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Abstract

Scenarios have been advocated as a means of improving requirements engineering yet few
methods or tools exist to support scenario based RE. The paper reports a method and
software assistant tool for scenario-based RE that integrates with use case approaches to
object oriented development.  The method and operation of the tool are illustrated with a
financial system case study. Scenarios are used to represent paths of possible behaviour
through a use case and these are investigated to elaborate requirements. The method
commences by acquisition and modelling of a use case. The use case is then compared
with a library of abstract models that represent different application classes. Each model is
associated with a set of generic requirements for its class, hence, by identifying the
class(es) to which the use case belongs, generic requirements can be reused. Scenario paths
are automatically generated from use cases, then exception types are applied to normal
event sequences to suggest possible abnormal events resulting from human error. Generic
requirements are also attached to exceptions to suggest possible ways of dealing with
human error and other types of system failure. Scenarios are validated by rule-based
frames which detect problematic event patterns. The tool suggests appropriate generic
requirements to deal with the problems encountered. The paper concludes with a review of
related work and a discussion of the prospects for scenario based RE methods and tools.

1. Introduction

Several interpretations of scenarios have been proposed ranging from examples of
behaviour drawn from use cases [29], descriptions of system usage to help understand
socio-technical systems [30], and experience based narratives for requirements elicitation
and validation [39], [50]. Scenarios have been advocated as an effective means of
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communicating between users and stakeholders and anchoring requirements analysis in
real world experience [15]. Unfortunately scenarios are extremely labour-intensive to
capture and document [20], [44]; furthermore, few concrete recommendations exist about
how scenario-based requirements engineering (RE) should be practised, and even less tool
support is available.

Scenarios often describe information at the instance or example level. This raises the
question of how instance level information can be generalised into the models and
specifications that are used in software engineering. Scenarios may be used to validate
requirements, as ’test data’ collected from the observable practice, against which the
operation of a new system can be checked [40]. Alternatively, scenarios may be seen as
pathways through a specification of system usage, and represented as animations and
simulations of the new system [14]. This enables validation by inspection of the behaviour
of the future system. This paper describes a method and tool support for scenario based
requirements engineering that uses scenarios in the latter sense.

In industrial practice scenarios have been used as generic situations that can prompt reuse
of design patterns [8], [48]. Reuse of knowledge during requirements engineering could
potentially bring considerable benefits to developer productivity. Requirements reuse has
been demonstrated in a domain specific context [31], however, we wish to extend this
across domains following our earlier work on analogies between software engineering
problems [51].

The paper is organised in four sections. First, previous research is reviewed, then in
section 3 a method and software assistant tool for scenario based RE, CREWS-SAVRE
(Scenarios for Acquisition and Validation of Requirements) is described and illustrated
with financial dealing system case study. Finally, we discuss related work and future
prospects for scenario based RE.

2. Previous Work

Few methods advise on how to use scenarios in the process of requirements analysis and
validation. One of the exceptions is the Inquiry Cycle of Potts [39] which uses scenario
scripts to identify obstacles or problems in a goal-oriented requirements analysis.
Unfortunately, the Inquiry Cycle does not give detailed advice about how problems may be
discovered in scenarios; furthermore, it leaves open to human judgement how system
requirements are determined. This paper builds on the concepts of the Inquiry Cycle with
the aim of providing more detailed advice about how scenarios can be used in
requirements validation. In our previous work we proposed a scenario based requirements
analysis method (SCRAM) that recommended a combination of concept demonstrators,
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scenarios and design rationale [50]. SCRAM employed scenarios scripts in a walkthrough
method that validated design options for ’key points’ in the script. Alternative designs were
documented in design rationale and explained to users by demonstration of early
prototypes. SCRAM proved useful for facilitating requirements elaboration once an early
prototype was in place [48]; however, it gave only outline guidance for a scenario-based
analysis.

Scenarios can be created as projections of future system usage, thereby helping to identify
requirements; but this raises the question of how many scenarios are necessary to ensure
sufficient requirements capture. In safety critical systems accurate foresight is a pressing
problem, so taxonomies of events [24] and theories of human error [37], [42], have been
used to investigate scenarios of future system use. In our previous research [49], we have
extended the taxonomic approach to RE for safety critical systems but this has not been
generalised to other applications.

Scenarios have been adopted in object oriented methods [29], [21], [10] as projected
visions of interaction with a designed system. In this context, scenarios are defined as
paths of interaction which may occur in a use case; however, object oriented methods do
not make explicit reference to requirements per se. Instead, requirements are implicit
within models such as use cases and class hierarchies. Failure to make requirements
explicit can lead to disputes and errors in validation [17], [38]. Several requirements
management tools have evolved to address the need for requirements tracability (e.g.
Doors, Requisite Pro). Even though such tools could be integrated with systems that
support object oriented methods (e.g. Rational Rose) at the syntactic level, this would be
inadequate because the semantic relationships between requirements and object oriented
models needs to be established. One motivation for our work is to establish such a bridge
and develop a sound means of integrating RE and OO methods and tools.

Discovering requirements as dependencies between the system and its environment has
been researched by Jackson [26] who pointed out that domains impose obligations on a
required system. Jackson proposed generic models, called problem frames, of system-
environment  dependencies but events arising from human error and obligations of systems
to users were not explicitly analysed. Modelling relationships and dependencies between
people and systems has been investigated by Yu and Mylopoulos [54] and Chung [7].
Their i* framework of enterprise models facilitates investigation of relationships between
requirements goals, agents and tasks; however, scenarios were not used explicitly in this
approach. Methods are required to unlock the potential of scenario based RE; furthermore,
the relationship between investigation based on examples and models on one hand and the
systems and requirements imposed by the environment on the other, needs to be
understood more clearly.
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One problem with scenarios is that they are instances, i.e. specific examples of behaviour
which means that reusing scenario based knowledge is difficult. A link to reusable designs
might be provided if scenarios could be generalised and then linked to object-oriented
analysis and design patterns [18]. Although authors of pattern libraries do describe
contexts of use for their patterns [8], [19], they do not provide guidance about the extent of
such contexts. Requirements reuse has been demonstrated by Lam et al. [30]; although, the
scope of reuse was limited to one application domain of jet engine control systems. Many
problems share a common abstraction [51], and this raises the possibility that if common
abstractions in a new application domain  could be discovered early in the RE process,
then it may be possible to reuse generic requirements and link them to reusable designs.
This could provide a conduit for reusing the wealth of software engineering knowledge
that resides in reusable component libraries, as well as linking requirements to object-
oriented solution patterns (e.g. [8], [19]). Building a bridge from requirements engineering
to reusable designs is another motivation for the research reported in this paper.

Next we turn to a description of the method and tool support.

3.  Method and Tool support for Scenario-based RE

The method of scenario-based RE is intended to be integrated with object oriented
development (e.g. OOSE - [29]), hence use cases are employed to model the system
functionality and behaviour. A separate requirements specification document is maintained
to make requirements explicit and to capture the diversity of different types of
requirements, many of which can not be located in use cases. Use cases and the
requirements specification are developed iteratively as analysis progresses.

We define each scenario as “one sequence of events that is one possible pathway through a
use case”. Hence many scenarios may be specified for one use case and each scenario
represents an instance or example of events that could happen. Each scenario may describe
both normal and abnormal behaviour. The method illustrated in Figure 1 uses scenarios to
refine and validate system requirements. The stages of the method are as follows:

1. Elicit and document use case
In this stage use cases are elicited directly from users as histories of real world system
usage or are created as visions of future system usage. The use case model is validated for
correctness with respect to its syntax and semantics. The paper does not report this stage is
in detail.

2. Analyse generic problems and requirements
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A library of reusable, generic requirements attached to models of application classes is
provided. A browsing tool matches the use case and input facts acquired from the designer
to the appropriate generic application classes and then suggests high level generic
requirements attached to the classes as design rationale ‘trade-offs’. Generic requirements
are proposed at two levels: first, general routines for handling different event patterns, and
secondly, requirements associated with application classes held in the repository. The
former provide requirements that develop filters and validation processes as specified in
event based software engineering methods (e.g. Jackson System Development [25]); while
the latter provide more targeted design advice; for instance, transaction handling
requirements for loans/hiring  applications.

3. Generate scenarios
This step  generates scenarios by walking through each possible event sequence in the use
case, applying heuristics which suggest possible exceptions and errors that may occur at
each step. This analysis helps the analyst elaborate pathways through the use case in two
passes; first for normal behaviour and secondly for abnormal behaviour. Each pathway
becomes a scenario. Scenario generation is supported by a tool which automatically
identifies all possible pathways through the use case and requests the user to select the
more probable error pathways.

4. Validate system requirements using scenarios
Generation is followed by tool-assisted validation which detects event patterns in scenarios
and presents checklists of generic requirements that are appropriate for particular normal
and abnormal event patterns. In this manner requirements are refined by an interactive
dialogue between the software engineer and the tool. The outcome is a set of formatted use
cases scenarios and requirements specifications which have been elaborated with reusable
requirements.

Although the method appears to follows a linear sequence, in practice the stages are
interleaved and iterative.
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Figure 1   Method Stages for Scenario-based  Requirements Engineering.

3.1. Schema for scenario based requirements modelling

In this section we describe the schema of scenario based knowledge shown in Figure 2. A
use case is a collection of actions with rules that govern how actions are linked together,
drawn from Allen’s temporal semantics [2] and the calculus of the ALBERT II
specification language [14].  An action is the central concept in both scenarios and  use
cases. The use case specifies a network of actions linked to the attainment of a goal which
describes the purpose of the use case. Use cases are refined into lower levels of detail, so a
complete analysis produces a layered collection of use cases. Use cases have user-defined
properties that indicate the type of activity carried out, e.g. decision, transaction, control,
etc. Each action can be sub typed as either cognitive (e.g. the buyer agrees the deal price on
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offer), physical (e.g. the dealer returns the telephone receiver), system-driven (e.g. the
dealing systems stores information about the current deal) or communicative (e.g. the
buyer requests a quote from the dealer). Each action has one start event and one end event.
Actions are linked through 8 types of action-link rules which are described later in more
detail.
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Figure 2   Meta-schema for modelling use cases and scenario based knowledge.

Each action involves one or more agents. Each agent can be either human (e.g. a dealer),
machine (e.g. a dealing-system), composite (e.g. a dealing-room) or an unspecified type.
Agents have user-defined properties that describe their knowledge and competencies.
Action - agent links are specified by an involvement relation that can be subtyped as
{performs, starts, ends, controls, responsible}. Each action uses nil, one or many object
instances denoted by a use relation, subtyped as {accesses, reads, operates}. Each action
can also result in state transitions which change the state of objects. States are aggregations
of attribute values which characterise an object at a given time in both quantitative and
qualitative terms. Structure objects are persistent real world objects that have spatial
properties and model physical and logical units of organisation. Structure objects are
important components in reusable generic domain models (called object system models
and described in section 3.5), but also allow use case models to be extended to describe the
location of objects, agents and their activity.
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Introduction to the case study
The case study is based on a security dealing system at a major bank in London. Securities
dealing  systems buy and sell bonds and gilt-edged stock for clients of the bank. The bank’s
dealers also buy and sell securities on their own account to make a profit. Deals may be
initiated either by a client requesting transactions, or by a counterparty (another bank or
stockbroker who acts as a buyer) requesting a quotation, or by the dealer offering to buy or
sell securities. Quotes are requested over the telephone, while offers are posted over
electronic wire services to which other dealers and stockbrokers subscribe. In this case
study we focus on deals initiated by a counterparty from the viewpoint of the  dealer. The
main activities in this use case include agreement between the dealer and buyer on the deal
price and number of stock, entering and recording deal information in the computer
system, and checking deal information entered by the dealer to validate the deal.

The case study contains several use cases; however, as space precludes a complete
description, we will take one use case ’ prepare-quote’ as an example, as illustrated in
figure 3. The sequence is initiated by a request event from the counterparty agent. The
dealer responds by providing a quotation which the counterparty assesses. If it is suitable
the counterparty agrees to the quotation and the deal is completed.  Inbound events to the
system are the deal which has to be recorded and updated, while outbound events are
displays of market information and the recorded deal. System actions are added to model
the first vision of how the dealing support system will work. The dealer agent is linked to
the dealing room structure object that describes his location of work. The dealer carries out
the "prepare quote" use case which is composed of several actions and involves the "trade"
object.

Figure 3    Upper level use case illustrated as an Agent-interaction showing tasks, agents
and actions.
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3.2. Tool support

The method is supported by Version 2.1 of the CREWS-SAVRE tool that has been
developed on a Windows-NT platform using Microsoft Visual C++ and Access, thus
making it compatible for loose integration with leading commercial requirements
management and computer-aided software engineering software tools. It supports 6 main
functions which correspond to the architecture components shown in Figure 4.

1: incremental specification of use cases and high-level system requirements (the
domain/use case modeller supports method stage 1)

2: automatic generation of scenarios from a use case (scenario generator supports stage
3);

3: manual description of use cases and scenarios from historical data of previous system
use, as an alternative to tool-based automatic scenario generation  (use case/scenario
authoring component supports stage 1);

4: presentation of scenarios, supporting user-led walkthrough and validation of system
requirements (scenario presenter supports stage 4);

5: semi-automatic validation of incomplete and incorrect system requirements using
commonly occurring scenario event patterns (requirements validator supports stage 4).
CREWS-SAVRE is loosely coupled with RequisitePro’s requirements database so it
can make inferences about the content, type and structure of the requirements.

Another component, which guides natural language authoring of use case specifications, is
currently under development. The component uses libraries of sentence case patterns (e.g.
[14]) to parse natural language input into semantic networks prior to transforming the
action description into a CREWS-SAVRE use case specification. Space precludes further
description of the component in this paper.

The CREWS-SAVRE tool permits the user to develop use cases which describe projected
or historical system usage. It then uses an algorithm to generate a set of scenarios from a
use case. Each scenario describes a sequence of normal or abnormal events specified in the
original use case. The tool uses a set of validation frames to detect event patterns in
scenarios, thereby providing semi-automatic critiquing with suggestions for requirements
implied by the scenarios.
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Figure 4  Overview of the CREWS-SAVRE tool architecture

3.3 Use Case Specification

The user specifies a use case using CREWS-SAVRE’s domain and use case modeller
components. First, for a domain, the software engineer specifies all actions in the domain,
defines agents and objects linked to these actions, assigns types {e.g. communicative,
physical, etc.} to each action, and specifies permissible action sequences using action-link
rules. From this initial domain model, the user can then choose the subset of domain
actions which form the normal course of a use case. This enables a user to specify more
than one use case for a domain, and hence generate more scenarios for that domain. As a
result, a use case acts as a container of domain information relevant to the current scenario
analysis. As scenarios are used to validate different parts of the domain’s future system,
different use cases containing different action descriptions are specified. Consequently, the
domain model enables simple reuse of action descriptions across use cases, because two or
more use cases can include the same action.

Eight types of action-link rule are available in CREWS-SAVRE:

strict sequence (A then B): ev(endA)<ev(startB);
part sequence (A meanwhile B): (ev(startA)<ev(startB)) AND ((ev(endA)>(ev(startB))
AND ((ev(endA)<(ev(endB)) ;
inclusion (A includes B): (ev(startA)<ev(startB)) AND ((ev(endA)>(ev(endB));
concurrent (A and B): no rules about ordering of events;
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alternative (A or B): (ev(startA) occurs) OR (ev(startB) occurs);
parallel and equal (A parallel B): (ev(startA)=ev(startB)) AND ((ev(endA)=(ev(endB));
equal-start (A starts-with B): (ev(startA)=ev(startB)) AND ((ev(endA)not=(ev(endB));
equal-end (A ends-with B): (ev(endA)=ev(endB)) AND ((ev(startA)not=(ev(startB)).

where event ev(X) represents the point in time at which the event occurs. Actions are
defined by ev(startA)<ev(endA) and ev(startB)<ev(endB), that is all actions have a
duration and the start event of an action must occur before the end event for the same
action. These link rules types build on basic research in temporal semantics [2] and the
formal temporal semantics and calculus from a real-time temporal logic called ALBERT-
CORE which underpins the ALBERT II specification language [23]. The current version
of CREWS-SAVRE does not provide all of Allen’s [2] 13 action-link types. Rather, it
provides a set of useful and usable semantics based on practical reports of use case
analysis (e.g. [1], [29]).

For the dealing system domain, two actions are Buyer requests deal from the dealer  and
Dealer retrieves price information from the dealer-system. Selection of the action-link rule
MEANWHILE  indicates that, in general, the dealer begins to retrieve price information
only after the buyer begins to request the deal. A third action, this time describing system
behaviour- Dealer-system displays the price information to the dealer- can be linked
through the THEN rule to specify a strict sequence between the two actions, in that the
first action must end before the second action starts. Part of the dealing system domain
model is shown in Figure 5. It shows a subset of the current domain actions (shown as (A)
in Figure 5), the specification of attributes of a new action (B), current action-link rules (C)
and agent types (D). Other parts of the domain modeller are outside of the scope of this
description.

One or more use cases are specified for a domain such as the dealing system. Each use
case is linked to one high-level requirement statement, and each system action to one or
more system requirements. Each use case specification is in 4 parts. The first part specifies
the identifiers of all actions in the use case. The second part specifies action-link rules
linking these actions. The third part contains the object-mapping rules needed to handle
use of synonyms in action descriptions. The fourth part specifies exception-types linked to
the use case, as described in section 3.6.
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Figure 5   Domain Modeller screen dump.

3.4 Checking the use case specification

Validation rules check the integrity of the relationships specified in section 3.1,
represented in tuple format < model component1, relationship-type, model component2>.
The tool checks the integrity of use case models to ensure they conform to the schema, but
in addition, the tool is parameterised so it can check use cases in a variety of ways.  This
enables user defined validation of properties not defined in the schema. Validation checks
are carried out by clusters of rules, called validation-frames which are composed of two
parts. First a situation that detects a structural pattern (i.e. a combination of components
connected by a relationship) in the use case. The second part contains requirements that
should be present in the part of the model detected by the situation. Frames are used for
validating the consistency of use case models against the schema, and for detecting
potential problems in use cases as detailed in section 3.5. In the former case the frames
detect inconsistencies in a use case, the latter case frames detect event patterns in scenarios
and suggest appropriate, generic requirements. Two examples of consistency checking
frames are as follows:

(i)  Checks for agents connected by a specific relationship type.

validation-frame {detects dyadic component relationships}
situation:

model(component(x), relationship (y), component (z));
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schema requirements:
(component type (i) component (x), mandatory) ;
(component type (j) component (y), mandatory);

 (relationship type (k) relationship (z), mandatory)
end-validation-frame

Example: The user decides to check that all actions are controlled by at least one agent.
First the tool finds all nodes with a component type = agent,  then it finds all the nodes
connected to that agent which are actions and finally whether the involvement relationship
that connects the two nodes is of the correct type = control. As the tool is configurable the
input parameters, (i) and (j) can be any schema primitives, and the relationship (k) is
defined in the schema. The tool detects untyped or incorrect relationships using this
'structure matching' algorithm. In the ‘prepare quotes’ use case (see figure 3 ), this
validation check should detect that the dealer controls the give-quote action.

(ii) Validates whether two components participating in a relationship have specific
properties.

validation-frame {detects components in a relationship have the correct properties}
situation:

model(component(x), property(w), relationship (z), component (y), 
property (v));

schema requirements:
(component type (i) component (x), mandatory);
(component type (j) component (y), mandatory);

 (relationship type (k) relationship (z), not specified);
(component (x)  property (w), mandatory);
(component (y)  property (v), mandatory);

end-validation-frame

Example: The user wishes to validate that all agents that are linked to a use case with a
<decision> property have an <authority> property. The properties (v,w) to be tested are
entered in a dialogue, so any combination may be tested. In this case the tool searches for
nodes with a type = agent, and then tests all the relationships connected to the agent node.
If any of these relationships is connected to a node type = use case, then the tool reads the
property list of the use case and the agent. If the agent does not have an 'authority' property
and the use case has a 'decision' property  then warning is issued to the user. As properties
are not sub types, this is a lexical search of the property list. This frame will test that the
dealer has authority for the use case ‘evaluate choice’ - which has a decision property.
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The system is configurable so any combinations of type can be checked for any set of
nodes and arcs which conform with the schema described in figure 2. Our motivation is to
create requirements advice that evolves with increasing knowledge of the domain, so the
user can impose constraints beyond those specified in the schema, and use to tool to
validate that the use case conforms to those constraints.

3.5 Using Application classes to identify Generic requirements

This stage takes the first cut use case(s) and maps them to their corresponding abstract
application classes. This essentially associates use cases describing a new system with
related systems that share the same abstraction. A library of application classes, termed
Object system models (OSMs) has been developed and validated in our previous work on
computational models of analogical structure matching [34].

Object system models (OSMs) are organised in 11 families and describe a wide variety of
applications classes. The families that map to the case study application are object supply
(inventory control), accounting object transfer (financial systems), object logistics
(messaging), object sensing (for monitoring applications), and object-agent control
(command and control systems). Each OSM is composed of a set of co-operating objects,
agents and actions that achieve a goal, so they facilitate reuse at the system level rather
than as isolated generic classes. Taking object supply (see Appendix A) as an example,
this OSM models the general problem of handling the transaction between buyers and
suppliers. In this case study, this matches to the purchase of securities which are supplied
by the bank to the counter party who acts as the buyer. The supplier giving a price maps to
the dealer preparing a quotation. Essentially OSMs are patterns for requirements
specification rather than design solutions as proposed by [19]. Each OSM represents a
transaction or a co-operating set of objects and are modelled as class diagrams, while the
agent’s behaviour is represented in a use case annotated with high level generic
requirements, expressed in design rationale diagrams.

A separate set of generic use case models are provided for the functional or task-related
aspects of applications. Generic use cases cause state changes to objects or agents; for
instance, a diagnostic use case changes the state of a malfunctioning agent (e.g. human
patient) from having an unknown cause to being understood (symptom diagnosed).
Generic use cases are also organised in class hierarchies and are specialised into specific
use cases that are associated with applications. Currently seven families of generic use
cases have been described; diagnosis, information searching, reservation, matching-
allocation, scheduling, planning, analysis and modelling. An example of a generic use case
is information searching which is composed of subgoals for: articulating a need,
formulating queries, evaluating results, revising queries as necessary. In the dealing
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domain this maps to searching for background information on companies in various
databases, evaluating company profit and loss figures and press releases, then refining
queries to narrow the search to specific companies of interest. For a longer description of
the generic use cases and their associated design rationale see [53].

 Specific use cases in a new application may be associated with object system models
either by browsing the OSM/use case hierarchy and selecting appropriate models, or by
applying the identification heuristics - see Appendix A, or by using a semi-automated
matching tool that retrieves appropriate models given a small set of facts describing the
new application [51]. These heuristics point towards OSM models associated with the
application; however, identification of appropriate abstractions is complex and a complete
description is beyond the scope of this paper. In this stage, mapping between use case
components and their corresponding abstractions in the OSMs are identified so that
generic requirements, attached to the OSMs, can be applied to the new application.
Unfortunately, the mapping of problems to solutions is rarely one to one, so trade -offs
have to be considered to evaluate the merits of different solutions. Design rationale [11]
provides a representation for considering alternative designs that may be applied to the
requirements problems raised by each OSM. Non-functional requirements are presented as
criteria by which trade offs may be judged. The software engineer judges which generic
requirements should be recruited to the requirements specification and may adds further
actions to the use case thereby elaborating the specification.

Case study
The security trading system involves five OSMs; Object Supply that models securities
trading; Account Object Transfer which models the settlement part of the system (payment
for securities which have been purchased) and Object messaging to describe the
communication between the dealer and counterparties. Other OSMs model sub systems
that support trading, such as Object Sensing that detects changes in security prices,
markets and the dealer’s position, and Agent Control which describes the relationship
between the head dealer and the other dealers. In addition to the OSMs, the dealing system
contains generic use cases (evaluate purchase and plan strategy) that describe the dealer’s
decision making and reasoning. These map the domain specific use cases of  evaluating a
deal that has been proposed and for planning a trading strategy. A further specific use case
’prepare quote’  is mapped to the generic use case (price item) associated with the Object
Supply OSM.  A generic model of the security trading system, expressed as an aggregation
of OSMs, is given in figure 6.

The settlement part of the system (Accounting object transfer OSM) has been omitted. The
OSM objects have been instantiated as dealing system components. Clusters of generic
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requirements, represented as design rationale are associated with appropriate OSM
components.
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Figure 6    Aggregation of OSMs that match to the security dealing system, represented in
object oriented analysis notation [9].
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Figure 7   Design rationale for high level generic requirements from clusters 2 and 3 in
Figure 6 attached to ’evaluate choice’ and ’prepare quote’ use cases. The instantiated

requirement derived from the generic version is given in brackets.

The functional requirements that could be applied to support two use cases ’evaluate deal’
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purchase options by a simple House of Quality style matrix [22], and finally to use a
sophisticated multi-criteria decision making algorithm. Hypertext links from the rationale
point to reusable algorithms for each purpose. The options for ’prepare quotes’ are to
automate quotation with simple calculations based on the dealer’s position, the desirability
of the stock and the market movement; or to choose a weighted matrix technique for
quoting according to the volume requested and the dealer’s position, or to leave quotation
as a manual action with a simple display of the bank’s baseline quotations. Since the first
two options may be too time consuming for the dealers, the third was chosen.  For evaluate
deal, the simple calculation is taken as optional facility, leaving the dealer in control. Two
high level generic requirements are added to the requirements specification and actions to
the use case which elaborates the system functionality.

3.6    Scenario Generation

This stage generates one or more scenarios from a use case specification. Each scenario is
treated as one specific ordering of events. The ordering  is dependent on the timings of
start- and end- events for each action and the link rules specified in the originating use
case. Entering timings is optional, so in the absence of timed events, the algorithm uses the
ordering inherent in the link rules. More than one scenario can be generated from a single
use case if the action-link rules are not all a strict sequence (i.e. A then B).

The space of possible event sequences is large, even within a relatively simple use case.
The scenario generation algorithm reduces this space by first determining the legal
sequences of actions. The space of permissible event sequences is reduced through
application of action-link and user-constraints. The user can enter constraints that specify
which agents and actions should be considered in the scenario generation process, thus
restricting the permissible event sequences to sequences (es) to include an event (ev) that
starts the action (A) and involves a predefined agent (ag) and which has at least a given
probability (p):

UC: (ev(startA) in es) AND (ev starts A) AND (A involves ag) AND
(probability(A)�p))

For example, each generated scenario must include the event that starts action 20, it must
involve the agent "dealer" and action 20 must have at least a 10% likelihood of occurrence
according to probabilities calculated from information in the use case specification.

The ‘prepare quote’ use case definition leads to the 3 possible scenarios shown in figure 8.
The difference between each is the timing of event E40 which ends action 40, and whether
action 40 or action 45 occurs. This depiction ignores the application of the constraint on
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the likelihood of an event sequence occurring. Scenario-1 and -2 differ in the timing of
event E40 (end of request for price information from the dealer-system) while scenario-3
describes a different event sequence when the dealer is unable to offer a quote for the deal.
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Figure 8   Diagram illustrating 3 normal scenario paths generated from a use case
fragment

The generation mechanism is in two stages. First it generates each permissible normal
course scenario from actions and link rules in the use case, then it identifies alternative
paths for each normal sequence from exception types, as summarised in Table I. They are
divided into two groups. First abnormal events drawn from Hollnagel’s [24] event
’phenotypes’ classification and secondly, information abnormalities that refer to the
message contents(e.g. the information is incorrect, out-of-date etc.) that follow validation
concepts proposed by Jackson [27]. Each exception is associated with one or more generic
requirements that propose high level solutions to the problem. The exception types are
presented as "what-if" questions so the software engineer can choose the more probable
and appropriate alternative path at each action step in the scenario.
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Table I   Summary of Exception types for events originating in the system and generic
requirements to deal with abnormal patterns.

Exception Generic Requirement
event does not happen - omitted time-out, request resend, set default
event happens twice (not iteration) discard extra event, diagnose duplicate
event happens in wrong order buffer and process, too early - halt and wait,

too late - send reminder, check task
event not expected validate vs. event set, discard invalid event
information - incorrect type request resend, prompt correct type
incorrect information values check vs. type, request resend, prompt with

diagnosis
information too late (out of date) check data integrity, date/time check, use

default
information too detailed apply filters, post process to sort/group
information too general request detail, add detail from alternative

source

A set of rules constrain the generation of alternative courses in a scenario using action and
agent types. These rules are part of an extensible set which can be augmented using the
agent types and influencing factors described below. Two example rules are:

IF ((ev1 starts ac1) OR (ev1 ends ac1)) AND ac1(type=cognitive)
THEN (ex(type=human) applies-to ev1).

which ensures that only human exception types and influencing factors (see next section)
are applied to a cognitive action for event (ev1), action (ac1) and exception type (ex), and

IF ((ev1 starts ac1) OR (ev1 ends ac1)) AND ac1(type=communicative)
AND (ac1 involves ag1) AND ag1(type=machine)
AND (ac1 involves ag2) AND ag2(type=machine)
THEN (ex(type=machine-machine-communication) applies-to ev1).

which ensures that only machine-machine communication failures are applied to
communication actions where both agents are of type ’machine’ for event (ev1), action
(ac1), agents (ag1 and ag2) and exception type (ex). The rules identify particular types of
failure that may occur in different agent-type combinations so that generic requirements
can be proposed to remedy such problems. For instance, in the first rule, human cognitive
errors that apply to action1 can be counteracted by improved training or aid memoir
facilities (e.g. checklists, help) in the system. In the second rule which detects network
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communication errors, generic requirements are suggested for fault tolerant designs sand
back-up communications.

The algorithm generates a set of possible alternative paths according to the agent-action
combination. The use case modeller allows the user to select the more probable abnormal
pathways according to their knowledge of the domain. To help the software engineer
anticipate when exceptions may occur and assign probabilities to abnormal events, a set of
influencing factors are proposed. These describe the necessary preconditions for an event
exception to happen and are sub divided into 5 groups according to the agents involved:

� human agents: Influencing factors that give rise to user errors and exceptions are
derived from cognitive science research on human error [42], Norman’s model of slips
[37] and Rasmussen’s three levels of human-task mismatches [41]. However, as human
error cannot be adequately described by only cognitive factors; we have included other
performance affecting properties such as motivation, sickness, fatigue, and age; based
on our previous research on safety critical systems [49].

� machine agents: failures caused by hardware and software, e.g. power supply
problems, software crashes, etc.

� human-machine interaction: poor user interface design can lead to exceptions in
input/output operations. This group draws on taxonomies of interaction failures from
human-computer interaction [46] and consequences of poor user interface design (e.g.
[36]);

� human-human communication: scenarios often involve more than one human agent.
Communication breakdowns between people have important consequences.
Exceptions have been derived from theories from computer-supported collaborative
work [46]. Examples include communication breakdowns and misunderstandings;

� machine-machine communication: scenarios often involve machine agents, and
exceptions specific to their communication can also give rise to alternative paths.

The interaction between influencing factors that give rise to human error is described in
figure 9. Four outer groups of factors (working conditions, management, task/domain and
personnel qualities) effect four inner factors (fatigue, stress, workload and motivations).
These in turn effect the probability of human error which is manifest as an event exception
of type <human-machine action or human action>. Human error can be caused by
environment factors and qualities of the design, so two further outer groups are added.
Personnel/user qualities are causal influences on human operational error, whereas the
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system properties can either be treated as causal explanations for errors or viewed as
generic user interface requirements to prevent such errors. Requirements to deal with
problem posed by influencing factors are derived from  several sources in the literature,
e.g. for task design and training [3], workplace ergonomics [45] and for  Human Computer
Interface design [46], [47] and standards (e.g. ISO 9241 [25]).

Ultimately, modelling event causality is complex, moreover, the effort may not be
warranted for non-safety critical system, so three approaches are offered. First is to use the
influencing factors as a paper-based ’tool for thought’. Second, the factors are implemented
as a hypertext that can be traversed to explore contextual issues that may lead to errors and
hence to generic requirements to deal with such problems. However, many of these
variables interact, e.g. high stress increases fatigue. Finally as many combinations of
influencing factors are possible and each domain requires a particular model, hence we
provide a general modelling tool that can be instantiated with domain specific information.
The tool allows influencing factors to be entered as a rating on a five point scale (e.g. high
task complexity = 5, low complexity = 1)  and then calculates the event probability from
the ratings. The combination of factors and ratings are user controlled. he factors described
in figure 9 may be entered into the tool with simple weightings to perform sensitivity
analyses. A set of default formulae for inter-factor weights are provided, but the choice
depends on the user’s knowledge of the domain. The tool can indicate that errors are more
probable given a used defined subset of influencing factors, but the type of exception is
difficult to predict, i.e. a mistake may be more likely but whether this is manifest as a
event being omitted or in the wrong order is unpredictable. Where more reliable
predictions can be made new ‘alternative path’ rules (see above) are added to the system.
The tool is configurable so more validation rules can be added so the system can evolve
with increasing knowledge of the domain. The current rules provide a baseline set that
recommend generic requirements  for certain types of agent e.g. untrained novices need
context sensitive help and undo facilities, whereas experts require short cuts and ability to
build macros. The influencing factors may be used as agent and use case properties and
validated using the frames described in section 3.4.

3.7 Scenario Validation

CREWS-SAVRE is loosely-coupled with Rational's RequisitePro requirements
management tool to enable scenario-based validation of requirements stored in
RequisitePro's data base. CREWS-SAVRE either presents each scenario to the user
alongside the requirements document, to enable user-led walkthrough and validation of
system requirements, or it enables semi-automatic validation of requirements through the
application of pattern matching algorithms to each scenario. Each approach is examined in
turn.
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Figure 10 shows a user-led walkthrough of part of one scenario for the dealing system use
case, and the RequisitePro requirements document being validated. The left-hand side of
the screen shows a normal course scenario as a sequence of events. On the right-hand side
are alternative courses and generic exceptions generated automatically from the
requirements engineer’s earlier selection of exception types. For each selected event the
tool advises the requirements engineer to decide whether each alternative course is (a)
relevant, and (b) handled in the requirements specification. If the user decides that the
alternative course is relevant but not handled in the requirements specification, s/he can
retrieve from CREWS-SAVRE one or more candidate generic requirements to instantiate
and add to the requirements document. Each exception type in CREWS-SAVRE’s data
base is linked to one or more generic requirements which describe solutions to mitigate or
avoid the exception. Thus, CREWS-SAVRE provides specific advice during user-led
scenario walkthroughs.
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Figure 9    Influencing Factors for Exceptions and their interrelationships.
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Consider the example shown in Figure 10. The user is exploring normal course event 90,
the start of the communication action ’the dealer enters deal information into the dealer-
system’ ,(shown in (A) in Figure 10s), and the alternative course GAc6, the information is
suspect (B). The user, having browsed candidate generic requirements (C), copies and
pastes the requirement ’the system shall cross-reference the information with other
information sources to ensure its integrity’ into RequisitePro’s requirements document (D).
This figure also shows the current hierarchical structure of the requirements held in
RequisitePro’s data base (E).

Figure 10  Validation Frames for Adding Generic Requirements

The second approach automatically cross-checks a requirements document and a scenario
using a collection of patterns which encapsulate ’good’ socio-technical system design and
requirements specification. To operationalise this, the CREWS-SAVRE tool applies one or
more validation frames to each event or event pattern in a user-selected scenario to
determine missing or incorrect system requirements. Each validation frames specifies a
pattern of actions, events and system requirements that extend KAOS goal patterns [12]
describing the impact of different goal types on the set of possible system behaviours. A
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validation frame has two parts. The first defines the situation, that is, the pattern of events
and actions expressed in the form  <identifier, action-type, agent-types> where agent-types
are  involved in the action. Each event is expressed as <identifier, event-type, action-
identifier> where event type defines whether the event starts or ends the action. The
second part of the frame defines generic requirements needed to handle the event/action
pattern. The frames start from the PS055 standard [35] and type each requirement as a
functional, performance, usability, interface, operational, timing, resource, verification,
acceptance testing, documentation, security, portability, quality, reliability, maintainability
or safety requirement. Hence, automatic requirements-scenario cross-checking is possible
using patterns of event, agent and action types in the scenario and requirement types in the
requirements document.

An example validation frame is:

validation-frame {detect periods of system inactivity}
situation:

event(evA,_,acA) AND
event(evB,_;acB) AND
event(evA)�event(evB) AND
action(acA,_,agC) AND
action(acB,_,agC) AND
agent(agC,machine) AND
not consecutive(agC,evA,evB);

requirements:
requirement(performance, optional, link);
requirement(function <time-out/re-send>, optional, link);

end-validation-frame

This frame detects the absence of a reply event after a set time period from a human agent
(implicitly) and signals the requirement to ask for resend or set a time out. An instantiation
of this is the requirement to request a price to be entered by the dealer within 30 seconds of
accessing the ‘prepare quote’ option. This exception deals with inbound event delays, so if
the time is longer than a preset limit (i.e. the system is not used for that period), the tool
recommends reusable generic requirements, for example to warn the user and log-out the
user after a certain period of time.

Validation frames for alternative course events provide generic requirement to handle an
event exception (ev) linked to an event 'ev' as follows:

validation-frame
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situation:
event(evA,_,acA) AND
action(acA,_,agA) AND
agent(agA,machine) AND
exception(acA,human-attention);

requirements:
requirement(functional, mandatory, link),
generic-requirement(GR1, system shall check for data entry mistakes),
generic-requirement(GR2, system shall restrict possible data entry);

end-validation-frame

Such attention failures are possible when entering dealer information. The tool proposes
generic requirements, and the requirements engineer chooses requirement GR1 "the system
shall check for data entry mistakes". In Figure 11, the requirements engineer is again
examining event S90 [the dealer enters the deal information into the dealer-system] (A)
and the causal influencing factor [agent pays poor attention to detail] (B). Again the above
validation frame detects the need for functional requirements to handle the alternatives
linked to event S90. As a result, the user is able to add new requirements to the
requirements document to handle this alternative course.
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Figure 11  Validation Frames for Exceptions

Finally the tool uses validation frames for applying OSM-specific generic requirements in
a similar manner. In section 3.4, high level generic requirements were recruited as design
rationale trade offs, whereas when frames are used to detect OSM specific patterns in
scenarios, more detailed requirements can be indicated. The computerised dealing system
is an instantiation of the object supplying, object messaging and agent-object control
system models. Consider a validation frame linked to the ’send’ communication action in
the object messaging system model. The situation (scenario) specifies an event which
starts a communication action that involves a machine agent and which matches one of the
actions in the object messaging OSM (i.e. sending or returning messages). For this
situation, the validation frame identifies at least 5 generic system requirements:
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validation-frame
comment: generic requirements for send action, object messaging OSM situation:
event(evA,_,acA) AND
action(acA,communication,[agA,agB]) AND
[agent(agA,machine) OR agent(agB,machine)] AND match(acA,acX,osm(acX,object-
messaging));
requirements:
requirement(functional, mandatory, link), generic-requirement(GOM1, system shall
support identification/retrieval of receiver agent’s address);
generic-requirement(GOM2, system shall enable a user to enter the receiver agent’s
address);
generic-requirement(GOM3, system shall enable a user to enter the content of a message);
generic-requirement(GOM4, system shall enable a user to send a composed message to the
receiver agent);
generic-requirement(GOM5, system shall maintain a sender-agent log of all messages
which are sent from and received by the sender-agent);
end-validation-frame

For example, the validation frame is applicable to event S30 which starts the action ’buyer
requests quote from dealer’. Each of the generic requirements is applicable to computerised
support for this action, whether or not the action is undertaken by telephone or e-mail, for
example retrieving the receiver agent’s telephone number or e-mail address, and
maintaining a sender log of all telephone calls or e-mail messages. Such generic
requirements can be instantiated and added to the requirement specification.

4. Discussion

The contributions to RE we have reported in this paper are threefold. First, extensive reuse
of requirements knowledge is empowered via decision models and generic requirements.
Secondly a means of semi-automatic  requirements validation is provided via frames.
Frames extend type checking by recognising patterns of agents’ behaviour to which
appropriate validation questions, and possible design solutions, may be applied. Third, we
have described the use of scenarios as test pathway simulations, with novel tool support
for semi-automatic scenario generations. The current status of development is that the
scenario generator-validator tool has been implemented and industrial trials are
commencing. Clearly coverage in terms of the number of validation frames and generic
requirements contained in the tool database is a key issue effecting the utility of our
approach. Our approach is eclectic and depends on knowledge in literature such as from
ergonomics, human resource management and user interface design. The contribution we
have made to implement and integrate this knowledge in an extensible architecture. The
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advice currently contained retrieved by the validation frames provides requirements
knowledge at a summary level. Although this may be criticised as lacking sufficient detail
initial industrial reaction to the tool has been encouraging, in particular the value of raising
design issues which are not addressed by current methods, e.g. DSDM [15]. So far we
have demonstrated proof of concept in terms of operation. This will be followed by further
testing of utility within a small scale, but industrially realistic application.

In many senses the strength of the method we have proposed lies in integration of previous
ideas. We have brought concepts from safety critical system assessment [24], [42] to bear
on requirements analysis, and integrated these with scenario based approaches to RE. We
acknowledge the heritage of the Inquiry Cycle [39]; however, our research has contributed
an advanced method and support tool that give more comprehensive guidance for solving
RE problems. Specification of requirements to deal explicitly with the implications of
human error is a novel contribution where we have broken ground beyond the previous
approaches [30], [16]. Furthermore, the influencing factors that bear on causes for
potential error are useful heuristics to stimulate debate about many higher level
requirements issues, such as task and workplace design. However, we acknowledge it is
difficult to provide prescriptive guidance from such heuristics. While some may contend
that formalising analytic heuristics can not capture the wealth of possible causes of error in
different domains, we answer that some heuristics are better than none and point out that
the method is incremental and grows by experience. Failure to formalise knowledge can
only hinder RE.

Parts of the scenario based method reported in this paper are related to the enterprise
modelling approach of Yu and Mylopoulos [54] and Chung [7]. They create models of the
system and its immediate environment using similar  semantics for tracing of dependencies
between agents, the goals and tasks with limited reasoning support for trade-offs between
functional requirements and non-functional requirements (referred to as soft goals).
However the i* method does not contain detailed event dependency analysis such as we
have reported. Scenarios have been used for assessing the impact of technical systems by
several authors [6], [30], [16]. However, these reports give little prescriptive guidance for
analysis, so the practitioner is left with examples and case studies from which general
lessons have to be extracted. For instance, the ORDIT method [16] gives limited heuristics
that advise checking agent role allocations, but these fall far short of the comprehensive
guidance we have proposed.

Dependencies between systems and their environment have been analysed in detail by
Jackson and Zave [28] who point out that input events impose obligations on a required
system. They propose a formalism for modelling such dependencies. Formal modelling is
applicable to the class of systems they implicitly analyse, e.g. real time and safety critical
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applications, but it is less clear how such models can deal with the uncertainties of human
behaviour. To deal with uncertainty in human computer interaction, we believe our
scenario based approach is more appropriate as it focuses on eliciting requirements to
repair problems caused by unreliable human behaviour. Another approach is the KAOS
specification language and its associated GRAIL tool [32], [33] a formal modelling that
refines goal-oriented requirements into constraint based specifications. Van Lamsweerde
et al [33] have also adopted problems and obstacles from the Inquiry cycle [39];
furthermore, they have also employed failure concepts from the safety critical literature in
a similar manner to CREWS-SAVRE. Their approach is anchored in goal-led
requirements refinement and does not use scenarios explicitly. In contrast, CREWS-
SAVRE covers a wider range of issues in RE than KAOS but with less formal rigour,
representing a trade-off in RE between modelling effort, coverage and formal reasoning.

So far the method has only partially dealt with non functional requirements. Scenarios
could be expressed in more quantifiable terms, for instance by the Goal- Question-Metric
approach of Basili et al. [4], or by Boehm’s [5] quality-property model. Scenarios in this
sense will contain more contextual information to represent rich pictures of the system and
its environment [29]. The description could be structured to include information related to
the NF goal being investigated and metrics for benchmark testing achievement of the goal.
Validation frames may be extended for assessing such rich picture scenarios for non
functional and functional requirements. For instance, each inbound/ outbound event that
involves a human agent will be mediated by a user interface. Usability criteria could be
attached to this event pattern with design guidelines  e.g. ISO 9241 [25]. Performance
requirements could be assessed by checking the volume and temporal distribution of
events against system requirements. Elaborating the scenario based approach to cover non
functional requirements is part of our ongoing research [52].

In spite of the advances that scenario based RE may offer, we have still to demonstrate its
effectiveness in practice. There is evidence that the approach is effective in empirical
studies of earlier versions of the method which did use scenarios but without the support
tool [50]. Further validation with industrial case studies is in progress.
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Appendix A

Selection of the Object System Models used in the case study- for more details see
Sutcliffe and Maiden [51]

Level-1 class: Object Supply

This class is characterised by the unidirectional transfer of key objects from an owning

structure to a client agent who generated the request for the object. Transferred objects are

moved physically in a different container and are consequently owned by a different agent.

Familiar examples are sales order processing systems and inventory applications. The

model has one structure object, two agents (client and resource owners), one key object,

one event that models the request for the transaction and one state transition for delivery of

the object. The common purpose of this class is the orderly transfer of resource objects

from an owner to a client who requires the resource. The goal state asserts that all requests

must be satisfied by transfer of key objects to the requesting client. Specialisations of this

class distinguish between transfer of physical objects, while a separate abstraction is used

for the monetary aspects of sales.

Goal state to satisfy all resource requests by supply of resource objects

Agents client (requester), supplier

Key object resource

Transitions request, supply-transfer

request

goods 
transfer

container resource

clientsupplier

request

transfer

held-in

owned-by

move

askgive

key structure 
object

agent

key object

state 
transition
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Figure A1. Object Supply OSM. Each OSM is illustrated as an informal diagram using the
metaschema semantics and a corresponding model in Object-Oriented Analysis notation .
This shows classes, inheritance, aggregation and instance relationships with message
connections. Only key attributes and methods are included.

Level-1 class: Agent Control

This OSM family models command and control applications. The class is characterised by

a controlling agent and one or more controlled agents contained in an object structure

which models the real world environment, e.g. airspace in air traffic control. The

transitions represent messages passed from the controlling agent to the controllee to

change its behaviour in some way.

Goal state: for one agent to control the behaviour of another; all commands issued by

the commanding agents have to be responded to in some manner by the

controlled agent

Agents: controller, controllee

Key objects: as for agents

Transitions: command, respond

command
behaviour

response

commander

comandee

world

comm 
-ander

order

comm 
-andee

obey

exist-in

commands

Figure A2. Agent Control OSM which has two agents instead of key objects.

Level-1 class: Object Sensing

The purpose of this class is to monitor the physical conditions or movement of objects in

the real world and record their relative state with respect to a spatial/physical structure
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object. This class has a sensing agent which reports on the key object.  Sub-classes in this

family are determined according to whether it is a property of the key object which is to be

detected or spatial behaviour, and whether the sensing agent is active or passive, e.g.

spatial sensing by radar detection of air traffic; or property sensing applications, e.g.

monitoring temperature, pressure in process control applications.  Object Sensing models

are often aggregated with the Agent-Object Control class.

Goal: to detect any state change in a key object and report that change to an

external agent

Agents: sensor, client

Key objects: real world objects

Transitions: detect, report

detection 
reports

object 
movements

movement 
reports

world

sensor

signal

exist-in

object

changeevents

agent

receive

detection 
report

segments

level-1 class Object sensing

level-2 class Spatial Object sensing

Figure A3. Object Sensing OSMs; the sensor agent may be a means of communicating

events or an active detection device. The OOA model is the same for both the level-1 and

level-2 classes, although the event and use of segment attributes in the Spatial Object

Sensing will be different.
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Table AI   Decision Table for Location OSMs. Each column is linked to a set of keywords
that identify the generic models in a variety of applications.
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