while the other 15 are in charge of the domain analysis of specific topics
like personal data capture, fines etc. Most team members are recruited from the data
processing departments of the authorities. Although they mostly have an administrative
education, they are not involved in the daily business processes.

The project started with defining a coarse-grained class model. These effort were stopped as it
became apparently that the complexity was too high and the business processes were not
sufficiently understood. System analysis is now carried out according to an object-oriented in-
house methodology which emphasizes the need for careful business process analysis. The
methodology, a mixture of Use Cases analysis according to [Jacobson et al, 1992], business
object modeling and modeling notations borrowed from OMT/UML [Rumbaugh et al., 1991;
Rational, 1997], is written down in central guideline and tailored towards the specific needs of
that administration sector. The work on this guideline is still in progress and it evolves as the
project progresses. Six kinds of models which are developed more or less sequentialy are
intended in the gquideine (1) business process mode (Use Cases); (2)
Resource/Responsibility Models (a preliminary, informal stage of the class model); (3) Class
Model (according to OMT, now UML); (4) User Interaction Model (forms, Ul prototypes); (5)
State Model (StateCharts); (6) Interaction Model (Message Trace Diagrams). For the time
being, the project is ill in the first phase, i.e. business process modeling.

3.4.2 Scenario Characteristics

In the first phase of the project identifying and writing use cases is the key means to get an
understanding of the business processes to be supported. In fact, in this project the terms use
case and business process are used synonymously.

Use cases are written down in natural language text according to a quite rigid template. The

template consists of severa sections of which the most important ones are event, pre-
condition, actions, exceptions and postconditions. Although the actions can contain iterations

and alternatives, this section is normally a sequence of request/response pairs in the form of

"The user does - The system does ..."”. Hence, the actions section explicitly define the
system boundaries. Use case descriptions are on the type level and describe the desired
system, not the current system.

A use case description is typically 3-8 pages long of which the half is devoted the actions
section. As an overview, use case diagrams are used which can be packaged to use case
groups. Up to now, 350 use cases have been developed. In average, each use cases takes 3
man-days to be identified and documented.

Besides use cases, the texenario is used for descriptions of concrete instances of business
processes how they are carried autrently. Scenarios are documented informally according

to a similar template like the use case descriptions. The guideline recommends to identify and
document a small number of different scenarios in parallel to capturing and abstracting their
essence into a use case. It is highly recommended to augment the scendifi@dvithforms,

files, lists, reports etc which are used in the scenario.

11

Scenario Generation

The development of use cases and scenario is as follows. A team member identifies a small
number of relevant topics according to his domain knowledge and pre-structures them into
business processes but without elaborating a full use case description at this point. He/she
then conducts interviews concerning the identified topics with subject matter experts in the
offices. During the interview the team member collects basic information concerning the
topics (workflow descriptions, filled-in forms, print-out of reports, ...), sketches scenarios
together with the expert and assigns this information to possible use cases. Based on this
information the team member elaborates a use case description for the business process
observed in the office. This use case description is primarily reviewed by subject matter
experts in the office. As a means for validation, the scenarios of the current work flows are
used to ensure that al functionality provided by the current system is also considered in the
future system. Additionally, so-called communication partnersin each of the 16 statesin order
to ensure that the use case is valid in each state (important because of differencesin laws). A
quality assurance group checks formal conformance of the use case description to the
guideline (but not the content).

Each team devel ops its use case models on its own. Reuse is supported by a special reuse team
which maintains alibrary of al published and preliminary use cases. Publishing and changing
use case models can only be done according to a formal policy which is enforced among the
different topic teams by the reuse team. In order to harmonize the interfaces between use cases
shared by different teams, monthly bi/trilateral developer conferences take place when the
need for clarifying their interfacesis identified.

Scenario Use

Writing use cases is seen as the central activity to determine the functional requirements of the
system. The guideline explicitly mentions that everything missing in the use case model will
not be considered in later development phases. The integration of the 350 individual use cases
into a coherent model is still to be done.

The use case model is the basis for the Resource/Responsibility model (an informal pre-stage
to the class model) and the guideline provides advice how to transform a use case into such a
model. However, since the project is not yet in this stage, there are no experiences available.

Up to now, the CASE tool Paradigm Plusin conjunction with Word isin use. Rational Rose is
currently evaluated.

3.4.3 Experiences

After having made bad experiences with starting directly with the class model, use case
models are now seen as a viable way to manage the complexity of the domain. End users in
the offices liked to talk about use case descriptions, while it was sufficient for managers to
reason about the graphical use case diagrams in order to get an overview. Although intended
by the guideline, concrete scenarios played a minor role. End user were mostly able to
understand the type-level UC descriptions of the future system.

Traceability is explicitly mentioned in the standard as a key factor for maintainability of the
scenarios, the existing artifacts, the UC models, their later usage and their different
relationships. Y et, there is no technical means for ensuring traceability. Hence, the standard as
well asthe QA group appeal explicitly to the discipline of the developer teams.

Summarizing, in this project the terms use case and business process were used
interchangeably (but considered at a fine-granular level). Use case modelling is therefore

12

mainly seen as a problem understanding activity to make the developers familiar with the
business processes to be supported by the future system. It was explicitly seen by our
interview partner as an informal technique which is only necessary in complex domains; in
simpler situations it was recommended to start with data model from scratch. However, in this
project use cases act as main documentation of requirements and thus take a very central role
in the RE process as basis for al later models.

3.5 Lifelnsurance Project

3.5.1 Project Background

The aim of the project is to replace the old software for life insurances by a new, modern
system. The general process model is the V-modd (official model of the German authorities).
The project originally started with a business process analysis supported by a Petrinet-based
tool. These efforts failed since petrinets were neither accepted by the developers nor by the
end-users so it was stopped after six months. The business process analysis is now carried out
by identifying and writing use cases. In contrast to public authorities project, the further
development method is not object-oriented, but structured (SERM). The project team consists
of 2-4 (changing) people. 70 % of the man power comes from the data processing department
of the insurance company while 30 % comes from experts of the several departments.

3.5.2 Scenario Characteristics

Scenario Generation

As also mentioned by other interviewees, the hardest part is the identification of the Ucs. In
this project, the identification of UCs did not start from scratch but could rely on more than
100 workflow identified earlier using the petrinet-based method. Since these workflows were
regarded as too fine-grained, they have been coarsened to 27 business processes. Up to now, 5
business processes have been fully specified and documented in a single 40-50 page long
document. Such a document consists of a UC description (similar to the one of public
authorities project, but less structured) and about five instance-level scenarios for the most
likely threads through a use case (also written as narrative text). At this stage it was pointed
out that scenario exploration should be focussed on normal behavior in order to reduce
complexity. The domain expert involved in the team was asked for these typical threads. A
critique mentioned by interviewee is, that at the moment it is not always clear if the use
cases/scenarios describe the current or the future system.

Scenario Use

Together with the domain expert each use case is checked against the scenarios. Then, for
each use case a set of DFD models is derived. More precisely, each instance-scenario is
transformed into a single DFD which is quite straightforward. Using the techniques of
McMenamin/Palmer [McMenamin & Palmer, 1984] the different DFDs for each scenario are
integrated with each other and their essence is extracted. In parallel, extended ER models are
gained from the UC description/scenario descriptions. So far, 5 business processes have been
documented in this way taking 3-6 months each. The models produced are only integrated for
a single use case but not across use cases, but re-use and integration will increase as the team
Is more trained and has aquired more domain knowledge. The scenarios are not thrown away,
but will be used later astest cases.

The Innovator tool is used which supports the generation and documentation of all models
currently needed.

13

3.5.3 Experiences

Like the public authorities project, the project is in an early stage, so there are no definite
experiences yet. Up to now, it can be said that the informal UC models of the business
processes are much better suited to model, comprehend and communicate requirements than
the petrinet models used in thefirst try.

Our interviewee pointed out that UC models provide enough structure to manage the
complexity but are informal enough to be used as a communication medium with all
stakeholders.

Summarizing, the use of scenarios in the project was quite similar to the public authorities

project described in section 3.4. However, although normally seen in the context of object-

oriented methods, use case modelling is here used as ,front-end” for a process employing a
structured analysis method.

3.6 Satellite Communications

3.6.1 Project Background

The site visit described here took place at a large German service provider and consultant
firm. Our interview partner works as consultant and has applied a use case driven approach in
different domains like energy suppliers, public authorities, financial information systems,
control system, and telecommunication. Although the talk mainly dealt with their scenario use
in general, he mostly referred to a satellite communications project when talking about use
case examples. This project was a medium-sized one (15 person years).

3.6.2 Scenario Characteristics

Scenarios are used in the form of Jacobson use cases. The generation process is as follows: At
first during half-day interdisciplinary workshops a coarse-grained use case diagram is
developed by identifying the potential system usages. Again it was pointed out that finding a
use case and determining the right granularity is the most difficult task. The initial use case
diagram is communicated with the management of the customer and use cases are grouped
into logical use case groups. Moreover the use cases are classified as so-called primary or
secondary use case. While the former ones are essential for fulfilling the actual purpose of the
system, the latter ones are considered as supplementary. An example for a primary use case in
the satellite communication project was ,provide voice link“ while the use case ,billing* was
regarded as a secondary one. This distinction proved to be very useful for prioritizing efforts
to define coarse-grained project plans and for contract purposes to define deliverable stages.

After an initial set of use cases has been defined, for each one a use case description is
elaborated in close collaboration with domain experts (interviews and review sessions). Use

case descriptions are structured according to a template providing sections for name, goal,
event, actor, input, output, pre/postcondition, action etc. The most important use cases are
augmented with additional user interface forms/prototypes.

Although seen as a very important task, our interview partner pointed out that this phase
should be kept considerably short (3-4 weeks at most). In particular he recommended to
concentrate on the most likely threads through a use case since most customers tend to have
hundreds of exceptional cases in mind but do not see the essential characteristics of a specific
use case. As a thumb of rule, a use case description should be restricted to five pages.

14

In later phases of the project, the description of system-internal interactions are described with
use cases as Well. Depending on the project context, use cases are transformed into different,
more formal notations, for example message trace diagrams or data flow diagrams. It was
interesting to observe that the use of use cases did not depend on the overall modelling
paradigm used in the project.. Rather it was regarded as a universal front end for varying
methods.

The main tools used is Word. Software Through Pictures and Rational Rose are also in use
although they suffer from some restrictions and limitations.

3.6.3 Experiences

A general experience was that the usage-oriented decomposition of the overal system
functionality provides a natural way to communicate requirements with the customer. It was
pointed out that most customers explicitly preferred to talk about use cases rather than about
ER, DFD or MTD models. Moreover the dichotomy between the graphical use case diagram
and the more detailed use case description was seen as advantageous. While the use case
diagram provides enough information for the management to get a rich enough picture of the
system, the use case descriptions serve as communication medium for eliciting and validating
requirements with the domain experts. Another interesting observation was the universal
applicability of use case modelling regardless of the problem domain or overal system
development paradigm.

As a vision for future system development our interview partner envisaged a component
market of executable software components which are directly related to typical use cases of a
problem domain, thereby shortening the long chain of different models from the requirements
phase to the implementation phase.

3.7 Air Traffic Control Project

3.7.1 Project Background

The aim of the this project is to define and implement an integrated air traffic control system
across the 35 countries of the European continent which makes national differences between
regional and national control systems invisible to airspace users such as pilots. The project isa
complex long-term one with a projected completion date in 2015. Stakeholders include
national governments who have to fund the project, national bodies such as the UK’s Civil
Aviation Authority, national and international pilot associations, balloonists, microglider users
and even meteorologists. The project is till in its earliest stages. It has produced documents
outlining the basic concepts and high-level ‘wish-list’ requirements for the system. However
no thorough requirements engineering process has taken place.

Two companies from UK and France have been contracted by EuroControl to undertake a
prototype first-pass requirements acquisition task. The purpose of this task is two-fold. First it
will produce a more complete and correct requirement specification, although this will still be
too high-level to enable system specification and design. Second it will provide feedback
about how to undertake EuroControl’s complex and political requirements acquisition process.
The two companies are using scenarios to undertake this requirements acquisition. The one is
devel oping scenarios which the other will use to acquire user and system requirements over a
period of 3 months, and in particular to populate a large and complex object model,
identifying the required class operations and attributes.

15

3.7.2 Scenario Characteristics

Each scenario begins at a high level but is decomposed and to include strategic, operational
and tactical tasks, and even behavioral requirements for the software system. One exampleis a
scenario which explores how and when restricted (e.g. military) airspace is made available to
non-restricted access by commercial aircraft. The scenario includes details of national policies
and procedures for making such airspace available, procedures to make airspace available on a
weekly or daily basis and tactical procedures to make airspace available on request from an
aircraft in flight. This scenario also includes specific behavior requirements for the required
system, software or otherwise. At the moment the coverage of these scenariosis ad hoc, due to
the prototypical nature of the project. However there will more serious issues of scenario
coverage in the future stages of the project.

Scenario Generation

In this prototype study between 10-15 scenarios have been developed by. These scenarios
were developed during brainstorming meetings by the scenario development team, then
extended using available sources of information from documents. Each scenario is described
at first using natural language, then transformed into OOSE use-case models and finally UML

message sequence diagrams.
Scenario Use

Walkthroughs of the scenarios themselves will be conducted to improve the object models,

and it is possible that some later walkthroughs will be undertaken with pilots. Thus, in near

future scenarios will be used to “illuminate”, validate and improve a complex domain-specific
object model currently containing 100s of class objects for air traffic control. One interesting
use is that scenarios are being used in conjunction with the Open Distributed Processing
(ODP) approach which has been adopted by the whole project. The consequence is that each
scenario will be designed to explore one or more of the 5 viewpoints on system modeling
advocated in ODP. By cutting across different viewpoints, thus each scenario can act as a
device for integrating viewpoints and detecting inconsistencies, conflicts etc. Although at
present there is little intention to use the scenarios with large numbers of diverse stakeholders,
the potential of scenarios acting as easy-to-understand shared artifacts to facilitate negotiation
was acknowledged.

The scenarios are developed, used and managed using the UK's SELECT use-case and
requirements management toolkit.

3.7.3 Experiences

One of the major problems to be addressed in the full project is the large number of diverse
stakeholders, most of whom will have conflicting requirements. It is hoped that scenarios can
help resolve such conflicts.

One reason for the current pilot study is the acknowledged difficulties in acquiring
requirements for such a complex system. Scenarios are recognized as one part of the solution,
however scenario use on such a scale introduces its own problems. The contractors to this
study are exploring and learning about these problems at the moment. We hope to report more
on their experiences in the near future.

Summarizing, this project is an example for scenario usage in the context of very a large and
complex control system. Although the project is in its earliest stage it exhibits some
interesting characteristics. There are two separate groups who develop scenarios (French
company) and use scenarios (British company); this stresses the fact that scenario documents

16

must be communicable. The scenario documents produced undergo a typical transformation
from informal narrative text to use case models to more formal interaction diagrams. Most
interestingly, the use of scenario is envisaged as a vehicle for integrating and negotiating
viewpoints. The lack of suitable methods and tools for scenario generation and use in large
scaleis expected to become a major problem in future.

3.8 Systems Engineering for War Ships

3.8.1 Project Background

The project described hereis carried out at alarge ship builder which develops large warships
including the future UK aircraft carriers and support vessels. One of the major problems for
the systems engineering teams is to determine the requirements for these ships from the
reguirements documents provided to them once the building contract has been secured.

Requirements specification for new platforms takes place in the context of the company’s

reusable logical model of platform environment and behaviors. In essence, these models,
developed using Yourdon notations, include large amounts of data which are reusable when
specifying different platforms. The premise here is that there are many similarities between
the requirements for different platforms, and these similarities allow for extensive reuse

during requirements specification. The interviewees estimated that over 80-person years of
effort had gone into the development of these models.

Requirements specification and management and reuse from the generic domain models takes
place using the IME toolkit. The toolkit contains models of generic behavior, including
libraries of reusable behavior models and reusable equipment models.

Models developed with the IME toolkit can be divided into those which take a 'static' view of
the whole system and those which take a '‘dynamic’ view of the system. Static views are
encompassed in the environment model, behavioral model and system function model.
Dynamic views are encompassed in scenario modeling, operational and performance
modeling and systems effectiveness performance. The typical sequence of model development
based on the generic domain models is: (1) environment model (static), (2) scenario model
(dynamic), (3) behavioral model (static), (4) operational/performance model (dynamic), (5)
system function model (static), (6) systems effectiveness performance (dynamic) and so on.

However the organization has identified a need to improve the dynamic modeling side of their
model development. For example current use of scenarios for requirements identification is
small despite its prominent position in the development process above.

3.8.2 Scenario Characteristics

Current problems with scenario development and use have led to a prototype tool called the
operational concept demonstrator. The aim of this tool to enable the development and
animation of complex scenarios of naval warfare to gather requirements for new platforms.
These scenarios can be developed for different levels of 'system'. At the highest level the
platform is treated as a black box within its environment (the task force, sea, enemy attacks
etc) and the scenarios provide a basis for exploring requirements for the entire platform. These
scenarios are referred to as either operational scenarios or operational situations. At another
level this platform can be treated as a white box and scenarios are developed to explore
interactions between subsystems (e.g. propulsion, weapons etc) on the platform. It is
anticipated to use the same approach to decompose each of these subsystems to individual
pieces of equipment and their use by personnel.

17

Let us consider development of the operational scenarios in more detail. Operational scenarios
are developed against the background of rich domain models containing information about all
aspects of the environment, for example different types of friendly and hostile ships,
submarines and aircraft, and their permissible and typical behaviours, typical task force
formations, environmental information and so on. Information in this domain model enables
the user to define and animate ship behavior in a scenario.

The demonstrator provides a map-like visualization of the scenario which the user can
manipulate directly with the place or move ships, enter new incoming missiles or remove any
element from the scenario. The user has control over time in the scenario and is able to speed
up, slow down, freeze or reverse the animation as needed to €licit requirements.

The organization intends to use this prototype demonstrator with sales staff and systems
analysts to capture platform requirements directly into the IME toolkit.

A prototype white-box demonstrator has also been developed to explore requirements for
main platform sub-systems. The main focus of this prototype is to animate and simulate
communications between the sub-systems and explore critical message highways on the
platform under various external conditions, for example how the satellite and weapons
systems communicate under various circumstances. Again these scenarios can be developed
through selection of existing equipment and system models from the generic domain models.
This enables rapid animation without excessive input from the user in the first place. It isaso
possible to use such a scenario to explore, for example, impact analyses on changes and
upgrades to equipment on the platform. These scenarios are often intended to provide a basis
for further exploration of requirements away from the scenario itself.

3.8.3 Experiences

One important requirement mentioned is the need for guidance embedded in process models
for scenario development and use. There is currently a lack of such guidance. Another
requirement is a single repository for requirements, scenarios and the complex links between
requirements and scenarios. This indicated the need for a classification of scenarios to inform
design of such a repository. Such a classification would also provide a basis for developing
multiple views on single scenarios.

Another important requirement is the need for decision support to assist stakeholders to use
the complex scenarios. In particular there is a problem in making tradeoffs between decisions
about requirements and features of a scenario which isin need of method and software tool
support. This led on to a discussion of the importance of risk attached to requirements which
should be considered during a scenario analysis.

Summarizing, scenario use in this project is an example for very large, rich and complex
executable scenarios of naval warfare. Their purpose is mainly validating performance
requirements. A specific feature is the reliance on domain models to develop and execute
scenarios and the close integration with structured analysis methods.

3.9 Medical Systems/Consumer Electronics.

3.9.1 Project Background

The company sketched in this section uses scenarios in two application domains. medical
systems and consumer electronics. The medical systems department has been using scenarios
and use cases to develop software-intensive systems since 1993. Scenarios are used to develop
systems in two main application areas. The first is medical systems, such as image acquisition

18

and viewing systems for x-ray machines. The second is consumer electronic products such as
videos, televisions and so on. Since 1993 there has been a steady increase in the use of
scenarios. Scenarios are now seen to be the one of the mainstream development techniques.
One reason for thisis their fit with the OMT method which has superceded use of structured
analysis notations in the application areas mentioned.

3.9.2 Scenario Characteristics

The terms scenario and use case are used interchangeably to cover the range of scenarios
developed at Philips. Most are procedural scenarios containing structured text, images, tables
and pictures. The top-level scenarios are quite large - one that we studied was 14 pages of
small-font print A4. The structure of the scenario was defined using a predefined template.
This template ensured the inclusion of features such as a lexicon for the scenario as well as
references to other models such as object models. A typical large scenario would include
between 5 and 10 main procedures. Each procedure would in turn include on average about
40-50 individual user functions, therefore a typical scenario can include on average about 250
user functions. For highly integrated systems this number is often larger.

A typical template structure for a scenario is as follows, athough this structure is not always
adhered to:

1) Change History

2) References

3) Brief Description

4) Flow of events - pre & post conditions
normal flow
exceptions
paralel events

5) Other requirements

6) Constraints

7) Remarks

8) Object descriptions in the object model.

One of the most interesting findings from the site visit was the blurring of the difference
between scenario development and scenario use and the stakeholders involved in both phases.
Different stakeholders often take different views on the scenario, and impose different needs
on it. For example commercia stakeholders are less interested in the formal flow through the
scenario than are technical developers. These different views have important implications for
scenario development, use and management.

Scenario Generation

The scenarios themselves were aways developed by trained systems developers, in
conjunction with other stakeholders, mostly based on a commercial requirements specification
arising from market analysis. Typicaly the development of a scenario would start when a
developer sits down with 4 or 5 other stakeholders. In medical systems these stakeholders are
often subject matter experts. An informal, initial version of the scenario would be developed
through the use of other acquisition techniques such as brainstorming. This implies a
considerable overlap between scenario development and requirements acquisition. The
developer(s) then works alone to produce a more complete and precise version of the scenario.
The scenario undergoes internal developer reviews before review by other stakeholders. For
medical system applications these reviewers are subject matter experts. For electronic
consumer products the reviewers are from the commercial side of Philips, however the normal

19

maximum number of reviewersin one session is 5. Sometimes product managers or marketing
experts become involved later in the process, although thisis not normal practice.

Scenario use

Scenarios are mainly used to derive and explain requirements for new system features. Aswas
reported already, requirements acquisition takes place during scenario development activities
and requirements validation takes place during scenario review activities. As a result the
resulting ‘complete’ scenario is more a systems specification for system development than a
further requirements engineering document, as implied by the close links between the scenario
and the OMT object model.

In this situation the scenarios are used to validate the object model as proposed by current
object-oriented analysis methods, and scenario and object model development take place in
paralel. At the end of the development process most scenarios are archived for future
reference during testing, maintenance and documentation. For example, scenarios for future
television use are kept for reuse when future new televisions are needed. Sometimes the
scenarios is used for end-user training when the system is complete and available for use.

Software Tool Support

A number of software tools to develop and use scenarios are in use. The current main tool is
StP (Software Through Pictures). StP provides important links to other tools such as
Framemaker (which in turn provides useful capabilities for inclusion of hypermedia
documents), MS Word (for consumer electronic products) and Rational’s Objectory tool. They
make strong use of templates in products such as Framemaker and Word to structure
documents to standards, however these facilities are not used to structure scenarios
themselves.

3.9.3 Experiences

A number of important current problems were identified and requirements to solve these
problems were expressed. The most important problem was that scenario development was
seen as a craft without systematic guidance. More guidelines, heuristics and manual
procedures to guide the devel opment process are needed. These guidelines must be built on a
sound process model for scenario development. Current processes such as that from
Jacobson’'s OOSE are too flexible and open to (mis)interpretation.

Furthermore, since requirements acquisition is interleaved with scenario development, thereis
a lack of knowledge about which acquisition questions to ask at what point during the
scenario development process. Y et another problem is determining the most effective size or
granularity of each scenario? Hence, the process model must also improve the coverage of
scenarios to ensure that al requirements are covered at some point during the scenario
analysis without developing the scenarios into too much detail. Guidelines for prioritising
these requirements, and there corresponding user functionsin the scenario, are needed.

Furthermore the process model must also guide the developer to link the scenario with other
important artefacts from the development process such as user interface designs and testing
documents. These fundamental problems are exacerbated by a lack of useful software tools
with which to develop and manage scenarios. This scenario management problem is
compounded by current difficulties identifying and managing inconsistencies with OMT
object models developed for the problem domain.

As a consequence the need for a cohesive framework to manage scenarios was identified
which would facilitate better forward and backward traceability throughout the process. This

20

framework should provide intelligent assistance for structuring and tracking scenarios. It was
seen that the application of more formalization to scenarios would provide the foundations for
such aframework. In the framework it is perceived that scenarios will provide the glue linking
other models arising from the systems development process. Another requirement is the need
to promote scenario reuse across application domains as well as in vertical domains such as
televisions. This could be achieved through such a framework. The use of the intranet is seen
as an important potential tool for devel oping the framework.

A wider question was arose, and which the interviewees wanted an answer to, was whether
the current scenario methods were usable and integratable with current working practices.

Summarizing, scenarios in the form of use cases is mainly used as structuring device for
requirements so no clear distinction between use case and the requirement specification can be
made. Use case description are large and complex documents predefined structure, parts etc.
The scenario development and use process stresses the involvement of domain experts. The
lack of heuristics and guidelines for scenario generation and use is seen as a main problem.

3.10 Client-Server Business Applications

3.10.1 Project Background

Most of the applications developed at company described here are Client-Server, distributed
(Intranet) business applications. The customers are typically bank companies or government
administrations. The usua size of a project is between 100 and 2000 men-days. The
development teams are not distributed.

3.10.2 Scenario Characteristics

From a methodological point of view, the company works on the basis of a methodology
established by the DSDM consortium (of which they are part). This general methodology
(called SystemsCRAFT) has an object-oriented software development methodology
component. The main phases of this component are :

1. Initial Study : this has to be done in a short time (4 days to a few weeks) and involves
writing user requirements (URs) and system requirements (SRs). For both types of
requirements natural language, obeying a PSS-05-like standard, is used (SRs also include
use cases) and traceability matrices for checking completeness of SRs wrt. URS. It must
also produce as an output a planning and estimation of costs for the development phases to
come.

2. Globa Business Analysis: here OMT is applied to identify domain objects which are
linked to use cases which themselves result from refinement of use cases of the previous
phase refined with extends and uses links. This results in Object Interaction Diagrams.
(OMT is planned to be replaced by UML in the future.)

3. Global System Design : the constraint requirements (as opposed to capability requirements)
identified in the first phases are here used to put the domain objects of phase (2) in a
concrete environment. The output of this phase is a system architecture.

4. Detailed design and Coding : here, the work is divided by subsystem. For each subsystem,

a RAD lifecycle approach is adopted i.e. subsystems are made by incremental prototyping.

Build plan and test plans are also part of this phase.

Integration Testing

Acceptance Testing (reusing use cases of (1) and (2))

o U

21

Hence, both informal (semi-structured text) and semi-formal (Use Cases and Object
Interaction Diagrams) scenarios are used. In later phases also incremental prototyping
techniques are employed.

The scenarios produced are mainly used to specify requirements and to validate them with
customer in an explanatory way. Scenarios are also seen useful to explore possible aternative

system requirements in phase 1. There is not really use of scenarios for elicitation but there is

interest in that one of the main problems presented by the company is “ How to ask the right
guestions to customers ? .

Tool support is provided by the Select Entreprise CASE tool which is a competitor of
Rational Rose. The advantage of Select Entreprise wrt. Rational Rose seems to be a better
guidance to its usage and a better compatibility with their methodology. The main
functionalities of the tool are repository management, process management, editing of object
models, use cases, interaction diagrams, etc. An associated traceability tool (Select Tracer) is
currently being studied for future use.

3.10.3 Experiences

Scenarios is the form of both Use Cases and Message Sequence Charts were regarded as good
communication medium between different stakeholders. However the importance of choosing
appropriate names for actions and actors was stressed. In the context of their methodology
they were most useful to check completeness of object models, i.e. determining missing
objects.

Estimating the complexity of use cases appears to be a difficult task. Its utility is to guess the
time it will take to process them through the development cycle. A formula is used for that

which uses such information as the number of involved objects, presence of subsystem
interaction, the number of actions. While the use of scenarios to validate object models is
sufficiently well understood in this company, they see the need of better scenario-based
elicitation techniques to be satisfied by research.

Summarizing, use cases drive the company’s development methodology. They are regarded
very useful as a way to communicate with the customers and for improving object models.
Interestingly, use cases are created using templates including complexity estimation metrics
(for planning purposes). Scenario-based elicitation techniques are currently the main
contribution they expect from research to improve their process.

3.11 Radio Telecommunication / Transportation Project

3.11.1 Project Background

Our interview described here has focused on two projects for which the organization of our
interview partner has been a consultant. The first one is a 50 man-year mobile radio
telecommunication project (communication between base stations and mobiles) where several
network topologies had to be supported (star, linear, ...). This project has now been stopped.

The second project is in the transport sector and deals with the development of (re-
)configurable train networks. It is a 10 man-year project. The basic problem is that each train
has its own information system made on the basis of an internal network. A protocol must be
found that allows separate systems to be coupled, and, conversely, a global one to be
separated. For example, the basic steps of the protocol for grouping two trains/networks is (1)
fritting (2) ,, who's there ? “ (3) , the two networks decided to make only one “ and (4) , the
two networks elect a master “.

22

3.11.2 Scenario Characteristics

The scenarios that were used in telecommunication project were represented with message
sequence charts annotated with natural language and were typically one page long. They were
mainly used to specify the interfaces between subsystems which were themselves specified
with SA/RT. There was a team located is Paris which was responsible for the system and a
team in Charleroi in charge of the infrastructure. The scenarios helped Paris team in making
clear to the Charleroi team the BISS 1200 protocol which, until then, had only been loosely
defined. Scenarios are mainly felt as a good way for the developers to communicate. It was
estimated that, in this project, scenarios represented approximately half of the work performed
by the system engineers.

In the transportation project, the use of scenarios is supported by a tool, namely Verilog’s
Geode. Scenarios are formal ones, represented with message sequence charts, and Geode
enables them to be checked against an SDL specification and to be animated. The scenarios in
this project are very complex and the use of the Geode tool is regarded as being of great help
iIn managing this complexity. When problems are identified with the tool, the specification is
requested to be changed as soon as possible but no traceability information is maintained.

In both projects, only behavioural scenarios (expressing functional and non-functional
temporal requirements) are used and their purpose is to specify subsystem interaction. In the
telecommunications project, scenarios have an explanatory and descriptive role and serve
both for elicitation and validation (reuse of scenarios as test cases). On the other hand, in the
transportation project focus is on validation and scenarios have mainly an exploratory role,
namely the analysis of possible solutions and their costs.

3.11.3 Experiences

Our interview partner pointed out that scenarios in the form of message sequence charts serve
as good (graphical) communication tool, but here mostly used for facilitating communication
between developers. Hence scenarios are used more formally than in most other projects
interviewed. They proved efficient in managing complexity and allows very complex systems

to be delivered in reasonable time, provided that suitable tool support (like the Geode tool) is
available. Furthermore, it was pointed out that message sequence charts serve as basis for
validation tests.

As main problem it was experienced that scenarios are not easy to manipulate without tools.
Moreover, for requirements analysis more generic scenarios required than testing. Going from
generic to specific scenarios is not a trivial task. Moreover the integration with other aspects
of requirements is unclear, e.g. with object models. In particular, they look for a way to
summarize, as a ,, state “ what has happened until a given point in a scenario. They further
expressed the wish for a mechanism to impose different views on scenarios according to who
is examining them.

Summarizing, both projects described in this section have a strong technical emphasis. It

interesting to observe that (in contrast to more business application oriented projects)

scenarios here are use in a more formal way and less for communication purposes with the
customer. Rather they are used internally as communication means between developers. In the
case where large systems are decomposed into several subsystems specified by different
teams, the use of scenarios (message trace diagrams) was proven useful for specifying the
interfaces among systems developed by different teams. When very complex systems are
developed, mastering and analysing complex scenarios cannot be made without a supporting
tool.

23

3.12 CASE Tool for Banking Applications

3.12.1 Project Background

The project presented here is that of a CASE (computer aided software engineering) tool for
the generation of Human Computer Interfaces of the client part of client / server bank
applications. In this three years and a half project it was decided to adopt a way of working
involving the client (a French bank) in the design validation process in addition to the
requirement gathering tasks.

3.12.2 Scenario Characteristics

The approach is thus based on scenarios under the form of an incremental prototype. This
prototype was first developed by two engineers for six months. In order to get a comparative
idea of the size, the first version of the end-product was delivered at the end of the first year of
the project.

The prototype is presented as a sequencing of windows built with NSDK. It is intended to
give a rough idea of the interface of the end product. The prototype is issued after severa
meetings with technical managers representing the client. Before the prototype is created
rough MCDs sketches (one may trandlate literally MCD into design data model in English;
MCDs are design models of the Merise method) are produced. Both MCDs and the prototype
evolve through time. Several other meetings are done in order to validate the prototype and
the MCDs, and to explore emerging requirements. The design documents and the prototype
are judged complementary. Indeed, the prototype has the advantage of showing up some
aspects of the final product which would not be written in Natural Language or with MCDs or
with Message Trace Diagrams, like ergonomy (e.g.: the fact that 3 windows may be opened at
the same time, or the aspect of a window). On the other side, MCDs ensure the quality of the
requirements design which can not be done with the only prototype.

Consistency between the prototype and design documents is managed manually. Considering
that it happens even that the prototype is modified during meetings, this risk has been taken in
order to improve codt, flexibility and response time. However such choice of project
management would not be taken in the frame of larger projects.

When judged enough complete and valid, the prototype was used as such, as the interface of
the end product.

3.12.3 Experiences

The choice of designing a prototype was done as a way to involve the client in the tasks of
validation and exploration of the requirements engineering process. However, it was seen as a
mistake afterwards not to have involved end users since the earlier phases of the prototype
validation and exploration.

Advantages of prototype are evolutivity, ability to express the ergonomic aspects which can
not be done with NL or MTDs, and ability to involve both technical managers, and end users
in the requirements engineering process. This way of working has also the advantage of being
adapted to junior design teams.

24

The main problem is that it is empirical. The need of forma ways of working was thus
expressed in order to improve efficiency, productivity and reusability of the process and
experience.

3.13 Water Invoicing Management System
3.13.1 Project Background

The project described in this section deals with the re-engineering of the water invoicing
process. The project size is about 40,000 days-man, its duration was of four years. Scenarios
were used due to the evolution of the client vision of his own process, and of the desired
system. Because of the huge size of the project, the project management may be qualified of
complex, involving co-operatively subcontractors and the customer himself in addition to
software development organization. The customer was represented by several types of usersin
the project : customer responsibles, computer scientists, and end-users of the old system. All
of them were involved either in the creation, exploration, validation and agreement steps of
the scenarios which were used during the project.

3.13.2 Scenario Characteristics

The first document issued from interviews with the customers describes in natural language
the management rules of the invoicing system. This document which was written for one year
and a half is about five hundred pages long. The text which covers functional, structural and
some organisational requirements is completed by some informal diagrams and illustrations,
as away to facilitate the customer comprehension. In addition to the writing of this document,
several models describing abstractly the flows of exchanges of the system were defined.

After that Entity Relationship models were built to verify and control the validity and
consistency of the requirement description documents, a prototype was created in Visual
Basic. This prototype is a partial view of the system interface. It contains about twenty per
cent of the screens of the end system. This prototype which is thrown out after use was
intended to serve a user validation purpose. As a side effect, it was aso a way for the
customer to "sell" the designed system to the future internal end-users. One can thus say that it
was as well important from the point of view of the customer’s policy of project management
as in the help it provides to make users validate the system. Once the prototype and
specification documents validated, OMT design models were written with the STP/Unix tool,
and a mock-up was built. The mock-up, made with Visua C++ takes back the agreed
prototype interface and completes it (a thousand screens in all). Contrarily to the prototype,
the mock-up is not thrown away, but constitutes the interface of the end product.

The OMT models are completed with use cases hand written manually in natural language.
These uses cases mainly describe the sequences of events which happen when an object action
is performed. They also include statements such as goals, triggering conditions of events, and
final state of the concerned object. They focusin priority on exceptions.

The size of the use cases goes from ten to two hundred pages per use cases. About two
hundred use cases were associated to the design object models. The use cases were associated
to the design object models in order to keep legibility at a detailed level of the specifications.
Indeed, legibility of the design models was a project management constraint required by the
customer. Use cases were validated, commented, corrected and agreed by the user. After

25

validation and agreement were achieved, use cases where used together with design
documents for the technical study and the code generation.

It is interesting to note that, there is a difficulty to qualify the one or the other of the earliest
documents as scenarios. Indeed, contrarily to the prototype and use cases, these documents
have only a descriptive and exploratory purpose and could be found at the basis of most of
requirements engineering project.

3.13.3 Experiences

In contrast to other projects, one of the conclusions drawn from this project is that Use Cases
are most useful to involve the customer in advanced steps of the regquirements engineering
process like exploration, agreement, or validation. Two kinds of scenarios were used in the
project. First a disposable prototype which presents some aspects of the designed system
interface. Such a prototype is important in the selling aspect of the project. It is also practical
asitislow codt, easily modified and accessible by non-computer scientist customers. Second,
the use cases associated with object oriented design models are considered as necessary means
of behaviour descriptions when object oriented modelling is adopted.

Problems arise from the trace. Indeed all the documents issued from a project can be used
until maintenance, but no tool supported means is known at the moment to relate the different
documents the one to the other, and furthermore to relate them retrospectively with the logical
level. A solution which is envisaged is to use an hypertext-like environment to fulfil this
traceability requirement.

3.14 Process Engineering for 1S Development
3.14.1 Project Background

The project described here is carried out at an international Information Technology company
in Systems Integration, Consultancy and Outsourcing which operates in the fields of defence,
banking and finance, energy, industry, commerce and services, the public sectors and
telecommunications. The company has developed an approach which focuses on processes,
people and technology. A specific project is established which ams at eloborating this
approach. It proposes a process describing the tasks of project management from the
requirements elicitation, analysis and design to the Information System (1S) deployment.
Thus, the aim of the project is to assist the process of 1S development. It is not proposed as a
CASE or CARE tool, but it provides complementary assistance through alarge set of "helper”
files (which congtitutes a five hundred pages hypertext document). For the sake of
compatibility, the helper files supports the description of concepts with the UML (Unified
Modelling Language) design model. Each helper file describes a different task of the project
management process. Helper files define situations of use, steps of the local task, advantages
and risks, and is completed with examples. Beyond these files, some are devoted to the
definition and use of scenarios.

3.14.2 Scenario Characteristics

Two main types of scenarios are defined in the project.

On the one hand, scenarios are structured natural language descriptions of typical interactions
of the system domain (at the organisational environment context level), actors, organisational

26

and skill objects. Such scenarios provide an organisational vision of the system. However
their effective life span is short within the scope of a project, these scenarios are intended to
serve for the reuse activities. It is interesting to notice that the structure of these scenariosis a
hypertextual one with refinement links. Indeed there is no imposed level of detail; it is only
required to structure scenario from a broader level to more detailed descriptions.

On the other hand, scenarios are descriptions of user/system interactions under the form of
message trace diagrams. These scenarios, issued from the specifications, serve inside the
project to complete the requirements, for unitary user validation, and for software
qualification. Contrarily to the previous ones, these scenarios are user oriented. They do not
intend to cover al the aspects of the designed system (e.g. all the exception cases are not
addressed), but to make use of a user knowledge view of the intended system to improve its
quality.

Previous experiences with scenarios has led to two remarks concerning their size. First, for the
reasons of exhaustivity and consistency, each scenario should not be more than ten pages
sized, and in average there should not be more than ten scenarios per requirements engineer.
Beyond these average size and quantity, it becomes costly to ensure their consistency, their
evolution, and the correspondence with design models. Second, scenarios should not be used
within large scale projects (involving more than ten requirements engineers). Indeed
experience has proved that beyond this size, and given the above average data on scenarios
size, it is difficult to ensure that all the representative information are included in the
scenarios. However scenarios will be used (at a slightly increased cost) if the project can be
subdivided into smaller teams attached to sub parts of the designed system.

3.14.3 Experiences

The experiences of scenario use are regarded as globally positive. Scenarios have the
advantage of being usable at any moment of the project management process, in particular
during the steps of Design, Testing and Software Qualification.

Although scenarios provide an efficient support in most of the cases they are judged
dangerous and costly in the frame of large scale projects. It is foreseen to extend their use, but
a topical preoccupation concerns the definition of writing rules. From the research point of
view another topical expectation is related to the traceability of the requirements through
scenarios.

3.15 Summary

Table 2 summarizes the main scenario characteristics found in the various projects according

to the four views of the CREWS classification framework (form, content, usage/purpose,
management/life-cycle). To characterize the relevance of the table entries, we use three
attribute values: ,X“ means significant relevance, ,O0“ moderate relevance, and ,— no
relevance of that aspect. In the following, we sketch some main observations on the results in
the table.

3.15.1 Content

Three categories of scenario content were found. System context refers to descriptions of the
broader environment in which the system is embedded, system interaction covers how the
system interacts with its environment, and system internal refers to internal interactions
between components of systems.

27

3.15.2 Form

The form of scenarios seems to be correlated with the content. Five basic representation types
dominated in the projects. While some projects used narrative text without any structure, most
preferred structured textfollowing a more or less rigid template or table-structure. In any case,
natural language was mostly used for context and interaction scenarios. More formal
diagrammatic notations, such as object interaction or message trace diagrams, and animations
play amajor role in internal scenarios while images (e.g. screendumps of user interface forms)

are used for illustration mostly in context and interaction scenarios.

project/scenario facet 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15
narrative text X 0] X O O 0) 0] X O - - - X -
structured text X X ¢} X X X X ¢} - X X -
form diagrammatic notation — d X q — X A
images X X (0] o (@] o] - (0] 0] - - - [¢] =
animations/simulationg — — — — E
system context O O O — X —)
content system interaction X X X X X - (@) X X X X
system internal — — (0] — — X —| B
concretization of X (0] X X X X X X X - - X O O X
abstract models
scenarios instead of | — - - X X - - - - - - - - - -
abstract models
scenario use with X X X X O (0] - - (0] - - X X X -
prototypes
purpose/ complexity reduction X X X X X X O X (@) X O X X X X
usage
agreement and X X X X X X X X X X O X X X O
consistency
scenario use with - - X o o} - o} - - - - - - - -
glossaries
reflection on static X X X X X X X X - - - X X X X
models
partial views o O X X X X X X (@] X -
distributed scenario | O - X X X (0] X X (0] - - X
development
management/| scenario reviews X q D
lifecycle traceability X o X X X (@) o X X (@) o 0] X (@] o
basis for test cases q q [0} D o o O o] O
evolution X O X X X X X ¢} X O X X X O X

Table 2: Summary of Scenario Characteristics.

3.15.3 Usage/Purpose

Beyond their expected purpose as means for requirements elicitation and validation (not
mentioned in the table), lots of other usage aspects play a major role. For example,
concretizing requirements by lowering the abstraction level was seen as an important purpose
of scenarios in 13 projects, two of them even changed their process to a scenario-based

28

approach after encountering severe problems with the traditional development of abstract
models. The role of scenario as means for reaching partial agreement and consistency of the
requirements specification was stressed in nearly al projects. Another prevalent use of
scenarios was complexity reduction of the requirements engineering task and enforcing an
interdisciplinary development process. Somewhat surprisingly, 12 projects emphasized the
reflection of dynamic scenarios on static models, i.e. the population and validation of object
models. Some not widespread, but interesting interactions of scenarios were observed with
prototypes and glossaries.

3.15.4 Management/Life-cycle

The management issues which played (in a least some projects) a magjor role were: how to
Impose partial views on a scenario, how to handle distributed scenario development, how to
enable quality assurance through scenario reviews, how to make scenarios traceable along the
whole process, how to re-use scenarios as test cases, and how to evolve scenarios.

3.155 Resumée

Summarizing, the diversity of scenario usage observed in the projects was much greater than
one would expect from the UML-incited understanding of scenarios as instances of use cases.
About half of the projects claimed that they followed a use case approach but all of them had
needed to extend the textbook version significantly to make it work for them. A more detailed
elaboration on the conclusions concerning purpose and management across all 15 projects can
be found in [Weidenhaupt et al., 1997].

4 Questionnaire Results

The questionnaire was sent to representatives and project leaders of altogether 253 software
companies (215 German, 15 British, 12 French, and 11 Belgian organizations). Among these
were about 35 companies from which we knew that they used scenario-related techniques,
while from additional companies we had no prior knowledge (mostly German). 26 (10,3 per
cent) of the questionnaires were returned and only 4 of them came from the additional
companies. This might indicate that in general industrial usage of scenario-related techniques
is currently not yet wide-spread.

In the following, we highlight some results of the questionnaire evaluation concerning the
project profile of the respondents’ organizations, the used scenario types, their representation
and media, the phases in which scenarios are generated and used, the stakeholders involved,
and the main problems and benefits.

4.1 Project Profiles

business IS control software telecommunications medical systems software engineering tools

13 8 3 2 2

Table 3: Application Domains.

Table 3 indicates that scenario techniques are most prevalent in projects for business
information systems (both in the financial and/or governmental sector). They also play an
important role for control software, i.e. in more technical settings often exhibiting significant
real-time characteristics. Three respondents used scenarios in telecommunication projects, two

29

for medical systems. Two respondents were suppliers of CASE tools supporting and applying
scenario based techniques.

small
(less than 10 person years)

medium

(between 10-50 person years)

(greater than 50 person years)

large

undetermined
(keine Angabe)

18

3

2

3

Table 4: Project Size.

Most projects referred to in the questionnaires required an effort less than 10 person years.
Thisindicates that also smaller projects can benefit from the use of scenarios.

object-oriented

function-driven /
structured

data-driven

evolutionary, iterative

other or undetermined

13

6

3

3

7

Table5: Overall Systems Development Paradigm.

Most project employed an object-oriented methodology or a mixture of structured and object-
oriented techniques.

4.2 Scenario Types

Figure 3 shows the frequency of various scenario types. A bit surprisingly, the scenario type
most frequently used are system test cases which has an average of 4.5 (significant to frequent
use). Acceptance test cases also play an important role (significant use). The same holds for
prototypes although only few projects employ a pure prototype-based evolutionary. An

4,50

4,00 +
3,50 +
3,00 +
2,50 +
2,00 +
1,50 +
1,00 +

0,50 +

0,00

Other

Use Cases

Sequence

Diagrams

Prototypes

Mock-ups

Anim./simul.

Strat. Bus.
Scen.

Tact. Bus.
Scen

Cases

Acc. Test

Cases

Task Models

System Test

Figure 3: Frequency of Scenario Types.

interesting observation concerning use cases in conjunction with the overall system
development paradigm can be made: athough having become popular in the context of
Jacobsons’ object-oriented software engineering methodology, no significant difference
between projects employing object-oriented and structured methods can be observed. This

30

confirms an observation from the site visits that a use-case driven approach is not per se
object-oriented.

4.3 Representation and Media of Scenarios

4,50

4,00 +]

3,50 + [] -

3,00 + —

2,50 +

2,00 +

1,50 +

1,00 +

0,50 +

0,00
5 § & 8 .2 £ 8 g g : 3 & &
= 2 s g 88 8 § g S 4 § 2 &
S| ° =2 = > < -
E ¢ £ F 38 g = g = £
g & F R E ¢ 2
< =} I > i 5

] ®]

Figure 4: Frequency of Scenario Representations and Media.

Asindicated by Figure 4 the by far most frequently used representation formats for scenario is
informal narrative text and pictorial representation (significant to frequent use). Of medium
importance are semi-structured notations like structured text, templates, tabular
representation, and graphical modelling notations. All other representation formats and media
are only sparsely used.

4.4 Phasesand Activities

Figure 4 depicts how frequent scenarios are generated (white bars) and used (black bars)
during certain software development phases and activities. The most prevalent use of
scenarios is during requirements engineering (frequent). From the usage perspective scenarios
play amajor role also in design and system and acceptance testing. It is interesting to observe
that in later phases the use of scenarios dominates their generation, especially during system
and accepting testing. This indicated that it is aspired in many projects to re-use scenarios
developed in earlier phases coherently through the whole lifecycle.

31

6,00

5,00 +

4,00 + T

3,00 + -

2,00 +

1,00 +

0,00

Other

Project Mgt :I
BP Modellingu
RE
Design
Implementaion
Systems testing
Acc. testing
System Integr.
Documentation
Maintenance
QA

Figure5: Frequency of Scenario Generation and Use during Different Phases.

Figure 6 depicts more precisely how often scenarios are generated and used for certain tasks
within the requirements engineering phase itself. Interestingly, scenario themselves are most
often generated and used with the purpose of modelling requirements. This indicates that in
practice there is no clear distinction between scenarios and requirements. Another prevalent
useis for requirements validation and communication. The significant gap between generation

6,00

5,00 +

4,00 +

3,00 +

2,00 +

1,00 +

0,00
c =y c c c
] £ =] kel]
s £ £
o = ° o =
E £ g 2 g S
o o o c €
o) o) Jo) o S
@ ad x Q Q

o o

Figure 6: Frequency of Scenario Generation and Usein Specific RE Tasks.

and use of scenarios for these task indicates that scenarios originally generated for other
purposes are reused.

32

45 Stakeholders

Figure 7 indicates the involvement of different stakeholder groups in the scenario generation
and usage process. Of coarse this table reflects a significant correlation to the values of the
different life-cycle phases, since typically each phase is related to a certain set of stakeholders.
Besides the group of requirements engineering also the customer group plays an important
role in scenario generation as well as use. Given the main uses of scenarios during
requirements engineering (see section 4.4), this observation confirms the claim that scenario-
based approaches enforce an interdisciplinary requirements engineering process.

6,00
5,00 +
4,00 +]
3,00 + —
2,00 + —
1,00 +
0,00
@ @ 1% @ @ 9] @ S 3] Y
£ @ 2 =% £ 7 7 p= X S
B - e ‘B IS (5] () — [=) =
1%} ° < a & ~ = 2 s 2
3 (0 & a S £ g B S :
o] 9 [< o o %)
[0d o > o)
U>)\ ~

Figure 7: Stakeholder Involvement.

4.6 Perceived Benefits and Problems

4.6.1 Benefits of Scenario-based Approaches

Respondents pointed out the following main benefits of scenario-related techniques:
 early validation of requirements

* reduction of abstraction level

* help in verifying and checking completeness of requirements specification

* good communication base with customers and other non-technical people

* decision support for determining the optimal, i.e. most economic, solution
 resolution of ambiguities

» central reference in case of disagreement/negotiations

¢ illustration of dynamics

33

* easeof use

» complexity reduction through usage-oriented ,slicing” of overall system functionality
* illustrative representation of complex circumstances

* support for reverse engineering

4.6.2 Problems, Drawbacks and Negative Experiences

Most mentioned problems concern the lack of support by methods, tools, and management
strategies for scenario-based approaches, more concretely:

* missing conventions and process guidelines

» weak understanding how to embed scenarios in existing notation

* misunderstandings because of informality

» checking completeness of scenarios not trivial

* missing traceability between scenarios and other software artifacts

 translation of operational user view to testable system view not trivial

» week visualization techniques

* management of scenario life-cycle

» weak tools and techniques

» hard to convince customer of the need of spending effort into scenario generation
 lack of trained practitioners

4.7 FuturePlans

same level as now slightly increased significantly increased extensive no answers

9 2 7 4 4

Figure 8: Plansfor Future Scenario Use.

Figure 8 indicates the plans of the respondents concerning future use of scenarios in their
organization. Interestingly no respondent is going to decrease future scenario use. In average
the organizations plan to slightly increase the application of scenario based techniques. The
main topics for an enhancement of scenario use are:

» strengthen the coherence through all phases

» application of scenarios for testing and dialogue design

» development of tools for interactive scenario presentation to customer
» improvement of scenario formalisms

Acknowledgments

The authors like to thank their numerous interview partners and the questionnaire respondents
from industry for giving insight into the current practice. This work was in part founded by the
European Community under ESPRIT Reactive Long Term Research project 21.903 CREWS.

References

[Jacobson et a., 1992] I. Jacobson, M. Christerson, P. Jonsson, G. Oevergaard, Object-Oriented Software Engineering: A
Use Case Driven Approach. Addison Wesley, 1992.

[McMenamin & Palmer, 1984] St.M. McMenamin, J.F. Pamer. Essential Systems Analysis. Prentice Hall, 1984.

[Rational, 1997] Rationa Software Corporation. Unified Modeling Language. Available on the WWW:
http://www.rational .com, 1997

[Rolland et al., 1997] C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté, A. Sutcliffe, N.A.M. Maiden, M. Jarke, P. Haumer,
K.Pohl, E. Dubois, P. HeymanA. Framework for a Scenario Classification Framework, submitted to the Requirements
Engineering Journal, 1997.

[Rumbaugh et al., 1991] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lot®hgetroriented Model and Design.
Prentice Hall, 1991.

[Weidenhaupt et al. 1997] K. Weidenhaupt, K. Pohl, M. Jarke, P. Hat@mario Usage in System Development: A
Report on Current Practice. IEEE Software, March 1998

35

