
Crews Report Series 98 - 23

/�(&5,72,5(/�(&5,72,5(a tool to support a goal-scenario based approach to
requirements engineering

M. Tawbi, C. Souveyet, C. Rolland

University of Paris1- Sorbonne
CRI

90 rue de Tolbiac 75013 Paris, France.
{tawbi, souveyet,rolland}@univ-paris1.fr

Submitted to Information and Software Technology Journal (ed. M.
Shepperd) Elsevier Science Publishers

/�(&5,72,5(/�(&5,72,5(a tool to support a goal-scenario based approach to requirements
engineering

Mustapha Tawbi, Carine Souveyet, Colette Rolland
email {tawbi, souveyet,rolland}@univ-paris1.fr

Centre de recherche en Informatique (CRI), University of Paris1 Panthéon Sorbonne,
90 rue de Tolbiac 75013 Paris, France.

Abstract

The paper presents ~/�(&5,72,5(� a tool which supports the goal-scenario based approach for
requirements engineering developed within the CREWS project. The approach tightly couples
goal modeling and scenario authoring to elicit system requirements The approach is supported
by guidelines encapsulated in modular method chunks that are assembled in different ways
called method paths. A method path is a situated ‘good practice’ of goal modeling and scenario
authoring. The paper presents one of the &5(:6B/�(&5,72,5(method paths and illustrates
it use through a /�(&5,72,5(session.

1. INTRODUCTION

Scenario have recently gained attention in the field of Requirement Engineering (RE) A
scenario is ‘a possible behavior limited to a set of purposeful interactions taking place among
several agents’ [15,16]. It describes a desirable functionality of a system under design, and
thus, help identifying requirements.

Goal modeling is another alternative way to facilitate requirements elicitation[5]. Our
experience is that it is difficult for domain experts to deal with the fuzzy concept of a goal [2,
,17,8, 9]. It is often assumed that systems are constructed with some goals in mind [6].
However, practical experiences [1, 7] show that goals are not given and therefore the question
as to where they originate from [1] acquires importance. In addition, enterprise goals which
initiate the goal discovery process do not reflect the actual situation but an idealized
environmental one. Therefore, proceeding from this may lead to ineffective requirements.
Thus, goal discovery is rarely an easy task.

In the ESPRIT CREWS 1 project, we propose to do this by combining goal driven approaches
for Requirements Engineering (RE) with the use of scenarios. The total solution is in two
parts. First, for a goal, scenarios are authored by the scenario author. Thereafter, the authored
scenario is explored to yield goals which, in turn, cause new scenarios to be authored and so
on. These two main activities had been dealt in [3] for the authoring aspect and in [13] for
scenario exploration to discover goals.

The process which combines goal modeling and scenario authoring is a complex one that we
want to support by guidelines implemented in enactable method chunks organized in methods
paths[14]. Each path corresponds to a given flow of steps, each being supported by a method
chunk. Method chunks and method paths are implemented in the software tool /�(&5,72,5(
which is the subject of this paper.

The paper is organized as follows. First, we introduce in section 2, the notion of a requirement
chunk which is a pair <goal, scenario> The process combining goal discovery and scenario

1 This work is partly funded by the Basic Research Action CREWS (ESPRIT N°21.903). CREWS stands for
Cooperative Requirements Engineering With Scenarios.

authoring is introduced in section 3 together with the notions of method chunks and method
paths. The method path considered in this paper is presented in section 4 and illustrated
through a session using ~/�(&5,72,5(� tool in section 5. Finally, we draw some conclusions in
section 6 .

2. THE NOTION OF A REQUIREMENT CHUNK

At the core of our approach is the Requirement Chunk (RC), defined as the pair <goal,
scenario> where G is a goal and Sc is a scenario. Since a goal is intentional and a scenario is
operational in nature, a requirement chunk is a possible way in which the goal can be
achieved[13]. Requirements chunks can be assembled together either through composition and
alternative relationships or through abstraction relationships. The former lead to AND and OR
structure of RCs whereas the latter leads to the organization of the RC model as a hierarchy of
chunks of different granularity. (Figure 1) sumps up these relationships, using OMT notations
[4].

ScenarioGoal

AND OR

Requirement Chunk

Reference

Refined by

Figure 1:the requirement chunk notion

3. THE PROCESS VIEW

The requirement chunk is the central part of the goal discovery process (figure 2). Each step in
this process consists of two phases :

(1) scenario authoring
(2) goal discovery

Requirement Chunk

G0 Sc0

goal
discovery

scenario
authoring

G1

G2

Figure 2: Overview of the discovery process

Both are supported by rules, (1) authoring rules and (2) discovery rules. We assume scenarios
to be textual and use authoring rules [12] to provide style and contents guidelines as well as
linguistic devices for analysis, disambiguation and completion. The linguistic devices are based

on a case grammar and case patterns. Details can be found in [12]. Discovery rules are of three
types to respectively help discovering ANDed , ORed and Refined goals given a requirement
chunk RC.

Rules are encapsulated in method chunks organized in method paths.

A method chunk is contextual : it is a component embedding guidelines to achieve a specific
intention applicable in a given situation. As shown in (figure 3), a method chunk has an
interface and a body.

The chunk interface is a pair <situation, intention>. Where the situation is the part of the
product required as a pre-requisite for the fulfillment of the intention. The intention is the goal
to be achieved in that particular situation. For example the following interface
<situation=(Goal : g), intention=Elicit scenario using CREWS authoring guidelines>
expresses the fact that a Goal is a required product part for achieving the intention to elicit a
Scenario. The interface <situation=(Scenario : s), intention=Verify scenario by checking the
vocabulary> characterizes a method chunk to guide the verification of a scenario by checking
the vocabulary which is applicable in a situation where a scenario has been already elicited. As
shown by these two examples, the interface of a method chunk situates its context of
application.

The body chunk contains the guidelines to be applied when the chunk is actually used. For
capturing a large range of method chunks, the body is either formal or informal. The former
implies to define method chunk as proposed by the Nature process formalism [10,11]. Detailed
examples of such a description can be found in [12,18]. The latter describes method chunk in
natural language.

Method chunk

Interface Body

situation intention

Method path

Is a collection of

Figure 3: Overview of a method chunk

A method chunk alone is not useful. Methods chunks must be grouped in a method path to
support an entire process [14]. We define a method path as a possible route among method
chunks. Our view is that several method paths can be defined to be applied in specific project
situations, each corresponding to a specific grouping of method chunks. Thus we adopt a

modular view of method construction : a chunk is seen as a module which is self contained, has
a well defined interface and therefore, can be assembled to other chunks modeled according to
the same template We have currently implemented a repository comprising 18 method chunks
which are grouped in four different paths. In the next section we present the method path
selected for this paper.
.
4. The CREWS method path MP1

The method path used in this paper is visualized in figure 4. It is made of an iterative cycle
which includes four main intentions to fulfill.

1) Discover goals from a given goal
2) Elicit scenario
3) Conceptualize scenario
4) Discover goals from scenario

Discover goals
from goal

Conceptualize scenario

Discover goals
from scenario

G Sc

G:Goal

T: texual description of scenario

Sc: Scenario

T
Elicit Scenario

 Figure 4:the method path MP1

This process takes as input, a goal, produces a RC by authoring scenarios attached to this goal
and supports the discovery of new goals which in turn can each, be input of a new loop. The
fulfillment of each of these intentions is supported by method chunks. These method chunks
and the associated path are implemented in the /�(&5,72,5(tool to support the flow of
decision making which composes the process as shown in figure 4.

Furthermore, the method path focuses on two types of requirements chunks namely, system
interaction RCs and system internal RCs. As a consequence, the path is initiated by a given
service goal (see figure 5) and conducts the previous loop at two levels of abstraction : the
system interaction level and the system internal level

RC at the system interaction level

<G1;Sc1>

<G1 ; Sc1 >

RC1

RC1

OR

1

1 1

RC1 2

2 2<G1 ; Sc1 >
OR

RC at the system Internal level

<G2;Sc2>

<G3;Sc3>

AND
ANDRC2

RC3
AND

 is Refined by

<G1.1;Sc1.1>

<G1.1 ; Sc1.1 >

RC1.1

RC1.1

OR

1

1 1

RC1.13

3 3<G1.1 ; Sc1.1 >

<G1.2;Sc1.2>

AND
ANDRC1.2

Service goal
Is concretized
by

Figure 5 :the two levels of abstraction considered in MP1

At the system interaction level the focus is on the interactions between the system and its
users. These interactions are required to achieve the services assigned to the system. A system
interaction RC captures one way of providing a service . It couples a service goal and a system
interaction scenario. A service goal expresses a manner of providing a service. The associated
system interaction scenario describes a flow of interactions between the system and its users
which allows the users to fulfill the service goal.

The system internal level focuses on what the system needs to perform the interactions
selected at the system interaction level. The ‘what’ is expressed in terms of system internal
actions that involve system objects but may require external objects such as other systems.
System interactions are refined in system internal chunks and new ones are added. A system
internal RC details one possible way in which the system may internally perform an interaction
identified in a system interaction scenario at the previous level. It combines a system goal and a
system internal scenario. A system goal expresses a manner to perform an action identified in
a system interaction scenario.

During the method path enactment, the requirement chunk author (RCA) starts with a service
goal in mind. Then, the loop introduced in figure 4 is performed at the system interaction level
first and then, at the system internal level. The result is a RCs structure organized at two level
of abstraction with, for each level chains of ORed and ANDed requirements chunks.

We detail in turn each of the four key intentions of the path (see figure 4) and shall illustrate
the tool support in the following section. All examples correspond to the ATM case study.

4.1 Discover goals from a given goal :

This intention is supported by the chunk :
 « situation : (goal), intention : (discover goals from goal) ».

The corresponding guideline aims at supporting the discovery of new goals from one a given
goal. Let us consider the following example from the ATM case :‘Provide cash with a card
based ATM’

The guideline uses a predefined template for goal formalisation and suggests to the
requirement chunk author (RCA) to provide alternative values of the goal parameters. This
might lead in our example to propose, ‘account balance information’, ‘money transfer facilities’
as alternatives to ‘cash withdrawal’. and ‘a code based ATM ‘ as an alternative mean to « a
card based ATM ».

All possible combinations of parameters are computed and then, presented to the RCA
parameter value-wise. Finally the RCA is invited to select from the set of generated goals a
sub-set of new goals of interest. 'Provide cash from account using a card based ATM' and
'Provide account balance information from account using a code based ATM' are two
examples of goals discovered from the initial goal 'Provide cash with a card based ATM'.

4.2 Elicit scenario

There are two method chunks which support the fulfillment of this intention :
• <situation=(Goal), intention=Write textual scenario using CREWS authoring

guidelines>,
• <situation=(LN text), intention=Check spelling>,

The first one provides guidelines to help the author writing the scenario according to its type
with respect to its intended contents. Guidelines are of two kinds : style and contents ; the
former deal with the wording of the text and the latter focuses on the nature of the scenario
contents.

The second one provides spelling facilities that we borrowed from Microsoft WORD.

4.3 Conceptualize scenario

This intention is associated to four chunks which support the transformation of an initial
textual scenario into a well structured text, free of any ambiguity and linguistically
completed. The four chunks correspond to the following sub_intentions :

�to check the initial text against the domain glossary,
�to analyse the textual scenario using a case grammar,
�to verify the linguistic completeness of the scenario , and
�to generate the final NL structured text.

 We give in the following a short explanation to each one of these chunks.

 4.3.1 Check the initial text against the domain glossary

The interface of this chunk is :
 <situation=(LN text), intention= Check the initial text against domain glossary>,

The chunk aims at ensuring that the terms used in the scenario conform to a domain glossary.
This requires that the domain glossary has been defined. This can be done either a priori or ‘on
the fly’. The former is supported by the following method chunk :

<situation=(goal), intention = Define domain glossary>,
The latter is embedded in the above mentioned chunk for controlling the vocabulary.

The idea behind the construction of this glossary is based on the fact that common words are
frequently used when dealing with a specific domain. In the ATM domain, words like « user »,
« card », « cash » are often invoked. The management of a glossary for a project came out of
the practice survey performed by the CREWS team in industries[].

The chunk verifies the conformance of terms used in the scenario with glossary. It also
searches if terms in the text are synonyms of terms in the glossary and asks the RCA to select
the preferred one but to avoid redundancy.

4.3.2 Analyse the textual scenario using a case grammar

 The interface of this chunk is :
 <situation=(LN text), intention=Analyse the textual scenario using a case grammar>,

This chunk uses linguistic devices to analyse the semantic contents of the textual scenario and
represent it as a collection of instantiated linguistic cases patterns [12]. There are two types of
semantic patterns, clause and sequence patterns. The former provide the semantic of atomic
actions such as« the user inserts his card in the ATM » whereas the latter provide the semantic
of complex actions such as « the user inserts his card in the ATM , then the ATM gives a
prompt for code to the user »

A verb is the main concept of a clause pattern . A verb is the center and we attach to it the
other parameters of the sentence. We classify verbs in two categories : action verbs and
communication verbs.
Action verbs care used in simple actions like «check » or « validate ». An action verb requires
an agent parameter which is the pronoun of the verb and an object parameter which is the
subject of the verb. Then, the sentence « the ATM checks the card validity » will be
represented as the instantiated pattern :Action(checks)[agent : the ATM ; object : the card
validity]

Communication verbs are used in actions where agents exchange objects which can be physical
objects like ‘a card’ or information objects like ‘a message ‘or ’a prompt’. For example in the
action « the user inserts the card in the ATM » ‘inserts is a communication verb and ‘the card’
is a physical object. A communication verb needs also two parameters : a source (‘the user’)
and a destination(‘the ATM’). So« the user inserts the card in the ATM » corresponds to the
instantiated pattern :Communication (input) [Agent : the user ; Object : the card ; Source :
the user ; destination : the ATM] translated to semantic patterns representation.

The purpose of Sequence patterns is to compose simple actions in complex ones. We classify
complex actions in four categories :

 Sequence : « the user inserts his card in the ATM, then the ATM gives a prompt for
code to the user »

 Condition : « If the card is valid then a prompt for code is given by the ATM »
 Iteration : « for each transaction the ATM sends a notification to the bank »

Concurrency : «The ATM returns the card while a receipt is printed »

The chunk uses four format of sequence patterns modeling the four types of sequences.
Sequence [before : Action1 ; after :Action2] corresponds to the sequence type and
Constrained [condition : Action1 ; constrained : Action2] corresponds to the

condition type.

Obviously these sequence formats are recursive ones, so action1 and action2 are semantic
patterns which can be of any of the types described above.

4.3.3 Verify the linguistic completeness of the scenario

The interface of this chunk is as follows:
 <situation=(instantiated semantic patterns),
 intention= verify the linguistic completeness of the scenario>,

This chunk aims to clarify and complete a textual scenario. For this purpose, the chunk applies
two parallel strategies. The first one aims to complete interaction statements whereas the
second one aims to detect and disambiguate anaphoric references .

To illustrate the former, let us consider the action « a prompt for code is given » and its
corresponding instantiated pattern
 communication(give) [Agent : ? ; object : a prompt for code ; Source : ? ; Destination : ?]
The completeness strategy consists in adding all missing parameters in the instantiated patterns.
The RCA in the previous example is asked to replace every ‘?’ by a glossary term This leads
to the completed sentence :

 « a prompt for code is given by the ATM to the user »

Anaphoric references are detected and replaced by non ambiguous terms. For example in the
action « the user inserts his card in the ATM » which corresponds to
 communication (insert)[Agent : the user ; Object : his card ; Source : the user ;
Destination : The ATM].
the anaphoric reference ‘his’ in ‘his card’ is detected and the RCA is asked to replace ‘his’ by a
glossary term let say, the ‘user’ and the action is rephrased as
« the user inserts the user’s card in the ATM ».

4.3.4 Map onto structured NL text

The interface of this chunk is :
 <situation=(analysed and completed text), intention= map onto structured NL
text >,

The role of this chunk is to produce a formal scenario description in structured natural
language (See /�(&5,72,5(session for an example). The mapping uses a correspondence
between every pattern and its surface structure.

4.4 Discover goals from scenario

The interface of this chunk is as follows:
 <situation=(scenario description), intention= discover goals from scenario >,

The body includes three different strategies to discover new goals. Each of them exploit one of
the possible type of relationship which exists between chunks (see section 1). We introduce
these strategies with examples , for more detail see [13] :

a) S1 :Discover refined goals to the goal G of a given RC:

This strategy looks to every interaction in a scenario belonging to the level i of abstraction as a
goal at level i+1. The chunk scans every interaction in a scenario and asks the RCA to confirm
or infirm the fact that the interaction should be regarded as a goal. In the positive case, the
RCA is asked to rephrase the selected action as a goal statement. The discovered goal belongs
to a requirement chunk which refines. the initial RC. For example, given the atomic action
« The ATM report the cash transaction to the bank », the RCA can decide to treat as a goal
named « Report the cash transaction to the bank »

b) S2 :Discover ORed goals to the goal G of a given RC

This strategy aims to identify ways to achieve a given service goal but in different manners. S2
builds a graph representing all the possible paths of actions already identified in the scenario of
the requirement chunk under investigation.

Every path is characterized by zero to n nested flow conditions. For example, in the scenario
associated to the goal 'Withdraw cash from the ATM in a normal way', there are four nested
flow conditions (see example in section 4) :

1- If the card is valid
2-If the code is valid

3- If the amount is valid
4- If a receipt is asked by the bank customer to the ATM

S2 computes all the combinations of negative conditions that should be investigated as possible
missing paths. S2 generates four cases in our example :

(1) card is not valid
(2) (card is valid) & (code is not valid)
(3) (card is valid) & (code is valid) & (amount is not valid)
(4) (card is valid) & (code is valid) & (amount is valid) & (receipt is not asked)

These cases help to discover new goals such as ‘Withdraw cash with error correction. These
goals belong to RCs that are all related to the initial RC through an OR relationship’

a) S3 : Discover ANDed goals from a given RC

The strategy S3 uses interactions among objects which are resources. For example, in the
'Withdraw cash from ATM in a normal way' scenario, the re are three resources : the ‘card’,
the ‘cash’ and the ‘receipt’.

Applying the producing/consuming principle, for each resource, the rule searches for pairs of
interactions in which the one consumes the resource that the other produces. The pairs
identified in our example are the following :

• card : (‘the bank customer inserts the card’; ‘the ATM ejects the card to the bank
customer’),

• receipt : (? ; ‘the ATM prints a receipt to the bank customer’), and

• cash : (? ; ‘the ATM delivers cash to the bank customer’).

Every incomplete pair originates a new goal. There are two incomplete pairs, noted with a
question mark. Thus, two new goals are suggested, that the RCA accepts and names :

• 'Fill in the ATM with receipt paper', and

• 'Fill in the ATM with cash'.
These two goals belong to RCs that are ANDed to the initial one.

5. A scenario of use with the /�(&5,72,5(/�(&5,72,5(tool

This section is a usage scenario of the MP1 of the CREWS approach . The scenario shows
how the requirement chunk author (RCA) interacts with the /�(&5,72,5(tool to get the
support, guidance and help he/she wants. The scenario corresponds to one path through the
system interaction and system internal levels. It illustrates a top down approach starting
from a service goal and refining it through a number of steps to reach a complete
specification of the system requirements.

At the begin of the session , ‘/�(&5,72,5(’ asks the RCA to define his/her domain
glossary. This is done either by writing a new glossary or by restoring one from the
repository of domain glossaries. Figure 6 shows the tool interface of the glossary
construction. As shown the glossary is structured into lists : of verbs , agents and objects
relevant for the application domain. A ‘Check Vocabulary ‘ button is also offered to remove
redundancy related to the use of synonyms in the glossary. For example, the tool detects
that the terms ‘cash’ and ‘money’ are synonyms in the object list and it proposes to the RCA
to remove one of the two .

Figure 6:the glossary construction interface

As explained in the previous section, in the MP1 path, the RCA starts with a service goal in
mind. This is ‘Withdraw cash from the ATM’ in our case. The next step is to author a scenario
which illustrates one way to achieve this goal. As shown in figure 7 the interface named
‘Writing’ serves this purpose.

Figure 7: the Write interface

As it is visible in figure 7, the tool offers two buttons to select the type of guidelines that the
RCA wants to use. : Contents or Style guidelines which are specialized for each type of RC
(Interaction and Internal). As indicated in the bottom of the interface a ‘Check spelling’
functionality is provided which is identical to the one offered by Microsoft Word.

The underneath figure 8 reproduces the text written by the RCA in the window presented
in figure 7.

Figure 8 :the initial textual scenario

At the end of this step, the intention ‘Elicit scenario’ of the illustrated method path MP1 is
achieved. The RCA is invited now to consider the ‘Conceptualize scenario’ intention.
As shown i figure 9 this intention is supported in the /�(&5,72,5(by the interface called
‘Analysis and Verification’ (Figure 9)

Figure 9: the Analysis and Verification interface

The textual scenario written during the previous step is displayed in the text zone of the top
left of the interface. The two lists at the top (‘Scenario vocabulary’) and the bottom right
(‘New Terms’) are generated with the ‘Construct Glossary’ button. The former corresponds to
the terms used in the scenario, whereas the later corresponds to scenario terms which are not

The user inserts his card in the ATM.
The ATM checks the card validity.
If the card is valid , a prompt for code is given, the user inputs his code.
The ATM checks the code validity.
If it is valid , the ATM displays a prompt for amount to the user.
The user enters an amount.
The ATM checks the amount validity.
If the amount is valid , the card is ejected and then the ATM proposes a receipt to the user.
The user enters his choice.
If a receipt was asked, the receipt is printed but before the ATM delivers the cash.

parts of the glossary. The RCA is given the freedom to choose terms from this list and to add
them to the glossary if they are not synonyms of already existing terms. The list in the middle
right (‘synonyms found’) is generated by the Button ‘Synonyms’ and corresponds to synonyms
of glossary terms used in the scenario. The RCA is asked to replace the synonym in the
scenario by its corresponding terms of the glossary. In our example case there are no
synonyms.

The results of the linguistic analysis is shown in the middle left text. They take the form of
‘instantiated patterns’ and are generated by pushing the ‘Generate Patterns’ button

The ‘Errors list’ text zone is generated with the button ‘Check linguistic’ which triggers the
chunk detecting ambiguities in the instantiated semantic patterns. In this method path, as the
aim is to obtain complete and detailed system specification, the RCA is asked to correct all
detected ambiguities. At the end of this activity, the scenario description is as follows
(modifications are shown in bold).

Figure 10:the disambiguated textual scenario

As the scenario is disambiguated now, ~/�(&5,72,5(� offers to the RCA the facility for
mapping the text onto its final version i.e. the NL structured description . This is performed
within the ‘Mapping’ interface (figure 11).

The user inserts a card in the ATM.
The ATM checks the card validity.
If the card is valid a prompt for code is given by the ATM to the user, the user inputs the code in the ATM .
The ATM checks the code validity.
If the code is valid, the ATM displays a prompt for amount to the user.
The user enters an amount in the ATM .
The ATM checks the amount validity.
If the amount is valid, the ATM ejects the card to the user and then the ATM proposes a receipt to the user.
The user enters the user's choice in the ATM.
If a receipt was asked the receipt is printed by the ATM to the user but before the ATM delivers the cash to
the user.

Figure 11 : the Mapping interface

In the upper text the interface displays the ‘Instantiated Patterns’. The final scenario
description is obtained through the execution of the corresponding method chunk by clicking
on the button ‘Map’ The results is shown in figure 11 and reproduced in figure 12 for sake of
readability.

Figure 12: the final scenario description

At this point , the RCA has achieved the ‘Conceptualize Scenario’ intention, and he/she is
invited now to proceed with the next intention of the path MP1 :‘Discover Goals from
Scenario’ intention. This is supported by the ‘Goal Discovery’ interface of the /�(&5,72,5(
which is displayed in figure 13.

1. the user inserts a card in the ATM
 2. the ATM checks the card validity
 3. If the card is valid

Then
 4. a prompt for code is given by the ATM to the user
 5. the user inputs the code in the ATM
 6. the ATM checks the code validity
 7. If the code is valid

Then
 8. the ATM displays a prompt for amount to the user
 9. the user enters an amount in the ATM
 10. the ATM checks the amount validity
 11. If the amount is valid

Then
 12. the ATM ejects the card to the user
 13. the ATM proposes a receipt to the user

 14. the user input the user's choice
 15. If a receipt was asked

Then
 16. the ATM delivers the cash to the user
 17. the receipt is printed by the ATM to the user

Figure 13: the discover goals from scenario interface

The RCA can select a specific goal discovery strategy from the zone list provided on the
interface (‘Discovery strategy zone). Let assume that he/she chooses first the S2 strategy. As
presented in section 3 the method chunk enactment computes the missing paths in the scenario
and asks the RCA to rephrase them as new goals if he/she finds them relevant. In our case, the
RCA writes ‘Withdraw cash with an error correction phase (Figure 14).

 Figure 14: discover goal applying S2 strategy

Let assume that the RCA applies S2 once, and S1 twice. This will lead. to introduce the two
new goals :
Check the card validity’and
Check the code validity’
which are two system internal goals.

At this point our session reaches to its end. When the RCA will launch a new
session,�/�(&5,72,5(� will displays a list of pending RCs corresponding to the set of
discoverd goals which have not been authored, yet (figure 15).

Figure 15: The list of goals have not been authored

6. Conclusion

We presented the &5(:6B/�(&5,72,5(approach to guide requirements elicitation by
combining goal modeling and scenario authoring. The originality of the guidance provided by
the tool called /�(&5,72,5(lies in the modular description of method guidelines and their
flexible assembly into method paths. Guidelines are encapsulated in method chunks which are
cohesive modules that can be coupled in different ways to constitute a method path well suited
to a specific project situation. The paper illustrated one path with the ATM example. The tool
is itself implemented with software chunks and software paths, thus the conceptual assembly of
method chunks in a method path can be easily implemented in /�(&5,72,5(� The approach
has been validated with examples such as the ATM case study. We are currently working in
two directions (a) validating the approach by considering complete cases and diversifying cases
and (b) defining new paths of ‘good practice’ in requirements engineering using our
goal_scenario based approach.

7.Références

[1] A.I. Anton, Goal based requirements analysis. Proceedings of the 2nd International
Conference on Requirements Engineering ICRE’96, pp. 136-144, 1996.

[2] J. Bubenko, C. Rolland, P. Loucopoulos, V De Antonellis, Facilitating ‘fuzzy to formal’
requirements modelling. IEEE 1st Conference on Requirements Enginering, ICRE’94 pp.
154-158, 1994.

[3] C. Rolland, C. Ben Achour, Guiding the construction of textual use case specifications.
Accepted to Data and Knowledge Engineering Journal, 1997.

[4] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, ‘‘Object-oriented
modelling and design’’. Prentice Hall, 1991.

[5] C. Potts, Fitness for use : the system quality that matters most. Proceedings of the Third
International Workshop on Requirements Engineering: Foundations of Software Quality
REFSQ’9 , Barcelona, pp. 15-28, June 1997.

[6] A.M. Davis, ‘’Software requirements :objects, functions and states’’. Prentice Hall, 1993.

[7] ELEKTRA consortium, Electrical Enterprise Knowledge for Transforming Applications -
Athena deliverable : initial requirements for PPC. ELEKTRA Project Internal Report,
1997.

[8] P. Loucopoulos, V. Kavakli, N. Prekas, Using the EKD approach, the modelling
component. ELEKTRA project internal report, 1997.

[9] C. Rolland, S. Nurcan, G. Grosz, Guiding the participative design process. Association
for Information Systems Americas Conference, Indianapolis, Indiana, pp. 922-924, August,
1997.

[10] V. Plihon, C. Rolland : « Modeling Ways of Working », Proc. Of the 7th International
Conference on advanced information Systems Engineering, CAISE’95, Springer Verlag 95.

[11] C Rolland, G. Grosz : « A General Framework for describing the requirement
engineering process », IEEE conference on Systems, Man & Cyberenetics, CSMC’94, San
Antonio, Texas 1994.

[12] C. Rolland, C. Ben Achour : « guiding the construction of textual use case
specifications », accepted to Data Knowledge Engineering Journal.

[13] : C. Rolland, Carine Souveyet, Camille Ben Achour : « Guiding Gaol Modelling Using
Scenario » , Proposed to TSE journal, TSE special issue on Scenario Management 1998.

[14] :C . SOUVEYET, M. TAWBI : « Process centred Approach for developing tool support
of situated methods », Proposed to DEXA’98, 9th International Conference and Workshop on.
Database and Expert Systems Applications. August1998, Austria, Vienna

[15] J.M. Caroll, The Scenario Perspective on System Development, in J.M. Carroll (ed.),

Scenario-Based Design: Envisioning Work and Technology in System Development (1995).

[16] R.L. Mack, Discussion : Scenarios as Engines of Design, in John M. Carroll (ed.),
Scenario-Based Design: Envisioning Work and Technology in System Development (John
Wiley and Sons, 1995) 361-387.

[17] P. Kardasis, P. Loucopoulos, Aligning legacy information system to business processes.
Submitted to CAiSE’98, 1998.

[18] C. Rolland , V. Plihon : « Using generic chunks to generate process model fragments »,
Proc. On the 2th Conference on requirements engineering, ICRE’96, Colorado Springs,1996

