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Abstract | Relationships among di�erent modeling perspectives have been systematically investi-
gated focusing either on given notations (e.g. UML) or on domain reference models (e.g. ARIS/SAP).
In contrast, many successful informal methods for business analysis and requirements engineering (e.g.
JAD) emphasize team negotiation, goal orientation and 
exibility of modeling notations. This paper
addresses the question how much formal and computerized support can be provided in such settings
without destroying their creative tenor. Our solution is based on a novel modeling language design,
M-Telos, that integrates the adaptability and analysis advantages of the logic-based meta modeling
language Telos with a module concept covering the structuring mechanisms of scalable software ar-
chitectures. It comprises four components: (1) A modular conceptual modeling formalism organizes
individual perspectives and their interrelationships. (2) Perspective schemata are linked to a concep-
tual meta meta model of shared domain terms, thus giving the architecture a semantic meaning and
enabling adaptability and extensibility of the network of perspectives. (3) Inconsistency management
across perspectives is handled in a goal-oriented manner, by formalizing analysis goals as meta rules
which are automatically customized to perspective schemata. (4) Continuous incremental maintenance
of inconsistency information is provided by exploiting recent view maintenance techniques from de-
ductive databases. The approach has been fully implemented as an extension to the ConceptBase
meta database management system and is currently experimentally applied in the context of business
analysis and data warehouse design.

Key words: Distributed Requirements Engineering, Meta Modeling, Modular Knowledgr Representa-
tion, Inconsistency Management

1. INTRODUCTION

The description of the desired behavior and quality of an information system often becomes
too complex for a single person. Recent systems analysis and design methodologies therefore
employ multiple partial models or perspectives to structure the set of requirements speci�cations
and designs. However, the methodologies di�er substantially in the preferred coupling of partial
models and in their consistency management strategies.

Notation-oriented methods manifest their assistance in the set of modeling notations they
o�er. Examples include structured analysis (e.g. [53]) and object-oriented techniques (e.g. [18]).
Typical perspectives include data, behavior, and function, additional structuring principles such
as modularization exist often only in very simple form without a well de�ned semantics.

Domain-oriented analysis methods o�er a prede�ned set of reference models for speci�c
application domains, in addition to the separation of data, function, and behavior, possibly includ-
ing an organizational and a resource perspective as well. The user can tailor notations, constraints
or the contents to the degree foreseen by the developers of the reference models.

Both kinds of methodologies aim at the e�cient production of consistent designs across the
perspectives they o�er. The simplest approach to achieve formal consistency is to avoid redundancy
in the modeling approach, i.e. to minimize the overlap of perspectives and thus the risk for what
these methods see as modeling 'errors'. Most available CASE tool families are able to deal with
prede�ned sets of such inconsistencies while the ARIS toolset [49] is an example of a tool supporting
the domain-oriented approach.

Since the early 1990's, this kind of modeling support has been criticized as neglecting the nature
of con
icts as a productive source of creativity. Authors from the software engineering community
noticed that multiple stakeholders pursue con
icting opinions, have contradicting requirements and
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alternative perspectives [4, 17, 14]. In consulting practice, such approaches have been pursued for a
long time, albeit without much computer support. Prominent examples include IBM's JAD (Joint
Application Design) [3], SSM (Soft Systems Methodology) [11], and PFR (Analysis of Presence
and Future Requirements) [1]. Such goal-oriented teamwork approaches speci�cally follow
the objective to capture requirements from all available sources and to make arising con
icts
productive. They employ moderated teamwork as the main working style which is the reason for
the high 
exibility and customizability they o�er. Their main characteristics are:

Informal information acquisition. The methods employ informal teamwork techniques
to acquire information from the participants. Models are developed on drawing or metaplan
boards using a set of graphical symbols. The semantics of the symbols are de�ned by the
participants during the workshop, at the time a new symbol is used. Moderators guide this
activity and keep the productive atmosphere within the teams alive. The teams typically
produce many perspectives in a short time containing lots of con
icts and inconsistensies.

No �xed set of notations. The notations used for information acquisition are not �xed
by the methods but instead speci�ed by the participants according to the actual problem to
be solved.

Goal-oriented perspective analysis. The analysis of a system and its environment is
always focused towards speci�c goals. These might be the improvement of business processes
or the increase of product quality. Goal-oriented teamwork approaches explicitly collect the
goals to guide the analysis and resolution of the partial speci�cations. The speci�cation of a
goal may vary from formal to completely informal. Con
icts within a single perspective and
between multiple perspectives are analyzed with respect to these goals.

Con
icts, inconsistencies, modeling errors, and gaps between perspectives are detected by a
cross-perspective analysis. The results of these comparisons guide subsequent interviews to
clarify con
icts and complete the models. The comparisons of the informal, mostly graphical
models are performed by moderators and analysts in a manual manner. The situation for the
analysts becomes even harder since the notations and the analysis goals can change from one
project to another. Experiences show that this manual comparison of perspectives is most
often time-consuming, error-prone and incomplete.

Con
ict tolerance. Even the existence of con
icts within the �nal requirements speci�ca-
tion are accepted if the reached degree of agreement is adequate to get a consistent system.
This is not equivalent to an ignorance of con
icts: all con
icts are recognized and monitored
throughout the project.

Changing analysis goals. Viewpoints of stakeholders, parameters of the system environ-
ment, and even overall project goals may change quite drastically during the analysis process.
The goal-oriented teamwork approaches incorporate the modi�cation of analysis goals as a
part of the methodology.

At present, no supporting tools beyond simple groupware tools are available for this class of
methodologies. The main reasons are the high degree of customizability the tools must o�er, and
the lack of formalizations o�ering the required 
exibility.

It is very important to carefully decide which parts of a goal-oriented teamwork approach should
be subject to formalization and tool support. The successful, informal team sessions in which the
information about the environment and the requirements on the system are acquired, is de�nitely
no adequate part for formal tool support. They seem also not to be the bottleneck. In our opinion,
the potential for formalization and computer-based tools lies in another part of the methods: the
cross-perspective analysis which has so far been performed manually by moderators and analysts
to extract knowledge and further questions from the collected information, the partial models.

This paper addresses this problem by providing repository support for goal-oriented inconsis-
tency management in customizable, multi-perspective modeling environments. In the next section
we review existing proposals and give an overview of our own approach. In sections 3 and 4 we
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then present the main contributions. The de�nition and axiomatization of a modular conceptual
modeling language yields a formally precise way of how to de�ne perspectives and control the
information exchange between them. On top of this basic formalism, we develop techniques for the
de�nition, compilation, and distribution of analysis goals in a customizable modeling environment
(i.e. one without a �xed set of notations or domain models). A distributed execution environment
enables e�cient incremental maintenance of instance-level information about violations of analysis
goals. The paper ends in section 5 with a summary and outlook.

The approach has been implemented as an extension to ConceptBase [26], a deductive meta
database manager which uses M-Telos as its object model, and has been evaluated in a number of
case studies in business analysis and requirements engineering. For space reasons, some details of
proofs and implementation techniques have been left out of this paper; they can be found in [43].

2. EXISTING PROPOSALS AND OUR APPROACH

Summarizing the discussion in the previous chapter, any supporting tool for goal-oriented
teamwork approaches should in the �rst place focus on the cross-perspective analysis. This becomes
a problematic task since the tool must not limit the 
exibility and customizability of the methods.
For this reason, the support of all of the following properties is an essential requirement:

1. Separation of multiple partial models

2. Dynamic customization towards required notations

3. Goal-orientation in perspective analysis

4. Tolerance of con
icts

5. Adaptable de�nition of analysis goals

This list provides a challenge to all existing proposals: They are only able to handle a subset of
these requirements to a sometimes even limited degree. In the next subsection we will take a closer
look onto the existing approaches. In subsection 2.2 we present an overview of our approach.

2.1. Related Work

The ISO Information Resource Dictionary System (IRDS) framework [23] provides a general
reference structure for multi-perspective (conceptual) modelling. Figure 1 shows its four-layer
architecture.

The Instances and scenarios level contains objects which cannot have instances. Examples
are data, system states, measurements and so on. Objects may have attributes and they may have
classes (residing in the model level). During requirements acquisition, when the information system
and therefore the instances do not yet exist, this level also contains scenarios of the intended use
of the system.
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TheModels level represents the classes of the objects at the instance level. Those classes de�ne
the schema (attributes, properties) of the instance level objects as well as rules for manipulating
these objects. At the same time the classes are themselves instances of the schema de�ned at the
modeling language level.

At the Modeling languages level, meta classes de�ne the structure of the objects (classes)
at the model level. In other words, a model is instantiated from the meta classes of the modeling
language level.

The Meta meta model level contains meta meta classes, with instances at the modeling
language level. The de�nition of multiple modeling languages are possible by appropriate instanti-
ations from these met ameta classes. Moreover, the dependencies between multiple languages can
be represented in a static way as attributes between meta meta classes in the meta meta model
level, and in a dynamic way as integrity constraints on the meta meta classes.

These four IRDS levels can be grouped into pairs that de�ne interlocking environments, as
shown on the right side of Figure 1: usage environments, conceptual modeling environments,
and the method engineering environment. In the method engineering environment the common
meta meta model is used as the languange to specify the di�erent modeling languages and their
interrelationships. In the conceptual modeling environments the modeling languages are used to
create conceptual models. The usage environment employs the conceptual models as a schema to
manage information of concrete entities.

The interlocking between the models can be read down or up. Reading down, the architecture
supports the generation of a distributed modeling environment; reading up, it supports the inte-
gration and resolution of existing modelling environments. In either case, the choice of metamodels
crucial for the support the model de�nition and integration environments can o�er.

For the integration, it is also important that, at each level, the integration repository can
represent information about the separate perspectives from which it is composed (perspective sep-
aration), as well as about their interrelationships and con
icts (perspective resolution). For both
tasks, numerous individual techniques have been proposed.

Separation mechanisms have been developed for di�erent purposes in requirements engineer-
ing and for modeling environments. The Requirements Apprentice [47] uses a context mechanism
called Clich�e to represent prede�ned domain descriptions. Since di�erent domain descriptions may
be inconsistent to each other, this separation is necessary. They are organised in a specialization
hierarchy and can be used as a starting point in requirements engineering. ARIES [27] employs a
similar concept called Folder. A Folder captures partial domain information and is used for the
development of a requirements speci�cation. The engineer creates a new Folder and if applicable a
relationship to one of the prede�ned domain descriptions. He then extends this description accord-
ing to the actual problem domain. Even though the separation mechanisms have been developed
with a somehow di�erent application in mind, they could be employed for the management of mul-
tiple perspectives. But all the mentioned approaches do not consider the speci�cation and tolerant
evaluation of analysis goals.

Context machanisms have also been studied in Arti�cial Intelligence (AI). The Cyc knowledge
base employs for its huge amount of information a separation mechanism called context [22]. Con-
texts can be organised in a specialization hierarchy which makes the whole contents of the general
context accessible in the more speci�c context. The most speci�c context, called BrowsingCntxt,
contains all available informations of the knowledge base and is used to inspect the contents of the
knowledge base.

In [40] a general separation mechanism for repositories is presented. Information units of the
repository are organised in contexts. A context has a unique name and manages its own name
space. The same unit may exist in di�erent contexts in di�erent versions. The context can
establsh communication channels to share units with other contexts. However, the approach does
not incorporate any resolution mechanism and no possibility to specify the goals and the motivation
behind the modeling activity. Therefore, inconsistencies between contexts may exist, but will not
be detected.

Motschnig-Pitrik [37] develops a set of criteria for evaluating datamodels regarding their ability
to represent multiple perspectives. She lists as basic features of a perspective (which she calls a
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context) the unique identi�er, operations to populate a perspective, operations to construct a new
perspective out of existing ones, the encapsulation of the content, the controlled access to the
contents of a perspective, the integration as a �rst-clas object in the language, and the change
propagation. In [38] this approach is applied to the Telos object model. But they do not operate
on the logical de�nition of Telos but only present modi�cations of the frame syntax intended for
user communication. The semantics of these extensions is neither speci�ed nor implemented.

Perspective resolution. The ViewPoint approach [46] is a framework for distributed software
engineering, in which multiple perspectives are maintained separately as distributable objects called
ViewPoints. The approach aims at a completely distributed architecture without any central
control unit. In terms of the IRDS reference structure, no method engineering environment exists.
Relationships between ViewPoints are de�ned by so-called inter-ViewPoint rules. The relationships
perform only an integration with respect to the notations; an integration based on the domain under
investigation is not supported. The approach does not consider the incorporation of customized
notations. The notations are prede�ned at system de�nition time.

Many perspective resolution mechanism are limited to a �xed set of analysis goals and in many
cases concentrate on syntactical relationships. They operate only on the Conceptual modeling
environment and use prede�ned relations between the modeling languages to analyse perspectives.
The integrative view o�ered by the Method engineering environment is not used. Leite and Free-
man employ in [32] such a syntatctic perspective comparison. The contents of perspectives are
represented by a set of production rules. They compare the rule bases of two perspectives by iden-
tifying the most similar rules as well as the rules with no pairs. On basis of the evaluated mapping
they detect wrong, missing and inconsistent information. They do not take information about
the domain into account. The analysis rules are prede�ned in the Static Analyzer and cannot be
customized by the user. A tolerant application of the rules is also not supported.

The Carnot project at MCC [12] uses an ontology based perspective resolution mechanism.
Carnot employs the general Cyc ontology [33] for the analysis of multiple perspectives. For perspec-
tive resolution, the relationships between the perspective and the common ontology are speci�ed.
The comparison of these relationships reveals overlappings, gaps and con
icts between perspec-
tives. In terms of the IRDS reference structure, Carnot operates only on the Conceptual modeling
environment where all perspectives - also the general ontology - share one modelling language. In
[24] the authors describe the role of ontologoes within meta modeling in more detail.

In practice, variants of the IRDS approach have recently migrated into integrative repository
products on the one hand, and into generative meta modeling environments on the other. As our
solution adopts aspects from both, we shall brie
y discuss them below.

Generative meta modeling environments such as MetaEdit+ [29] employ the IRDS structure
to support the largely automatic customization towards speci�c modeling languages. They o�er
a �xed meta meta model together with a number of prede�ned consistency-checks which can be
employed to specify more complex consistency rules on ontologies and notations. Within the
limitation of the set of prede�ned consistency-checks, project speci�c analysis goals can be de�ned
in terms of consistency rules on elements of a modeling language. They lack support for the
management of multiple perspectives, namely the separation of partial models and the handling
of con
icts.

The most comprehensive integrative repository approach in industry is probably the Microsoft
repository [6]. On the side of notational and technical integration, it is based on Microsoft's COM
data model. As a basis for domain-oriented integration, as far as that exists, a version of Rational's
Uni�ed Modeling Language is employed; reference Information Models have been developed by
consensus processes with vendors in the form of specializations of this UML information model.
There is a �xed meta meta model which is essentially an object-relationship model de�ned on
top of COM. In terms of the requirements de�ned above, di�erent notations can be supported
and, though by programming e�ort of specialists, re�nement is possible. For the separation of
perspectives, a workspace concept is o�ered. Perspective resolution is supported to some degree by
the combination of the Relationship concept in the meta meta model with a versioning mechanism.
However, support for all these features is at the level of programming rather than declarative
statements, even though the task is signi�cantly simpli�ed through types and the clever use of
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inheritance.

2.2. Overview of our Approach

Our approach is also based on the IRDS reference structure. Its most prominent characteristic
is the management all levels within one logical framework. Due to the limitation of SQL, the IRDS
reference structure had to treat each level pair as a single entity. Thanks to the extensible meta
modeling capabilities of the logic-based conceptual modeling language Telos [39] we are able to
manage all four levels uniformly, and to keep even the meta meta model modi�able.

The structure of our approach is presented in �g. 2. We are using only the three upper layers
since, in this paper, we are not concerned with the management of concrete entities of the real world,
even though these can be easily integrated via scenarios. In contrast to many other approaches (c.f
chapter 2.1) we support both, the Conceptual modeling and the Method engineering environment.
In the following paragraphs we explain the �ve features of this approach in more detail.

(1): Separation of Multiple Perspectives.

The conceptual models represent individual perspectives of stakeholders. The �gure shows
three perspectives (A1,A2,A3) expressed in Notation A and two perspectives (B1,B2) expressed
in Notation B. Our separation mechanism o�ers independent modeling contexts and enables the
representation of inconsistent conceptual models.

The formal conceptual modeling language Telos [39] forms the basis for our work. In chapter
3 we describe M-Telos which extends Telos by a module concept. Modules act as containers for
partial models and enable therefore the separation of con
icting perspectives or viewpoints.

(2): Customizable Notations.

We enable customizable notations by employing the extensible meta modeling capability of
Telos. The language allows to de�ne and modify meta models of the desired notations. i.e. the
notations used to express the partial models are itself speci�ed on the second level, the meta level.
The example comprises two notations, Notation A and Notation B.
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(3): Adaptable Speci�cation of Analysis Goals.

A shared meta meta model inter-relates the employed modeling notations. It speci�es the
domain structure as well as the speci�c analysis goals. This model is created in teamwork at the
beginning of the analysis project and documents an agreed share sub-language of all participating
stakeholders. An analysis goal is actually an integrity constraint which de�nes a cross-perspective
check performed on the bottom level between concrete conceptual models.

Since Telos allows for an unlimited classi�cation hierarchy, even the meta meta model is mod-
i�able, i.e. the analysis goals can easily be adapted to speci�c project objectives.
(4): Goal-Oriented Perspective Analysis.

The analysis goals speci�ed in the problem-oriented meta meta model (cf. no. 3 in �g. 2) are
stated independently from any speci�c notation. They are formulated exclusively on the domain
terms. In order to be ables to analyse the partial models residing on the bottom layer, we transform
the analysis goals into integrity constraints on the notation meta models. In chapter 4.1 we present
an automatic transformation mechanism.

If an analysis goal covers two or more notations, the integrity constraint will be placed in
a special module, the resolution module. In such a module (cf. no. 4 in �g. 2) all integrity
constraints which specify the relationships between partial models of the connected notations are
collected. In the �gure we have a resolution module for the two notations mentioned above.
(5): Tolerance of Con
icts

To avoid interrupting the creative modeling activity in the presence of inter-perspective incon-
sistencies, the cross-perspective analysis takes place in separate resolution modules. The �gure
shows such a resolution module (cf. no. 5 in �g. 2) to check the perspectives A1,A3 and B1. If the
analysis results in a con
ict between perspectives, the con
ict is continuously documented but it
is not required that the con
ict is resolved immediately. Since the documentation is visible only
within the resolution module, the designers of the involved models are not a�ected. In chapter 5
we develop a mechanism which is based on deductive database techniques.

3. M-TELOS: SEPARATION OF MULTIPLE PERSPECTIVES

In this section, we describe how a conceptual modeling language and its formal semantics
can be extended to address the need for perspective resolution. As stated earlier, our goal is to
de�ne an approach that has a sound standard logical basis for con
ict analysis, works at all levels
of the IRDS hierarchy, and is compatible with standard module notations found in the software
architecture literature. As a starting point which already satis�es the �rst two goals, we choose
the conceptual modeling language Telos.

Telos [39] was designed for managing (meta) information about information systems. It inte-
grates aspects from database design, knowledge representation and conceptual modeling.

Like other conceptual modeling languages, Telos o�ers a textual and a graphical representation.
From a user's point of view, the distinguishing feature of Telos in comparison with other conceptual
modeling approaches is its extended meta modeling capability. While SQL, for example, is limited
to deal with classes and their instances (i.e. exactly one level pair), and most object-oriented
languages allow at best one metaclass level, Telos allows the user to manage also the (meta) classes
of a class, the (meta meta) classes of a meta class, and so on. The number of these instantiation
levels is not limited by the language.

Telos can be used to specify all four levels shown in �g. 3, and even keep the meta meta
model modi�able. In the context of requirements engineering from multiple perspective these four
levels de�ne di�erent user classes for Telos. Method engineers de�ne the common principles of
the domain under investigation on meta meta model level. In the example we are concerned with
business processes, where we typically deal with a medium that contains some kind of Data. The
Method engineer also speci�es the modeling language to be used to formulate the conceptual model.
This language comprises then concepts to express the fact that a Form includes an Item. Model
designers use this schema to produce a conceptual model of the problem domain. In the example
this model states that there exist a form Travel Expense Declaration that includes two items:
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the Amount of public transport expenses and the desination. Finally, the Application user
inserts concrete entities of the real world, the travel expense declaration TED#4466 in the example.

A closer look at Figure 3 reveals that any modeling facility supporting such an interlocked
way-of-working requires at least three basic language concepts { one for self-standing labeled ob-
jects, a second one for labeled links between them, and the third one to express the instantiation
relationship between the IRDS levels. In order to provide declarative formal control over the usage
of these base constructs, a fourth concept, that of a logical assertion, is also desirable.

As shown in Figure 4, the kernel of the Telos language is just that. All other language facilities
(such as generalization hierarchies, cardinality constraints, and so on) can be bootstrapped from
this kernel.

In the textual view we group together all information for an object (e.g. TravelExpenseDecla-
ration). The class (e.g. Form) of that object precedes the object name, the attributes of the
object (e.g. public transport) are sorted under attribute categories (e.g. includes) which refer
to the attribute de�nitions of the object's classes. Note that all objects, i.e. links and nodes, are
instances of the builtin object Object.

Object Form with Form TravelExpenseDeclaration with

contains includes

includes: Item destination : Town;

end public_transport: Amount

end

Besides inserting and modifying Telos objects (TELL function), the second main function of
the server is the ASK facility. Queries are formulated like ordinary classes with a (membership)
constraint [52]. They are recognized by the system via the keyword QueryClass. The query
evaluator computes the answers and establishes an intensional instantiation relationship between
the query class and the answers.
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The following example presents a query class HighExpenses computing all travel expense dec-
larations with a public transport amount greater than 500. We restrict the set of answers to the
declarations by de�ning the query class as a specialization of TravelExpenseDeclaration. The
attributes which should be part of the answer are speci�ed as attributes of the query class. In
the example we will get the public transport attribute for all computed expense declarations.
The constraint forms the membership condition, i.e. only expense declarations that satisfy this
constraint become answers to the query class. For the example we require that the value of the
public transport attribute is greater than 500.

QueryClass HighExpenses isa TravelExpenseDeclaration with

attribute

public_transport : Amount

constraint

c : $ (public_transport > 500) $

end

Note that updates (TELL) and queries (ASK) may refer to any abstraction level. Thus, instance
level objects are updated and queried in exactly the same way as the concepts of the modeling
language level. This is also the basis for perspective resolution at all levels, as shown later in this
paper.

Internally, all objects have a unique identi�er. However, on the user interface a node ob-
ject is uniquely identi�ed by its name. To be able to refer uniquely to a link object by only
using names, we require that the names of links originating from the same node object are
unique. Using the exclamation mark (!) to denote the origin of a link object, the expression
TravelExpenseDeclaration!destination refers to the object representing the destination at-
tribute of TravelExpenseDeclaration. For navigation within an assertion two operators are
applicable for link objects: from denotes the links origin, to denotes the links target objects. The
variable var in literal (TravelExpenseDeclaration!destination to var), for example, would
be evaluated to Town.

The ConceptBase user interface includes a customizable graph-browser. The base function is to
display node objects like TravelExpenseDeclaration and link objects like TravelExpenseDecla-
ration!destination. The customization is done by assigning graphical types to nodes and links
directly or via deductive rules. It is therefore possible to specify a certain graphical type to all
instances of a speci�c object.

A variant of Telos called O-Telos was formalised in [25] and implemented in ConceptBase
[26], a deductive object manager for meta databases. This axiomatization is given in form of a
logic program, i.e. each formula is written in form of an integrity constraint or a clause [10].
Therefore, the axiomatization serves two goals at the same time: it provides a formal semantics
and, according to the idea of Logic Programming, provides an executable implementation of Telos.
To enable large meta databases, a special-purpose object store written in C++ together with
numerous optimization techniques speed up this execution.

O-Telos does not contain an explicit mechanism for handling modules even though some features
of such a mechanism as well as resolution techniques could be simulated by clever usage of the meta
modeling capabilities. However, users found the need for a cleaner and more uniform mechanism
akin to the ones found in languages for programming in-the-large. Context mechanisms such as
discussed in section 2.1 were found to be either too complicated or designed with other goals
in mind. Or the separation into modules would destroy the ability to conduct formally based
inconsistency management. Last not least, a design goal for our own language extension, M-Telos,
was that for a user who wants to work with just a single perspective nothing should change in
comparison with O-Telos. Inconsistency management, as discussed in section 5 of this paper, is
just an additional service which the users can employ either in separate resolution modules, or
about which they can be made aware using the active database features (noti�cation services) of
ConceptBase, in a similar manner as they have already been made aware of integrity constraint
violations in previous versions.
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M-Telos extends O-Telos by introducing modules as a separation mechanism. A module
provides an independent modeling context where users can create an individual analysis perspective
in the form of a conceptual model. The intended application scenario of modules in concurrent
conceptual modeling processes induces the need for communication between modules [46]. The
module concept supports cooperation among group members by the possibility to de�ne local
modules.

Often, one modeling task depends on another one and reuses a part of its results. To support this
situation, two modules can communicate by setting up an import-relationship. The importing
module obtains access to the contents of the imported module. To protect a speci�c part of the
module contents, the concept allows the division of the accessible contents of a module into a
private and a public part.

We need not only a modeling context but also a context for the resolution of multiple per-
spectives. We use dedicated modules for this monitoring task, the so-called resolution modules
(cf. section 4). As our experiences indicate [44], such resolution modules need a special way to
access the monitored modules. Therefore the module concept o�ers a coordination relationship
between modules which enable a resolution module to access all accessible objects of the monitored
modules.

For the area of programming languages there exist already a common understanding of modules
and their properties [41]. A requirement of the design of M-Telos was to be compatible with these
approved principles. As we will show in the next chapters, the M-Telos concept of modules does
indeed assure these properties. However, the features of our approach listed in chapter 2.2 go far
beyond the capabilities of ordinary modules in programming languages (cf. features 2 to 5).

3.1. Formal De�nition of M-Telos

A main goal of the axiomatization of M-Telos was to preserve the simplicity of the O-Telos
formalization [25]. We had to add only seven new rules and six new constraints to the O-Telos
de�nition. In addition, of course, a number of pre-de�ned objects had to be de�ned in order to
introduce the built-in module System and its relationships to other pre-de�ned objects. All other
M-Telos axioms are just minor adaptations of the O-Telos axioms. The full set of axioms and
pre-de�ned objects is given in the Appendix.

The semantics of a M-Telos object base is given by a mapping to a deductive database containing
prede�ned objects, integrity constraints and deductive rules. This set of objects, constraints and
rules constitutes the axiomatization of M-Telos.

The basic data structure of M-Telos is very simple. It represents all information using labeled
nodes and arcs with object identity.

De�nition 1 (Extensional Object Base) Let ID be a set of object identi�ers, LAB be a set
of labels. An extensional object base OB is de�ned as a �nite set of objects:

OB � f P (o; s; l; d) j o; s; d;2 ID; l 2 LABg:

Every object is represented in form of a tuple P (o; s; l; d) with object identi�er o, start object s,
destination object d and label l. The above object o can be read as: "The object s has a relationship
called l to the object d". We distinguish four di�erent categories of objects: Objects of the form
P (o; o; l; o) are called individuals. They represent self-standing entities. Objects containing the
special label in like P (o; s; in; d) describe instantiation relationships. Objects containing the
label isa like P (o; c; isa; d) represent specialization relationships. All other objects denote just
attributes.

Five prede�ned objects document the four object categories: Object contains all objects of
an extensional object base as instances; Individual, InstanceOf , IsA, and attribute contain the
individuals, instantiation, specialization and attribute relationships as instances (cf. axioms A-1
to A-5).

M-Telos introduces an additional prede�ned object called Module which contains all modules
as instances. It o�ers four attributes: contains links to the objects which are de�ned within the
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speci�c module; exports declares accessible objects to be public; imports from refers to another
module and indicates an import relationship; coordinates indicates a coordination relationship to
another module (cf. axioms A-6 to A-10). A special prede�ned module called System contains all
prede�ned objects including itself (cf. axioms A-11.1 to A-11.26).

Figure 5 visualizes how the new prede�ned objects extend the semantic network of �gure 4.
The attributes specifying the contents of System are omitted for readability. Individual objects are
denoted as nodes of the graph, instantiation, specialization and attribute relationships as dotted,
shaded and labelled directed arcs between their source and destination components.

Due to space limitations, we concentrate on the axioms that de�ne the properties of the module
concept. The complete list of axioms can be found in appendix A [42].

M-Telos requires that the names of individual objects must be unique within the same module
(A-16). Note that names need not be unique among all objects that are accessible in a module.
Within a single module two individuals with the same name but di�erent object identi�ers and
di�erent de�ning modules may exist. Especially for the representation of multiple conceptual
models which may be developed by di�erent people observing the same domain this is an essential
feature.

The access to objects is only possible through modules, i.e. every object should belong to
exactly one module. Axiom A-18 requires a de�ning module for every object of an extensional
object base. In addition axiom A-19 requires that every object is contained in only one module.

We now de�ne the set of accessible objects within a module (as opposed to de�ned). The new
literal PMod(M; o; s; l; d) describes the objects P (o; s; l; d) which are accessible in module M . The
set of accessible objects for a module M comprises

� all objects de�ned within M (axiom A-22),

� all imported objects (axiom A-23),

� all accessible objects of coordinated modules (axiom A-24), and

� all objects that are accessible in the containing module (axiom A-25).

The closed world assumption (CWA) [35] guarantees that exactly the literals PMod(M; o; x; l; y)
that can be deduced using these rules hold and no others.

The exported objects of a module must form a subset of all the accessible objects of that
module. Axiom A-48 formulates this as an integrity constraint. The export part describes a
subpart of the conceptual model formed by all accessible objects. This subpart is exported to be
reused and extended in another module. To be able to reuse the exported subpart all referenced
objects must also be included. This requirement of referential integrity particularly for the export
part is formalised in axiom A-49.
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For the perspective resolution we shall need the coordinates relationship between two modules.
The coordination relation is transitive, i.e. if module M1 coordinates module M2 and M2 coordi-
nates module M3 then M1 also coordintes (indirectly) the module M3. This fact is expressed in
axiom A-50. Since a cyclic coordination relationship leads to enormous problems in the handling
of perspective inter-relationships (see section 4), we explicitly forbid this with axiom A-51.

On basis of the axioms presented so far, other properties of M-Telos are de�ned which are not
directly related to the module concept. We mention in the following only the important ones.

� Instantiation axiom (A-44): An instance of a class is allowed to instantiate the class's at-
tributes.

� Specialization axiom (A-43): The destination (called superclass) of a specialization relation-
ship inherits all instances of the source (called subclass).

In combination with the instantiation axiom this de�nes the attribute inheritance from su-
perclass to subclass: instances of the subclass can instantiate attributes of the superclass.

� Multiple generalization/instantiation axiom (A-45, A-47): M-Telos supports multi-classi�-
cation and multi-generalization under some restrictions.

� System classes axioms (A-29 to A-39): For every object the instantiation relationships to
the prede�ned objects Object; Individual; InstanceOf; IsA and attribute are deduced and
may not be contained in the extensional object base. Also, every instance of the objects
Individual; InstanceOf; IsA and attribute must have the speci�c structure introduced at
the beginning of this section.

3.2. Properties of the Axiomatization

A set of axioms is of little use if no formal properties can be derived from it that simplify the
understanding or the e�cient implementation of the language, or form a basis for inconsistency
management.

First, we formally de�ne a consistent M-Telos object base as a special deductive database. A
deductive database is a triple (EDB; IDB; IC) where EDB, the extensional database is a set of
facts in the form of relations, IDB, the intensional database, is a set of deductive rules de�ning
intensional relations, and IC is a set of closed formulas stating integrity constraints. For a M-
Telos object base, EDB becomes the extensional object base containing only facts of the P-relation,
IDB is exactly the set of axioms forming deductive rules, and IC is exactly the set of the axioms
interpreted as integrity constraints.

De�nition 2 (M-Telos Object Base) Let AXOB be all axioms describing prede�ned objects,
AXR be all axioms which are deductive rules and AXIC be all axioms which are constraints.

Then the triple (OB;AXR; AXIC) is a M-Telos object base if AXOB � OB holds.
(OB;AXR; AXIC) is called a consistent M-Telos object base if the perfect model of

(OB;AXR) satis�es all integrity constraints of AXIC .

An important property of a consistent object base is the referential integrity within each module.
This property guarantees that for every accessible object in a module also the destination and the
source components are accessible objects in that module.

Proposition 1 (Referential Integrity [42]) Let (OB;R; IC) be a consistent M-Telos object
base. Then for every object P (o; s; l; d) 2 OB and every module M with P (#M;#M;M;#M) 2
OB and In(#M;#Module) deducible from OB holds: If the object o is accessible in M , i.e.
PMod(#M; o; s; l; d) is deducible from OB using the rules from R, then also the objects with the
identi�ers s and d are accessible in M .

The following proposition formalizes the architecture of a modular knowledge base. The mod-
ules always form a tree such that the contents of the System module will be accessible in every
single module.
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Proposition 2 (The contains Relation Forms a Unique Tree [42]) Let (OB;R; IC) be a
consistent M-Telos object base. Then (a) all modules are directly or indirectly contained in System

and (b) the contains relation forms a tree.

A distinctive feature of O-Telos is the possibility for unlimited metamodeling. It allows the user
to build meta models, meta meta models and so on. This property is preserved in M-Telos. Meta
modeling is still possible without any restrictions within a module. In addition the modules can be
arranged according to their degree of abstraction. A module then contains only conceptual models
of one abstraction level, the more concrete level and the more abstract level reside in di�erent
modules. Of course, any combination of these approaches is also possible.

3.3. Case Study: Supporting the PFR Analysis Method

In [44] we reported the application of an early version of our approach to the PFR (Analysis
of Presence and Future Requirements) analysis method [1]. We also use this example here to
exemplify our approach. We start with a short introduction into the PFR method.

PFR is mainly employed in the early phases of projects developing information systems sup-
porting business processes. The method has three steps:

� In a two-day workshop, stakeholders agree on the scope of the analysis project: the current
problems which should be solved and in correspondence to this, the domain structure and
the analysis goals. The group also makes a rough analysis of the current business processes in
terms of information exchange among organizational units, identi�es weak spots and drafts
a redesigned business process.

� The perspectives identi�ed as critical to success are then captured in detail by interviews,
work
ow and document analysis. The acquisition process is accompanied by cross-perspective
analysis of the captured information for consistency, completeness, and local stakeholder
agreement. The results of the comparisons guide subsequent interviews to clarify con
icts
and complete the models.

� In a second workshop the goal is to draw together individual perspectives to achieve global
stakeholder agreement. The step is accompanied and followed by the development of a com-
prehensive requirements document of typically several hundred pages.

The �rst workshop leads to a problem-oriented meta meta model de�ning shared domain terms
and analysis goals. Figure 6 presents an M-Telos model that has been used as a default in several
PFR analysis projects. It is modi�ed to �t to the actual problems and analysis goals if necessary.
The current status of the processes is analysed from three perspectives: the information-exchange



14 Hans W. Nissen and Matthias Jarke

document-
structure

perspective
notation

Form

Item

includes

The PFR
meta meta model

The PFR
notation
meta models

information-exchange
perspective notation

PackageOrg. Unit

a
sends

"For each sent package
the corresponding form 

must contain Items." 

Activity Data

Agent

performed_by

inputfollows

output

withsupplies

Medium

contains

writes

enters

takes
gives

generates

needs

"Each exchanged Medium
must contain Data."

coor-
dinates

instantiatesinstantiates

coor-
dinates

generation

(Example of a PFR
resolution module)

Fig. 7: Example: The PFR resolution architecture

within the �rst workshop, the activity-sequence and the document-structure within the detailed
acquisition process in the second step.

The meta meta model in �gure 6 explains the basic concepts of these perspectives and their
interrelationships. The information-exchange perspective is represented by an Agentwho supplies
other agents with a Medium, the activity-sequence by the Activity that is performed by an Agent

and produces Data as input or output, and the document-structure by a Medium that contains
Data.

The meta meta model contains a precise description of the terms that are employed during
a PFR analysis. Its structure focuses on the expected problems in the speci�c domain. The
distinction between Medium and Data, for example, is essential to talk about the unnecessary
exchange of documents, i.e. documents which contain data that is not used by any activity.

Figure 7 presents a part of the PFR environment as an example how the two top levels of our
architecture (cf. �g. 2) can be represented in M-Telos. The top level module contains the PFR
meta meta model together with an analysis goal stating that "Every exchanged Medium must
contain Data". This goal formalizes the basic requirement that an e�cient business process should
not include exchange of documents that do not contain useful data. The formal de�nition of this
goal will be given in section 4.

Below the PFR meta meta model reside the notation meta models to formulate the information-
exchange and the document-structure perspectives. The resolution module connected to both
notation modules contains the transformed version of the above analysis goal. It speci�es an
integrity constraint on both perspective notations.

In the next section we will describe how we automatically generate such integrity constraints
and how a tolerant consistency management can be implemented on top of M-Telos.

4. CUSTOMIZABLE INCONSISTENCY MANAGEMENT

The main advantage we gain from the Datalog-based formalization of M-Telos is the possibility
to customize, in a meta modeling environment, not only perspective ontologies and notations, but
also cross-perspective inconsistency management in a declarative manner. This is of particular
importance in our application domain, team-oriented requirements engineering.

In contrast to design-level methods such as ER-SA or UML that aim for redundancy-avoidance
through concept orthogonality, team-oriented methods such as PFR are designed to provoke the
elicitation of con
icts. They employ highly overlapping perspectives and acquire almost all in-
formation from di�erent stakeholders (cf. section 1). Due to this redundancy, a large number of
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relationships exist between perspectives. The cross-perspective analysis checks these relationships.
It follows the goals speci�ed in the problem-oriented meta meta model.

In M-Telos, the analysis goals are formulated as so called meta formulas: They make state-
ments about objects that reside two abstraction levels below the formula. This is necessary since
the perspectives we actually want to analyse reside two levels below the meta meta model (cf.
�gure 2).

In more technical words: A formula ' is called a meta formula if ' contains a literal (a) In(x; c)
where c is a variable, or (b) A(x;m; y) where x is not range restricted by a literal In(x; c) where c
is a constant. In such a case we call these literals meta literals.

Example 1 (Meta Formula) The following meta formula is the formalization of the analysis
goal given in �gure 7 in natural language. The method engineer would formulate such a goal in
M-Telos as follows:

forall med//Medium, supp//Agent!supplies, with//Agent!supplies!with

(with from supp) and (with to med)

==> exists data//Data, cont//Medium!contains

(cont from med) and (cont to data)

A quanti�cation like forall med//Medium de�nes a variable med and requires that its class is
an instance of Medium, which resides two instantiation levels above med.

ConceptBase would then translate this meta formula into an internal logical representation
using the axioms de�ned in the previous section. The resulting internal forms contains several
meta literals such as, e.g., In(med;m0); In(supp; s0); In(with; w0). The variables med; supp; with

denote objects two levels below the meta meta model. They are not bound to any concrete object on
the meta level; m0; s0; w0 are again variables. In this translation process, internal object identi�ers
are referred to. For readibility, we denote by #l the object identi�er of the object with label l (e.g.
#Medium denotes the object identi�er of the object with label Medium).

In(m0;#Medium) ^ In(d0;#Data) ^ In(s0;#Agent!supplies)^
In(e0;#Medium!contains)^ In(w0;#Agent!supplies!with)^ In(med;m0)^

In(supp; s0) ^ In(with; w0) ^ From(with; supp) ^ To(with;med)
) 9 data; cont In(data; d0) ^ In(cont; e0)^

From(cont;med) ^ To(cont; data)

2

Analysis goals for the PFR method exist for a single perspective, for dependencies between
multiple perspectives, and to test the desirability of the modeled business processes. Although it
is possible to use the analysis goals as they are we will transform them to integrity constraints on
the notations's meta models. At this point we have to make clear our terminology in the following
subsections: an analysis goal is a formula that is speci�ed within the meta meta model and is thus
a meta formula. An integrity constraint is a formula that is not a meta formula.

The analysis goals represent the agreement among the stakeholders about the goals, or more
speci�c, the questions and problems, the analysis project is dedicated to. Accordingly, our ar-
chitecture manages the analysis goals within the central module. But the analysis and modeling
process does not run in a centralizes way, it is distributed and involves many agents. A central
control instance will then be a system bottleneck. On the other hand, a complete distribution
without any central control instance like in [46] would not cover the global relationships. To be
e�cient in such a setting and at the same time be able to manage the global connection we follow
the approach of [2] which is a compromise of the two extremes mentioned before: The environ-
ments for the perspective development are distributed and work autonomously but there still exists
a central instance which has knowledge about their possible inter-relationships. Applied to our
case: from the global meta meta model we generate integrity constraints which can be evaluated
locally within the modules of the meta level. The global module needs not be accessed during
inconsistency monitoring time.
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We explain the mechanism in two steps: First we describe the technique of partial evaluation
which is used to transform an analysis goal into integrity constraints. Since not all analysis goals
need to be transformed to all modules we guide the partial evaluation by generating a transfor-
mation plan, i.e. the assignment of analysis goals to modules. The algorithms to compute these
plans are subject of the second step.

The last subsection gives then a short overview of the continuous inconsistency management
on the instance level. More details on this part are given in [43].

4.1. Partial Evaluation of Analysis Goals

We employ the technique of partial evaluation to transform a meta formula into an integrity
constraint. In [25] the application of this technique to the O-Telos object model is presented. We
can directly adapt the results to M-Telos. We will therefore only sketch the technique of partial
evaluation.

A meta formula contains (meta) literals In(x; c) where c is not a constant but a variable. In
our speci�c case this variable is used to denote an object of the meta model of a notation. The
typical situation is thus to have two such literals - In(x; y) and In(y; c) - within one formula where
c is an object of the meta meta model and x and y are variables. The meta formula then makes
statements about the behaviour of x which denotes an object of a conceptual model. The goal
of partial evaluation is to �nd a solution for y by evaluating the literal In(y; c) within a speci�c
module of the object base. Each occurence of y within the meta formula is then replaced by the
computed object. In our case this object comes from the meta level and denotes an object of the
meta model of a notation. Since we then already know that the literal In(y; c) evaluates to true
with the computed object we can omit the literal and simplify the formula. For every solution of
that literal we get a new, partially evaluated version of the original meta formula.

This process has to be repeated for every meta literal until all meta literals have been evaluated.
Since we evaluate a meta formula always within a speci�c module we do it on basis of a notations
meta model or a resolution module. The resulting formulas contain no more objects of the meta
meta model but only objects of the meta model of a notation. It is therefore only valid for that
notation. If not all meta literals of a meta formula can be evaluated in a module then this meta
formula is not partially evaluable within this speci�c module. The implementation of a partial
evaluator for Telos is presented in [9].

Example 2 (Transformed Meta Formula) The following formula is the transformed version
of the meta formula presented in example 1. In the internal representation, the meta variables
are replaced by concrete objects of the two notations for information-exchange and document-
structure perspectives (cf. �gure 7). The literal In(med;m0) of the meta formula is replaced by
In(med;#Package). In addition all the literals connecting these variables to objects of the meta
meta model as, e.g., In(m0;#Medium), are eliminated.

In(med;#Package) ^ In(supp;#OrgUnit!sends) ^ In(with;#OrgUnit!sends!a)^
From(with; supp) ^ To(with;med)

) 9 data; cont In(data;#Item) ^ In(cont;#Form!includes)
^From(cont;med) ^ To(cont; data)

2

4.2. Computation of Transformation Plans

Unnecessary partial evaluations of analysis goals may arise if modules are connected via coordi-
nates relationships: If there exists a coordinates link from module A to module B then everything
accessible in B is also accessible in A. Any analysis goal that could be transformed for B therefore
can also be transformed for A. Since the transformed constraint becomes accessible in A anyway,
a separate transformation for A is not necessary. To avoid such ine�ciency we compute for every
analysis goal the minimal set of modules it must be transformed to.
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Algorithm 1 (Computation of Destination Modules) The algorithm first computes

the following sets and functions:

� the set M of all modules of the meta level

M = fM1; : : : ;Mng,

� the set C of all specified coordinates relationships:

C = f(M1;1;M1;2); : : : ; (Mm;1;Mm;2)g, where (Mi;1;Mi;2) denotes a coordinates

relationship from Mi;1 to Mi;2.

The set C denotes a directed, acyclic graph.

� the set AG of all analysis goals specified within the meta meta model:

AG = f'1; : : : ; 'lg,

� the function applicable which computes for each analysis goal ' 2 AG

the set of modules for which a partial evaluation is possible:

applicable : AG! }(M)
Whether M 2 applicable(') holds or not is computed by a comparison of the

quantifications in ' with the instantiation relationships of M to the

meta meta model. Only if for every quantification in ' an

instantiation in M exists all meta literals in ' can be evaluated.

For every analysis goal ' 2 AG

compute P' = applicable('), the set of potential destination modules

compute the set C' with

C' = f(Mi;1;Mi;2) : (Mi;1;Mi;2) 2 C;Mi;1 2 P';Mi;2 2 P'g
let E' = P'

for each (Mi;1;Mi;2) 2 C'

do

delete Mi;1 from E'

od 2

The resulting set E' denotes all the modules of the meta level for which a transformation of
' is necessary. The set E' is independent from the selections out of C' and is always uniquely
determined. For E' we can prove correctness and completeness concerning the accessibility of
transformed integrity constraints as well as its minimality.

Proposition 3 (Correctness and Completeness) The computed set E' for an analysis goal
' is
(a) correct, i.e. E' contains only such modules for which a partial evaluation of ' is allowed.
(b) complete, i.e. the transformation of ' with respect to all modules in E' results in the acces-

sibility within all potential destination modules.

Proposition 4 (Minimality) For every analysis goal ' the algorithm 1 computes in E' the
minimal set of destination modules such that its accessibility in all potential destination modules
is guaranteed.

Completeness is above de�ned with respect to the given module structure on the meta level.
But there exists a second view on completeness with respect to the analysis goals of the meta meta
model: The transformation is complete if all analysis goals of the meta meta model have been
transformed.

This kind of completeness does not always hold. If there is no notation for a speci�c fragment of
the meta meta model then the analysis goals speci�ed for this fragment could not be transformed to
integrity constraints. The result is that some formal statements represented within the meta meta
model could not be tested during the analysis process. In some cases this kind of incompleteness
is not a problem or even desired. But in all cases it is useful for the users to get information about
analysis goals that can not be transformed.
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An automatic completion of the module structure on the meta level is not always possible.
A tool could constitute additional resolution modules but cannot automatically establish new
notations if a fragment of the meta meta model is not covered yet. We developed an algorithm
computing additional resolution modules such that an analysis goal becomes transformable (see [43]
for details). The result is in general not minimal. One minimal set can be computed by an algorithm
which follows the computation of a minimal set of functional dependencies in relational database
schema design [16]: A module is eliminated if its relationships are covered by the reminding modules
in the set. We present such an algorithm in [43].

5. CONTINUOUS INCONSISTENCY DOCUMENTATION

In an concurrent modelling activity it is sometimes more pro�table not to repair detected
inconsistencies immediately but to keep them as open problems. Model designers can continue
working without spending time in resolving detected errors. The list of unresolved inconsistencies
can be handeled in special meetings at certain milestones. In the following we describe our approach
in tolerating inconsistencies within a deductive object base.

We call an object base primary inconsistent w.r.t. an integrity constraint if the object base
violates this constraint. The tolerance of inconsistencies leads to inconsistent objects within a M-
Telos object base. But a totally anarchistic state of the object base is not desired. The inconsistent
objects must be managed in the sense that the object base knows about the inconsistent objects it
contains [17, 48]. We will call objects of the object base that cause an inconsistency provisionally
inserted. Since we not only have insertions that cause inconsistencies but also deletions, we also
have provisionally deleted objects.

Once we tolerate provisional objects we get problems with the traditional detection of inconsis-
tencies: It may happen that the current object base satis�es an integrity constraint only because
there exist provisional objects [31]. In such a case we call the object base secondary inconsis-
tent w.r.t. an integrity constraint. The tolerance of inconsistencies thus comprises two tasks: the
detection and the management of provisional objects.

Inconsistencies may occur within a single conceptual model and during the comparison of
di�erent models. The ViewPoints approach [46] distinguishes between an in-ViewPoint and an
inter-ViewPoint check and employs di�erent techniques to handle them. In our framework we do
not need to recognize such a di�erence and can apply the same mechanisms for both kinds of
consistency checks. The check of a single model as well as the check of multiple models takes place
within a single module - the cross-perspective check is performed in a resolution module where all
models of the coordinated modules are accessible. All the mechanisms we present in this section
therefore apply to both the single perspective check and the cross-perspective check.

5.1. Detection of Inconsistencies

Like other approaches that deal with inconsistency detection [50, 4, 19] we use rules instead of
closed formulas: For an integrity constraint ' we assume an inconsistency view '0 ) incons'
where incons' is a new predicate symbol and '0 is a closed formula. incons' is deducible if and
only if ' fails, i.e. '0 is the negation of '.

We call an object that is inserted (deleted) by the current transaction primary provisionally
inserted (deleted) w.r.t. an inconsistency view incons' if it takes part in a new computation of
incons'. For the formal de�nition of this property we employ an extension of and-or-trees known
from the deductive database area [21, 36]. To do this we have to translate the inconsistency view
into an equivalent set of Datalog: clauses [34]. In the most simple case, all and-nodes which are
leaves of a new derivation of incons' and were inserted by the current transaction are then primary
provisionally inserted. Due to the use of negation in the body of deductive rules the general case
is more complex: We have to change between two object base states in order to evaluate the
inconsistency view before and after the transaction. Details of this procedure can be found in [5].

We use a quite similar technique to de�ne secondary provisional objects. Instead of using
inconsistency views we now employ consistency views: The consistency view of an integrity
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constraint ' is a rule ') cons' where cons' is a new predicate symbol. cons' is then deducible
if and only if the constraint ' is satis�ed by the object base.

We again use the and-or-tree for the formal de�nition of a secondary inconsistency. An object
base is secondary inconsistent w.r.t. the integrity constraint ' if the consistency view cons' is
deducible from the object base, but is not deducible from the object base without any provisional
objects. In this sense all inserted (deleted) objects of the current transaction that take part in
a new derivation of the consistency view cons' while no derivation without provisional objects
exists, are secondary provisionally inserted (deleted) objects. Since this de�nition introduces
new provisional objects on the basis of already existing provisional objects we have to compute the
least �xpoint of this set.

We distinguish between two detection modes for an integrity constraint: eager and on-
demand. In the eager detection mode the system will check after each transaction for new and for
(maybe accidentally) repaired inconsistencies. This mode o�ers a continuous con
ict monitoring
(e.g. within a resolution module) which is of course time-consuming and slows down the system.
This mode is preferable in a critical development phase (e.g. shortly before an important project
review) and when developing critical components (e.g. the control system of an atomic power
plant). The eager detection mode is traditionally applied in database area, e.g., [8, 31], and some
of the logic-based approaches, e.g., [20]. In [4] the eager mode is also used for software engineering.
All the above given de�nitions are based on an eager detection in the sense that they all were
formulated w.r.t. a current transaction.

In the on-demand mode the user controls the timing of the inconsistency check. Here it is not
possible to use the current transaction as a �lter because no such transaction exists; all objects
that take part in the derivation of the inconsistency view will be declared as primary provisionally
inserted objects. The detection of provisionally deleted objects is not possible without the concept
of a 'current transaction'. The same holds for secondary provisional objects. The on-demand mode
is preferable in situations where a fast working style is required, as, e.g., in a brainstorming session.
Since the consistency of the database w.r.t. a speci�c integrity constraint will not be checked after
a transaction this mode runs quite fast. On the other hand the users get no idea about the quality
of their model. This mode is often used in requirements engineering environments, as, e.g., IPSEN
[30] and CONMAN [28]. Also in the ViewPoints approach [46, 15] the user invokes the check of
an integrity constraint.

We employ the and-or-tree for the theoretical de�nition of primary and secondary provisional
objects, but not for the implementation of the inconsistency detection. Instead we use e�cient
incremental view maintenance in combination with a meta interpreter. View maintenance is a
machanism that detects all new derivations of a deductive rule or view caused by a transaction.
We changed the mechanism developed in [51] such that it returns the whole derivation path.

In eager detection mode, the view maintenance mechanism reports primary inconsistencies. For
secondary inconsistencies we must complete the reported derivation trees to include objects that
already exist in the object base using the meta interpreter. In on-demand mode, view maintenance
is not applicable. We use the meta interpreter to generate the derivation trees where we can
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detect primary and secondary inconsistencies. Figure 8 summarizes the inconsistency detection
mechanisms used in di�erent modes.

5.2. Management of Inconsistencies

Provisionally inserted objects become part of an object base although they violate one or more
integrity constraints. For provisionally deleted objects we use a speci�c feature of Telos: each
object has an additional component indicating its belief time. The belief time is assigned by the
system at transaction time (insertion or deletion). The belief time is a time interval starting at
the moment the object was inserted and ending at the moment it is deleted from the object base.
Thus, deleted objects are not removed from the object base - instead the object becomes a historical
object. Provisionally deleted objects are therefore still accessible. To access historical objects the
user must explicitly state that a certain query should be evaluated using the state of the object
base at a speci�c moment.

incView

ins_mark del_mark

InconsistencyView Prim_Inc

Object

Fig. 9: Marking primary inconsistencies

To avoid a completely anarchical situation, all provisional objects are marked within the object
base. The prede�ned (class) objects indicating a primary provisional object are shown in Fig. 9.
The object InconsistencyView is a class containing all inconsistency views as instances. Every
primary inconsistency, i.e. every validation of an integrity constraint resp. every derivation of the
inconsistency view, is identi�ed by a unique instance of Prim Inc. The instance refers to the actual
inconsistency view via the attribute incView and to the provisional inserted and deleted objects
by the attributes ins mark and del mark, resp.

Secondary provisional objects are marked in a similar way. The class structure is given in Fig.
10. In addition to the inserted and deleted objects, we also mark the provisional objects which
cause this secondary inconsistency (by attribute depends on). If all these objects would loose their
provisional status and become 'normal' objects, the secondary inconsistency would be repaired.

The management of inconsistencies in the eager detection mode does in addition include the
detection of accidentally repaired inconsistencies. We therefore store for every provisional object
a part of the derivation tree it takes part in as the justi�cation for its provisional status. The
justi�cation tree consists of all literals (not their rules) on the path from the marked object to the
root and the direct children of positive nodes. If one of these literals is no longer deducible from the
object base, the derivation is destroyed and the justi�cation for the provisional status is no longer

consView

ins_mark del_mark

ConsistencyView Sec_Inc

Object
depends_on

Fig. 10: Marking secondary inconsistencies
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valid and the object becomes a 'normal' member of the object base. This technique is similar to
reason maintenance systems (RMS) [13] which manage justi�cations of deduced information.

Everytime an object looses its provisional status we also check the secondary inconsistencies.
For every secondary inconsistency we store all the provisional objects that cause this inconsistency.
In case the provisional status of an object is annulled we just have to follow these dependencies,
delete them and check if this was the last dependency. In this case we also annul all secondary
inconsistencies of that integrity constraint because we found a derivation without any provisional
objects.

Violation ? Consequences
Incons.View Cons.View

strong strong At this combination a transaction must not introduce
a primary or a secondary inconsistency. The integrity
constraint must be satis�ed by the object base.

strong weak At this combination a transaction must not introduce a
primary inconsistency - but it can introduce a secondary
inconsistency. The object base must satisfy or quali�ed
satisfy the integrity constraint.

weak strong This combination allows primary inconsistencies to be
introduced but no secondary. The object base must sat-
isfy or violate the integrity constraint.

weak weak This combination does not make any restrictions con-
cerning the violation of the integrity constraint: primary
and secondary inconsistencies are both allowed. The ob-
ject base may violate the integrity constraint.

Fig. 11: The four consistency levels

5.3. User Control

The user can control the tolerance of inconsistencies in di�erent ways. We already mentioned
the possibility to specify the detection mode of integrity constraints. A user can also declare if an
integrity constraint may be violated or not. We use the term strong for a constraint that must not
be violated and weak for one that may be violated. We even go one step further and allow the
user to distinguish between primary and secondary inconsistencies. For each view we can speci�y
the detection Mode and the possibility to violate it. The declaration of an inconsistency view as
strong means that no primary inconsistencies of the corresponding integrity constraint may exist;
for a consistency view this leads to the prohibition of secondary inconsistencies.

The introduction of primary and secondary inconsistencies implies a three valued status of an
integrity constraint: satisfaction if no primary and secondary violations exist, quali�ed satisfaction
if it is secondary violated but not primary, and violation if it is primary violated. Figure 11
summarizes the four di�erent consistency levels we then can specify for an object base w.r.t. an
integrity constraint.

6. CONCLUSIONS AND FURTHER WORK

For some years software speci�cation and design methods have been formalized by a trans-
formation to well-understood formalisms like logic, graph grammars or algebraic speci�cations to
enable a computer-based analysis. It is characteristic of these approaches to assign the methods a
�xed semantics the user must accept when using such a system. Beyond that it is assumed that
the various partial conceptual models form views on a consistent entire model.
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In some other parts of practice just the opposite trend can be observed. Informal teamwork
methods leave the details of notations to a great extent to the user and consciously employ con
icts
and inconsistencies as an analysis tool, instead of avoiding them. These methods (examples are
JAD, SSM and PFR) enjoy increasing popularity exactly because they give negotiation and mutual
learning priority over a �xed axiomatization or restriction by reference models. To enhance analysis
quality and e�ciency formalization and computer support is also desireable for these methods, but
they must o�er features di�erent to the approaches mentioned above.

In this paper, we developed a comprehensive solution for a computer-based support of team-
and goal-oriented analysis methods. We extended the formal conceptual modeling language Telos
by a separation mechanism called modules, which enables the representation of multiple, con
icting
perspectives. We showed that a simple axiomatization of the extended language M-Telos exists,
which allows for a realization by well-understood deductive database technology.

We developed the model-based perspective resolution where the knowledge about the structure
of the domain and the analysis goals are speci�ed in a meta meta model. The use of M-Telos as
representation formalism keeps even the meta meta model customizable. By declaring the notations
as partial views on this model we de�ne a connection between the semantic domain description
and the syntactic perspective schemata. We used this connection for goal-oriented inconsistency
management by the transformation of domain-oriented analysis goals into notation-based integrity
constraints. Since in many cases the simple evaluation of cross-perspective relationships is not
enough, we developed a technique for continuous maintenance of inconsistency information based
on deductive database technology.

Our approach is completely implemented in ConceptBase [26], a deductive meta database man-
ager which uses M-Telos as object model. In cooperation with the German consulting house and
software �rm USU we applied our approach in several case studies to business process engineering
with the PFR analysis method [45]. The indirect support of the formalization and the computer-
based support increased the e�ciency of the cross-perspective analysis and the quality of analysis
results. Other applications, with di�erent meta meta models, have been developed for industrial
quality management, and for the management of development cooperations between small and
medium enterprises.

The components of our approach (the axiomatization of a modular knowledge representation
language, the goal-oriented perspective analysis, the adaptable speci�cation of analysis goals, and
the continuous inconsistency management) can also be used in stand-alone mode together with ex-
isting modeling environments or viewpoint mechanisms. The simple axiomatization of the module
concept enables its adaption to existing, even non-Telos repositories (as, e.g., the Microsoft Repos-
itory [7]) to represent multiple development perspectives. The combination of the goal-oriented
inconsistency management concept with notation-centered CASE tools lead to a more guided
modeling process with customizable, domain-oriented integrity constraints. This also works for
distributed environments like the ViewPoints approach. Since the constraints are checked locally
as before, the central goal de�nition implies no decrease of system performance.

A limitation of M-Telos is that it does not include systematic support for reasoning about
concurrent plans which may in
uence the inconsistency analysis. A logical next step is therefore
the investigation of an agent-based extension of M-Telos, nick-named Tropos, which will enable
the static and dynamic analysis of the interplay of agent submodels.
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A. COMPLETE LIST OF M-TELOS AXIOMS

The formulation of the axioms follows the idea of a deductive database: Since all axioms are formulated as
integrity constraints (e.g. A-12 and A-17), deductive rule (e.g. A-13 and A-14) or as simple facts (e.g. A-1
to A-11.26), they can be interpreted as the core of a deductive database which provides an implementation
of M-Telos. In other words, all M-Telos object bases, interpreted as deductive databases with negation
and integrity, must consistently include these axioms.



ii Hans W. Nissen and Matthias Jarke

The following objects de�ne the basic structure of an M-Telos object base:

P (#Obj;#Obj; Object;#Obj) (A-1)

P (#Indiv;#Indiv; Individual;#Indiv) (A-2)

P (#attr;#Obj; attribute;#Obj) (A-3)

P (#Inst;#Obj; InstanceOf;#Obj) (A-4)

P (#Isa;#Obj; IsA;#Obj) (A-5)

The de�nition of the object Module is given by the following facts:

P (#Mod;#Mod;Module;#Mod) (A-6)

P (#cont;#Mod; contains;#Obj) (A-7)

P (#exp;#Mod; exports;#Obj) (A-8)

P (#imp;#Mod; imports from;#Mod) (A-9)

P (#coord;#Mod; coordinates;#Mod) (A-10)

The module System contains all prede�ned objects:

P (#Sys;#Sys; System;#Sys) (A-11.1)

P (#Sysin;#Sys; in;#Mod) (A-11.2)

P (#SysC1;#Sys; c1;#Obj) (A-11.3)

P (#SysI1;#SysC1; in;#cont) (A-11.4)

P (#SysC2;#Sys; c2;#Indiv) (A-11.5)

P (#SysI2;#SysC2; in;#cont) (A-11.6)

P (#SysC3;#Sys; c3;#attr) (A-11.7)

P (#SysI3;#SysC3; in;#cont) (A-11.8)

P (#SysC4;#Sys; c4;#Inst) (A-11.9)

P (#SysI4;#SysC4; in;#cont) (A-11.10)

P (#SysC5;#Sys; c5;#Isa) (A-11.11)

P (#SysI5;#SysC5; in;#cont) (A-11.12)

P (#SysC6;#Sys; c6;#Mod) (A-11.13)

P (#SysI6;#SysC6; in;#cont) (A-11.14)

P (#SysC7;#Sys; c7;#cont) (A-11.15)

P (#SysI7;#SysC7; in;#cont) (A-11.16)

P (#SysC8;#Sys; c8;#exp) (A-11.17)

P (#SysI8;#SysC8; in;#cont) (A-11.18)

P (#SysC9;#Sys; c9;#imp) (A-11.19)

P (#SysI9;#SysC9; in;#cont) (A-11.20)

P (#SysC10;#Sys; c10;#coord) (A-11.21)

P (#SysI10;#SysC10; in;#cont) (A-11.22)

P (#SysC11;#Sys; c11;#Sys) (A-11.23)

P (#SysI11;#SysC11; in;#cont) (A-11.24)

P (#SysC12;#Sys; c12;#Sysin) (A-11.25)

P (#SysI12;#SysC12; in;#cont) (A-11.26)

The oid of an object is unique within the object base:

P (o; x1; l1; y1) ^ P (o; x2; l2; y2)) (x1 = x2) ^ (l1 = l2) ^ (y1 = y2) (A-12)

These two derived literals ease the de�nition of axioms:

P (o; i; in; c)) In(i; c) (A-13)

P (o; x; l; y) ^ P (p; c;m; d) ^ In(o; p)) A(x;m; y) (A-14)
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The names of modules are unique within the object base:

P (o1; o1; m; o1) ^ P (o2; o2;m; o2) ^ In(o1;#Mod) ^ In(o2;#Mod)) (o1 = o2) (A-15)

All names of individuals are unique within the object base:

In(M;#Mod) ^ P (o1; o1; l; o1) ^ P (o2; o2; l; o2) ^ A(M;contains; o1) ^ (A-16)

A(M; contains; o2)) (o1 = o2)

Names of attributes are unique in conjunction with the individual's name:

P (o1; s; l; d1) ^ P (o2; s; l; d2) ^ In(M;#Mod) ^A(M;contains; o1) ^ (A-17)

A(M; contains; o2)) (o1 = o2) _ (l = in) _ (l = isa)

Objects belong to exactly one module:

P (o; x; l; y)) 9M In(M;#Mod) ^A(M; contains; o) (A-18)

In(M;#Mod) ^ In(N;#Mod) ^ P (o; x; l; y) ^A(M; contains; o) ^ (A-19)

A(N; contains; o)) (M = N)

The contains relationships are deduced for attributes of a module:

In(M;#Mod) ^ P (o;M; l; y) ^ (In(o;#cont) _ In(o;#imp) _ (A-20)

In(o;#exp) _ In(o;#coord))) A(M; contains; o)

In(M;#Mod) ^ P (o;M; l; y) ^ (P (x; o; in;#cont) _ P (x; o; in;#imp) _ (A-21)

P (x; o; in;#exp) _ P (x; o; in;#coord))) A(M; contains; x)

The following four clauses deduce the predicate P
Mod

which denotes the visible of an object within a module :

In(M;#Mod) ^ P (o; x; l; y) ^A(M;contains; o)) P
Mod(M; o; x; l; y) (A-22)

In(M;#Mod) ^ In
Mod(M;N;#Mod) ^ P

Mod(N; o; x; l; y) ^ (A-23)

A
Mod(M;M; imports from;N) ^A

Mod(N;N; exports; o)) P
Mod(M; o; x; l; y)

In(M;#Mod) ^ In
Mod(M;N;#Mod) ^ P

Mod(N; o; x; l; y) ^ (A-24)

A
Mod(M;M; coordinates;N)) P

Mod(M; o; x; l; y)

In
Mod(N;M;#Mod) ^ In(N;#Mod) ^A

Mod(N;N; contains;M) ^ (A-25)

P (N; o; x; l; y)) P
Mod(M; o; x; l; y)

The following three clauses deduce the predicates InMod; AMod; IsaMod;

which denote classi�cation, attributation, and specialization within a module :

P
Mod(M; o; i; in; c)) In

Mod(M; i; c) (A-26)

P
Mod(M; o; x; l; y) ^ P

Mod(M; p; c;m; d) ^ In
Mod(M; o; p)) A

Mod(M;x;m; y) (A-27)

P
Mod(M; 0; c; isa; d)) Isa

Mod(M; c; d) (A-28)

The following axioms require that each object belongs to the class #Obj:

P
Mod(M; o; s; l; d)) In

Mod(M; o;#Obj) (A-29)

InMod(M; o;#Obj)) 9 s; l; d PMod(M; o; s; l; d) (A-30)

The following axioms require that each object belongs to exactly

one of the four classes #Indiv, #Inst, #Spec, #Attr:

P
Mod(M; o; o; l; o)) In

Mod(M; o;#Indiv) (A-31)

In
Mod(M; o;#Indiv)) 9 l P

Mod(M; o; o; l; o) (A-32)

P
Mod(M; o; i; in; c)) In

Mod(M; o;#Inst) (A-33)
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In
Mod(M; o;#Inst)) 9 i; c P

Mod(M; o; i; in; c) (A-34)

P
Mod(M; o; c; isa; d)) In

Mod(M; o;#Spec) (A-35)

In
Mod(M; o;#Spec)) 9 c; d P

Mod(M; o; c; isa; d) (A-36)

P
Mod(M; o; s; l; d) ^ (o 6= s) ^ (o 6= d) ^ (l 6= in) ^ (l 6= isa)) In

Mod(M; o;#Attr) (A-37)

In
Mod(M; o;#Attr)) 9 s; l; d P

Mod(M; o; s; l; d) ^ (o 6= s) ^ (o 6= d) ^ (A-38)

(l 6= in) ^ (l 6= isa)

In
Mod(M; o;#Obj)) In

Mod(M; o;#Indiv) _ In
Mod(M; o;#Inst) _ (A-39)

In
Mod(M; o;#Spec) _ In

Mod(M; o;#Attr)

The isa relation is a partial order:

In
Mod(M; c;#Obj)) Isa

Mod(M; c; c) (A-40)

Isa
Mod(M; c; d) ^ Isa

Mod(M;d; e)) Isa
Mod(M; c; e) (A-41)

Isa
Mod(M; c; d) ^ Isa

Mod(M;d; c)) (c = d) (A-42)

Inheritance of class membership along the specialization relationship

is deduced:

In
Mod(M; i; c) ^ P

Mod(M; o; c; isa; d)) In
Mod(M; i; d) (A-43)

Attributes are typed by their attribute classes:

P
Mod(M; o; s; l; d) ^ In

Mod(M; o; p)) 9 c;m; k P
Mod(M; p; c;m; k) ^ (A-44)

In
Mod(M; s; c) ^ In

Mod(M;d; k)

Consistency of the specialization relationship:

Isa
Mod(M; o1; o2) ^ P

Mod(M; o1; c; l1; e) ^ P
Mod(M; o2; d; l2; f) (A-45)

) Isa
Mod(M; c; d) ^ Isa

Mod(M; e; f)

The attribute re�nement requires re�nement of target objects:

Isa
Mod(M; c; d) ^ P

Mod(M; o1; c; l; e) ^ P
Mod(M; o2; d; l; f) (A-46)

) Isa
Mod(M; e; f) ^ Isa

Mod(M; o1; o2)

The multiple classi�cation with identical attribute names requires a

common general class:

InMod(M; i; c) ^ InMod(M; i; d) ^ PMod(M; o1; c; l; f) ^ PMod(M; o2; d; l; g) (A-47)

) 9 e; h; o3 In
Mod(M; i; e) ^ P

Mod(M; o3; e; l; h) ^

Isa
Mod(M; e; c) ^ Isa

Mod(M; e; d)

The export part of a module must satisfy the referential integrity:

In(M;#Mod) ^ P (o; x; l; y) ^A
Mod(M;M; exports; o)) P

Mod(M; o; x; l; y) (A-48)

In(M;#Mod) ^A
Mod(M;M; exports; o) ^ P

Mod(M; o; x; l; y) (A-49)

) A
Mod(M;M; exports; x) ^A

Mod(M;M; exports; y)

The coordinates relationship is transitiv, but not cyclic:

In(M;#Mod) ^ In(N;#Mod) ^ In(P;#Mod) ^A(M; coordinates;N) ^ (A-50)

A(N; coordinates; P )) A(M;coordinates; P )

In(M;#Mod) ^ In(N;#Mod) ^ A(M;coordinates;N) ^ (A-51)

A(N; coordinates;M)) (M = N)


