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Abstract
Requirements Engineering (RE) investigates the impact of a
future-oriented change vision, but the move towards this vision
must consider a context heavily shaped by the past. As RE be-
comes a continuous process throughout the system lifecycle, it
must achieve an effective combination of envisionment and trace-
ability. In this paper, we describe a scenario-based solution to
this problem which is based on an integration of five ingredients:
(a) the persistent capture of context in the form of real world
scenes captured in multimedia; (b) formal agent-oriented model-
ling with a semantics that allows distributed interactive anima-
tion; (c) message trace diagrams as a medium for exchanging
animation test cases and traces; (d) a goal model to control and
record the RE process; and (e) a process-integrated tool envi-
ronment to ensure method-guidance and  traceability with as little
effort as possible. In addition to the basics of our approach, we
also describe its prototypical implementation in the CREWS-EVE
environment and demonstrate its usefulness with examples from a
case study in the production industry.

1 Introduction
At the turn of the millennium, continuous change has be-
come about the only constant in organisations and systems.
RE should take centre stage as a facilitator but continuous
facilitation is not easy to achieve. One of the biggest prob-
lems in RE is the difficulty stakeholders and requirements
engineers face to mitigate their bias towards the present
context. There are two aspects of this problem, one point-
ing towards the future, the other towards the past:

The envisionment problem: It is well-known that people
have great difficulties to envision the impact of a proposed
system in a future that is vastly different from the present;
there are specific biases when dealing with uncertainties
and risks [19] as well as an inability to play through the
implications of a number of interacting features, especially
where multiple agents are involved or multiple changes are
happening simultaneously [20].

The traceability problem: Equally often we find the
problem that organisations cannot remember how and why
certain decisions were made [5], [12], [25], [30].

Taken together, both problems make coherent change
management in RE close to impossible. Moreover, both
problems often interact. Unfortunately, most previous work
has tackled them separately rather than jointly. To address
the envisionment problem, research and practice have ex-
perimented with tools for making concepts understandable
(scenarios, animations, virtual reality) as well as with tools

for making group interaction productive (brainstorming
variants, making conflicts productive, etc.). Both tech-
niques can also be combined, enabling cooperative usage
of scenario techniques. Indeed, our recent survey [37]
showed that practitioners levy little credence on scenario-
based approaches where there is no early feedback from
rapid prototyping on how realistic models and scenarios
are.

One of the difficult problems in scenario management is
the choice of an adequate representation. Text-based repre-
sentations are very popular because they focus on use and
change, and are thus often crisp, easy to maintain and man-
age. As they are also rough, they tend to suspend commit-
ment and are thus quite suitable for difficult discussion
with a lot of rapid change. However, text scenarios also
have their limitations. First, there can be settings where
pictures or sound are much more informative than textual
descriptions, e.g. in many technical applications; the use of
multimedia scenarios, mock-ups, and the like is well
known especially in human-computer interaction. Second,
the interplay of components in distributed systems is hard
to capture in a small number of scenarios – and too many,
or too complex scenarios destroy the advantages of short
textual scenarios. Finally, any model, but also any scenario,
is an abstraction of reality, which may or may not turn out
to be adequate to its task. In the short term, this is not a
problem and indeed one of the big advantages of scenarios.
However, once the creation context of the scenario is lost,
it becomes no longer criticisable; therefore, richer capture
of reality scenes in multimedia, which allows scenario or
model revision even after relatively long times, has become
popular in documenting requirements meetings [3] and is
increasingly proposed for current-state scenarios them-
selves [15], [22], [38]. This last point also concerns the
traceability problem. Requirements traceability, initially
mandated by procurement agencies for purposes of compli-
ance verification, has long proven its worth as a critical
tool for project documentation, change management, and as
a source for organisational knowledge creation. However,
with respect to our goal of continuous change management,
two major problems remain. Firstly, as [12] point out,
traceability does not go sufficiently backwards towards the
sources of requirements, i.e. the reality from which re-
quirements emerged and the different viewpoints on this
reality. This leads to the need for documenting, in particu-
lar, the goals of stakeholders, and to link them to the RE
activities. Secondly, empirical studies [12], [31] show that



traceability only works if the capture mechanisms are
flexible enough to satisfy project-specific needs [7] as well
as group privacy interests [11]. Yet, they must be automatic
enough so that traces are produced as a side-product of
normal RE work rather than creating extra effort. Summa-
rising, our key argument is that solutions for the envision-
ment problem and for the traceability problem must be
combined to achieve an effective solution to the problems
of continuous requirements change. Even within a single
RE process, such an integration could significantly enhance
the cycle between requirements elicitation based on an as-
is analysis and the definition and validation of future-
system requirements models.
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In the European CREWS1 project, we have developed a
solution architecture for this kind of integrated support.
This architectural framework, shown in Fig. 1, places cur-
rent-state and future-state scenarios as well as
goal/requirements hierarchies in the context of model-
based change management, following the cycle (a) reverse
analysis; (b) change definition; (c) change implementation
with (d) context integration. The framework is not meant to
imply a specific RE process, but enables many combina-
tions of method chunks associated with the various links in
the figure.

In this paper, we present methodology, implementation,
and preliminary evaluation of one particular realisation of
this framework, which we call CREWS-EVE (CREWS
Elicitation and Validation Environment). CREWS-EVE
addresses exactly the kind of applications where text-based
scenarios alone are insufficient, and therefore places great
emphasis on goal-driven multimedia capture of current
reality and animation of both current- and future-state
models. It thus complements the text-based CREWS-
SAVRE [36]. The remainder of this paper comprises two
main sections. In Sect. 2, we describe in more detail how
the different components in Fig. 1 are instantiated in
CREWS-EVE, both from the viewpoint of the method and
from the viewpoint of tool implementation. While the main
benefit is expected in long-term management of continuous
change, an obvious first step for evaluating CREWS-EVE
concerns the support it can offer within a single change
cycle. We have pursued this initial evaluation through an

                                                       
1 CREWS stands for Cooperative Requirements Engineering With Sce-
narios, ESPRIT 21.903

industrial case study with ADITEC, an engineering firm in
Aachen. These experiences have led to the specification of
a number of reusable “method chunks” which we describe
in Sect. 3, together with example applications and benefits
obtained. Finally, Sect. 4 presents our conclusions and
outlines ongoing further work.

2 CREWS-EVE Components
Fig. 2 shows how the CREWS-EVE environment instanti-
ates the framework in Fig. 1 by specific modelling formal-
isms and tools. Roughly speaking, we distinguish two
components which are detailed in Sect. 2.1 and 2.2 and
whose technical integration is outlined in Sect. 2.3.
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The first component (depicted on the left of Fig. 2) is an
elicitation environment which supports the goal-driven
analysis of real world examples captured in multimedia. It
consists of a specialised multimedia editor and a depend-
ency management tool for supporting negotiation about and
traceability to real-world examples captured with multime-
dia (mostly for current-state scenarios) as well as a hierar-
chical goals and requirements documentation tool, as pro-
posed in decision theory [29] and RE [39], [1], [6] and
partially supported by RE tools such as Requisite Pro.

The second component (right of Fig. 2) performs formal
modelling as well as scenario generation and validation
within Fig. 1 CREWS-EVE offers the agent-oriented con-
ceptual modelling language ALBERT-II which combines a
simple way for stakeholders to describe distributed systems
with a temporally oriented formal semantics that facilitates
automated reasoning. Moreover, it offers the interactive
distributed animation of current and future-state scenarios
based on model interpretation.

These two components were initially developed sepa-
rately and evaluated individually [15], [17]. Their concepts
are integrated on the model level (marked by å in Fig. 2)
as well as on the instance level (marked by �). On the
model level, we enrich the process of creating a formal
Albert specification with the option to interrelate parts of
the specification with goal concepts which have caused
their creation or which they operationalise. On the instance
level, integration is reached by expressing behaviour using
the same formalism: Message Sequence Charts
(MSCs) [18], [32]. This conceptual integration must be

)LJ�����6FHQDULRV��FRQFHSWXDO�PRGHOV��DQG�JRDOV���UHTXLUHPHQWV��LQ
FKDQJH�PDQDJHPHQW�

)LJ�����&RQFHSWXDO�LQWHJUDWLRQ�ZLWKLQ�&5(:6�(9(



supported by tool integration in order to keep the effort of
data transfer, method guidance, and traceability low while
enabling flexible learning of method chunks. This is
achieved by embedding CREWS-EVE in the process-
integrated modelling environment PRIME.

2.1 Elicitation and Validation of Conceptual Models
Based on Real World Scenes

The quality of conceptual models, especially of current-
state models, heavily depends on successful stakeholder
involvement in the RE process. This can be supported by
the use of rich media (e.g. video, pictures, screen dumps,
speech etc.) to record and discuss current system usage,
e.g. in participatory design [2], [3], [22].

Our approach [15] bridges the gap between concrete ex-
amples of current system usage at the instance level, and
the conceptual current-state models at the type level. It
relates the parts of the observations which have caused the
definition of a concept of the current-state model or against
which a concept was validated, with the corresponding
concepts. Thus, it makes the abstraction process to the
current-state models more transparent and traceable by
–  explaining and illustrating a conceptual model to, e.g.,

untrained stakeholders or new team members, and
thereby improving a common understanding of the
model;

–  detecting, analysing and resolving different interpreta-
tion of the observations;

–  comparing different observations using computed an-
notations based on the interrelations;

–  refining or detailing a conceptual model during later
process phases.
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Fig. 3 illustrates the approach. Current system usage is
recorded on-site using rich media in what we call Real
World Scenes (RWS). The material gathered during an
observation may contain information about many system
uses. We therefore pre-structure RWS into a Real World
Example (RWE). An RWE is a collection of material that
represents one coherent and complete observed system
usage. The material belonging to an RWE should be ar-
ranged in a suitable manner. For example, video used to
record the observation should be cut to reflect the temporal
sequence of a sample system usage. RWEs have two main
purposes: New model components (concepts) can be elic-
ited from RWEs, or existing current-state models can be
validated against them. In both cases, we interrelate exactly

the parts of the RWE (resulting in RWEFs: Real World
Example Fragments, e.g. a cut-out scene of the video-
RWE) which have caused the elicitation or which have
been used for validation respectively to the corresponding
model component.

The interrelations result in an extended form of re-
quirements pre-traceability [12]: (a) they trace back to
concrete instance example from the real world; (b) trace on
a very fine-grained manner allowing interrelations of arbi-
trary parts of conceptual models with arbitrary parts of real
world scenes rather than just on a document level. This
enables fast and selective access to the relevant parts of
RWEs, documenting how model components have been
elicited or validated and avoids time-consuming viewing of
irrelevant information.

In the early phases of RE it is more important to under-
stand and agree on the why behind certain properties of the
system (i.e., “Why does the system support this activity?”),
before dealing with details about what and how [6], [39],
e.g., the data the system deals with, system function and/or
system behaviour. In addition, examples of system usage
can represent different incarnations of one task fulfilling
one specific goal. This makes it hard to compare several
examples at a low level of abstraction, as on the system
interaction model or data model level. Concentrating on
goals facilitates the detection of commonalties between
different observations. If more detailed knowledge about
the achievement of a goal is required (what and how), a
behavioural, functional, data model can be created. The
fine-grained interrelation between RWEFs and conceptual
goal models is realised using specially typed dependency
interrelations. The type expresses information about the
analyst’s interpretation of the relationship between RWEF
and the goal concept. The two most important link types
are Attains and Fails. Attains expresses that the analyst
interprets the RWEF as an example of how the related goal
is fulfilled. Fails is the direct opposite: it denotes that the
RWEF shows how the goal is failed (cf. [15] for a more
detailed discussion on link types).

The design of the approach enables the integration of a
wide range of existing techniques for goal analysis and for
capturing and pre-structuring real world scenes into real
world examples such as [22].

2.2 Cooperative Animation of Formal Specifications
Albert II [9] is a formal agent-oriented language designed
to express functional properties (including real-time prop-
erties) of composite systems [10]. Agents can perform
actions and have state components denoting either physical
or informational characteristics. An Albert II specification
also includes constraints that restrict the agents’ admissible
behaviours. In order to provide more guidance to the ana-
lyst, these constraints are written by instantiating prede-
fined constraint patterns (precondition, effect of action,
action composition, invariant, visibility, etc.). Specifica-
tions are edited using the Albert II editor which provides a
graphical editing environment, syntax checking facilities
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and a client-side interface for invoking more elaborate
reference and type checks.

An Albert II specification is a class-level description: it
describes abstract properties of classes of components of a
system. Because of its abstractness, it is usually difficult
for stakeholders to get a detailed understanding by simply
reading it (or a paraphrase), even extremely carefully. This
situation is reinforced when dealing with complex/critical
systems. Having a way for the stakeholders to experience
behaviours defined by the specification is therefore a cru-
cial issue in validation [13], [14], [23], [35].

The Albert II animator [16], [17] (see Fig. 4) is a dis-
tributed application that helps stakeholders construct and
review instance-level behaviours step-by-step in a coop-
erative way. Each participant is in charge of agent in-
stances that he manipulates through a client application and
that interact with other agent instances. Client applications
allow to perform action occurrences and observe their
results in terms of state components values.

The animation server (which supports the coordinator
user) conducts an animation by centralising the various
requests issued by the stakeholders, and builds a new
global state of the system (made of all the local instances’
states). The resulting state may be inadmissible with re-
spect to the specification. This results in a dead-end branch
which cannot be further investigated. The other possible
origin of a dead-end branch is when some stakeholder
decides to stop building the current state transition either
because he was prevented to perform some event or be-
cause some events he performed in previous stages now
have unforeseen consequences. Any time an anomaly is
discovered, an error message is displayed in the respective
client application. In order to facilitate revisions, traceabil-
ity within the animator allows such error messages to refer
directly to the violated statements. It is also possible for a
user to attach to any component of a state or state transi-
tion, built or being built, a comment, question or a change
request. This additional information is recorded and added
to the (textual) animation traces, which can then be a basis
for discussion and model improvements.

Technically, the animator uses an interpretation algo-
rithm. This algorithm operationalises the semantic rules
which map the language’s constructs to formula schemas
of first-order real-time temporal logic. This way of giving a
semantics to the language produces, for different instantia-
tions of a given pattern, logical statements with similar
structures. As a consequence, dealing with full real-time
temporal logic could be avoided. The resulting algorithm
consists checks and triggers that take place at well defined
moments in the animation process. Computations are there-
fore very efficient (even if the language is very expressive)
and traceability to specification statements is straightfor-
ward. More technical details can be found in [16], [17].

An additional advantage of animation is that, since op-
erations are carried out by stakeholders over intangible
objects (the representations of the composite system's com-
ponents inside the animator tool), some restrictions about
the kind and the amount of the tested operations disappear.

For example, testing how operations are carried out in a
manufacturing environment might be very costly in the
real-world if real parts have to be produced. Another ad-
vantage of animation comes from the settings in which an
animation session usually takes places (distributed but in
the same room) and is that informal communication be-
tween stakeholders is possible. This is often not possible
when trying out a real system where operations are per-
formed in different places. Finally, over prototyping, ani-
mation has the advantage that it avoids to create an imple-
mentation and that it keeps therefore validation at the re-
quirements level (since no design or implementation con-
cerns interfere).
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2.3 The PRIME Environment as a Foundation for
the Technical Integration

Integrating the prototypes presented in the previous sub-
sections and supporting the definition of reusable method
chunks describing their usage requires an implementation
platform which allows the integration of existing tools and
supports the dynamic definition and adaptability of the
integrated method chunks as well as a common repository
for data integration.

PRIME is an object-oriented framework for PRocess
Integrated Modelling Environments [27] which defines
method and tool knowledge in explicit models. PRIME’s
process integration empowers requirements engineers to
initiate the enactment of predefined method chunks guiding
them in their activities, even across tool boundaries.

The general PRIME framework is divided into three
distinguishable conceptual domains. The interactions be-
tween these domains characterise the way in which model-
based method guidance is provided. Process chunks are
first instantiated within the modelling domain. Based on the
interpretation of the instantiated model, the enactment
domain supports, controls, and monitors the activities of
the performance domain by sending and receiving prede-
fined message types between the domains. Thus, the per-
formance domain has to provide feedback information
about the current process status to the enactment domain as
a prerequisite for adjusting process model enactment to the
actual process performance and enabling branches, back-
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tracks, and loops in the process model enactment. In order
to be fully process-integrated, the tools of the performance
domain must conform to the generic PRIME tool architec-
ture [27]. The elicitation tools (the goal editor, the multi-
media management tool, the dependency management tool)
have been built this way. In contrast, the Albert II editor
and the animation tool did not have the process-integration
features required. We thus used techniques described in
[27] and [4] to wrap the existing tools into our PRIME-
based environment. We implement wrappers which em-
powered the animation and ALBERT tools to send and
receive service calls from the enactment domain. Moreo-
ver, the wrapper provides the functionality for storing and
retrieving data using the common RDBMS based reposi-
tory for data integration.

3 Evaluation of the Integrated Approach
Our first evaluation effort for CREWS-EVE focused on the
short-term interaction within a single project we performed
at ADITEC, a manufacturing company located in Ashen,
Germany. ADITEC produces machine gears for various
kinds of industrial devices. The overall aim of this trial
application, in which we were supported by one of the
ADITEC managers (Franz) and the foreman (Fred), was to
extend the integrated production management and report-
ing system. It consisted among other components of a cen-
tral manufacturing resource planing system and a produc-
tion scheduling system, which used an order dispatch sys-
tem and individual machine terminals mounted at each
production cell for the retrieval of production orders and
report on production times.

In the following, we outline three reusable method
chunks developed during the case study. The notion of
method chunk expresses modular reusable sets of activities
and emphasises that the value of an environment such as
CREWS-EVE may increase over time by gradually adding
method knowledge gained through experiences. We do not
expect that it will be possible to predefine methodical proc-
ess guidance for the whole RE process [26]. The method
chunks described below focus on the added advantages
gained by combining the techniques described in Sect. 2.1
and Sect. 2.2, as their individual benefits have already been
discussed elsewhere.

3.1 Validation and Elicitation of Goal Abstractions
and Operationalisations using Animation

Problem. Before writing an Albert specification, it is desir-
able to create a goal model that delimits the aspects of the
system that need to be described formally, and helps elicit
the information necessary to write the formal operational
specification2. This activity is normally performed by an
expert analyst who is able to write the formal specification.
His source of information is at a very abstract level without
the influence of users or domain experts. On the other
hand, when using the elicitation technique described in

                                                       
2 How goal operationalisation actually takes place is not a topic of the
paper. For this, we rely on other research and, in particular, on [6] and [8].

Sect. 2.1 to involve stakeholders, communicate is limited to
the captured scenes of the existing system.
Solution. The animator simulates usage situation of either
the existing or the desired system. Interrelating goals with
their operationalisations in the specification enables
stakeholders to discover that occurrences of some actions
provide evidence for or against the assumed attainment of a
given goal by some elements of the Albert II specification.
Moreover, unforeseen side-effects of the operationalisation
can be discovered, that is, (positive or negative) influence
on other goals. Therefore, we also interrelate action occur-
rences taking place during animation with goals, thus
treating animation traces in the same way as RWEs in
Sect. 2.1. Guidance for the different situations mentioned
above is described in [15].
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Example. The ADITEC re-engineering team was asked to
extend the existing production management system with
the ability to handle quality measurements of the produced
parts. As a consequence, the team introduced a new goal
“Perform quality measurements” which was operational-
ised in a way that the workers have to measure gear parts
as they are produced. The formal description of machine
terminal functionality was modified so that it allows to
enter measurement data and records them in a database.
Then, an animation session took place in which Fred, the
foreman, played the role of the worker agent instance. As
the animation was progressing, Fred noticed that the actual
worker might find it annoying to repeatedly switch func-
tions on the terminal (report on the order’s progression and
enter the quality measurements) and would be likely to skip
through these tasks. To mention this risk, the instances of
action SwitchFunction were related to the goals “Perform
quality measurements” and “Workers report on orders’
progress” using Fail links (see Fig. 5(a)). An alternative
operationalisation was then specified and animated: all the
quality measurements are done after the entire order is
finished. But, in this case, Fred objects that the worker
remains inactive during production while he could do valu-
able work. To record this side-effect, he related the in-
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stance of EnterAllMeasures with a Fail link to a new goal
“Keep workers busy” he adds to the model (see Fig. 5(b)).
Benefits. With this integrated method chunk we provide a
uniform treatment of current- and future-state scenarios,
represented either by real world scenes and animations
respectively, for validation of and interrelation with goal
models. Animation can be used for the validation of
changes, but also for the current-state in places where
video capture is to cost and time intensive. Additional
benefits of the new method chunk are that (a) it provides a
more systematic way of recording animation results by
directly relating the animations to the goal model; (b) the
created links can be reused to support negotiation and
choice between alternative operationalisations; and (c)
animated behaviours can be retrieved to serve as examples
for abstractly formulated goals.

3.2 Validating the Albert II Specification by Recon-
structing Real World Scenarios

Problem. Animation can also be used to check if a specifi-
cation of a new system adequately and correctly represents
critical parts of the current application domain, e.g., with
respect to scenarios elicited from real world examples. In
the same way, one wants to check if retained system proce-
dures can still be performed correctly after having specified
changes on an existing system.
Solution. The integrated CREWS-EVE environment pro-
vides a direct access to MSC scenarios elicited from RWSs
or additional elicitation techniques. These MSCs can be
replayed, by trying to match sets of interactions on sets of
Albert II actions and events. Success and failure of these
matches are recorded and presented to the user. The envi-
ronment supports the user in stepping through the MSC by
choosing between alternatives and highlights current sets of
interactions for which he will try to find a correspondence
in the animation.
Example. Before extending the specification with quality
measures, the ADITEC reengineering team performed an
animation of the current procedures. The scenarios elicited
from video taped worker interactions are replayed using
our technique. After the animation, the stakeholders im-
pressions, the created animation traces and the recorded
success and failure of matches are used to discuss and
decide on the accuracy of the specification to represent the
current system. After an agreement has been reached on
this issue and the specification modified accordingly, the
specification can be modified and animated to evaluate the
impact on the system.
Benefits. Being able to explicitly check if specific scenarios
of the existing system are matched by the specification
allows to decide if the Albert II specification appropriately
represents the current system. It is also essential for
checking if animated potential system evolutions still guar-
antee basic features.

3.3 Explanation Support for Animation Steps
Problem. While performing the animation, client users
controlling their agents do not only have to understand the

actual meaning of state components and executable actions,
they need to get a broad idea of what will happen and why
if they decide for a certain alternative which will determine
the subsequent state transitions of the animation. To make
a reasonable decision the user needs to be provided with
more information than the animator normally offers, be-
cause, e.g., he might not have enough domain knowledge
or the names in the specification might be badly chosen.

Solution. The integration provides additional informa-
tion for actions and state components on different levels of
abstraction, which makes them much more transparent for
the user of the animation and support him in various ways
in his decision making. Fig. 6 and Fig. 7 sketch this expla-
nation support. The integration makes the full traceability
support provided by PRIME available for the Albert speci-
fication and animation tools. A set of integrated method
chunks semi-automatically establishes typed interrelations
between objects of different types. For instance, the op-
erationalises link in Fig. 6 indicates that an agent
interaction has been elicited from a goal. Alternatively,
properties of an agent’s state component have been directly
elicited from a RWE, indicates by a based_on interrela-
tion, etc.

Real World Examples

Goal Model

Scenarios

Mr. Baran : 
Registrar

Form : New

CourseForm

Sales 101 : 

Course

1: Set name

2: Set description

3: Set time and day

4: Set location

5: Set professor

6: submit for processing

7: Create

8: Save

9: Course created

attains/fails

attains/fails

describes

Albert Specification

operationalises

based_on

based_on

Animator

instantiates

The interrelations are applied for information retrieval
during runtime of the animation for Albert II specification
objects (e.g., agent, action and state component) which
have been instantiated by the animator. Before animation
of a specification, the animator now evaluates for each
presented object if interrelations to goals, scenarios, and
RWEFs exist. When this is the case, special operations
allowing to display the explanation information become
available, in form of a dependency graph (see upper right
windows of Fig. 7). The user can browse through this
structure, expand the graph by displaying indirectly related
objects, and can select goals, scenarios and/or RWEFs he
wants to be presented in their native editing tool.
Benefits. The different types of information provided repre-
sent different abstraction levels, which are needed to sup-
port the understanding from the overall system goals sup-
ported by an action down to how the performance will look
like concretely in a broad context. The benefits gained for
each information type are as follows:
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 Goal supported by specification objects. The direct or
indirect interrelation to abstract goal concepts provides
information about the purpose of an action within the ani-
mated system part. It also facilitates the user to realise
similarities and dependencies between several actions with
respect to their intentions to attain certain system goals, i.e.
comparing the role of different actions within the system.

 Concrete scenarios representations. MSC scenarios
provide an overall view on the action’s temporal contexts,
i.e. possible actions and interactions which might have
happened before the current situation and possible ways the
animation can go on by selecting one of the presented ac-
tions.

 Interrelated RWEFs. Concrete video examples, espe-
cially when they originating from the user's domain, often
make it easier to understand a concept than abstract names
and descriptions. Interrelations to RWEFs provide a direct
access to possibly several different recorded situations
where the presented actions were performed and state com-
ponents have been observed on the real system. The user
can review these recordings in full context, e.g. he can see
what happens before and after the action, which helps him
to direct the subsequent animation. Further, the combina-
tion of related goals, RWEFs and the typed interrelations
allows him to review attainment as well as failure examples
for goals that the respective actions are tackling. This fea-
ture lets the user determine in which direction he wants to
proceed within the animation (e.g. by avoiding an observed
goal failure, exploring an alternative not observed, etc.).

The interrelation structure from the formal specification
to RWEs can also be used to elicit missing information for
specification gaps detected during animation.

Example. We assume that an animation has been initiated
to explore with a domain expert — Fred, the foreman of
ADITEC — how the Machine Terminals actually support
the worker in performing a machine set-up and if this has
been covered correctly by the Albert II specification.  Con-
trol of the agent worker was given to Fred. At some stage,
Fred was confronted with two alternative actions, one name
he never heard before in this particular context: "Display

material location" and "Display material parameter". Thus,
using the explanation support from his animation window
presented the graph shown in Fig. 7. The action was related
to the goal "Provide material data necessary for set-up.",
which Fred immediately recognised. However, guessing,
but not being completely sure what was meant by "material
parameter", he also decided to take a look at some video
RWEFs, which he discovered after retrieving the goal's
dependencies. The RWEF showed one of Fred’s colleagues
using the terminal’s menu to retrieve the shelf number
where find the production material in the storehouse. Then,
he retrieved some additional numbers with a second opera-
tion, which he wrote down next to the shelf number on his
notepad. Fred immediately recognised that these were
parameters for the shelf's robot for collecting the material.
Fred finally concluded that the specification names were
imprecise because the shelving system had not been dis-
cussed with the analysis team.

4 Conclusions
In this paper we argued that the specification of a change
vision for a future system is heavily influence by the con-
text of the system's past. We identified two major problems
that have to be solved in an integrated manner for bridging
this gap between past and future of the system: the trace-
ability and the envisionment problem. The CREWS Project
developed a framework for this kind of integrated solution
which has been instantiated by the CREWS-EVE approach
presented in this paper.

The integration of CREWS-EVE’s two individual com-
ponents has been discussed both from a technical and a
methodological viewpoint. Then we showed three typical
applications of this integration in the form of reusable tool
supported method chunks, which have been developed in a
small case study. In the presentation of the method chunks
we showed how solutions for the envisionment problem
have been integrated with solutions for the traceability
problem and which benefits were gained by this. Beyond
these specific method chunks, the experiences show that
the integration of real world multimedia scenes and anima-
tions in CREWS-EVE provides additional benefits that
alleviate limitations that the two techniques have when
taken separately: (i) The use of real world scenes is re-
stricted to the re-engineering of systems where system
usage is observable and recordable. This limitation can be
solved by using animations of system usage in addition to
direct observations. (ii) Distributed animation, even though
it is an important step to improve understanding and vali-
dation of a formal specification, is still rather abstract with
respect to the reality the stakeholder are used to experience.
Linking animations with goals and real-world scenes re-
duces this gap.

Related work in this area also combines solutions for
bridging the gap between future and past. For instance,
Scheer et al. [34] combine virtual reality technology with
Business Process Reengineering, but consider the past only
by conceptual models and not real world scenes. They also
have no formal semantics and no conflict modelling. Nis-
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sen et al. [24] provide an approach for cooperation model-
ling and scenarios including conflicts, but provide only
informal representation for the scenarios. Dubois and Yu
[8] support formal specifications and goals of the past and
the future, but do not consider scenarios. Potts and Anton
[1], [28] integrate scenarios and goals of the past for man-
aging the evolution and surfacing requirements for the
future system, but only in a static manner and do not cap-
ture scenes of the past or explore animations of the future.
Sutcliffe et al. [36] developed a tool supported approach
considering goals and scenarios which are only in textual
form. However, founding the approach on domain knowl-
edge (e.g., hierarchies of exceptions and scenario patterns)
collected in the past provides a vast potential for consider-
ing the context of the past for the future system. Lou-
copoulos and Lalioti [21] visualise and animate conceptual
models producing scenarios but do not consider goals.
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