
CREWS Report Series 97-04

Some thoughts about the animation of formal
speci�cations written in the language

P
�
atrick Heymans

Computer Science Department, University of Namur, Belgium.

E-mail : phe@info.fundp.ac.be

appeared in Proceedings of the Doctoral Consortium
of the third IEEE International Symposium on

Requirements Engineering (RE'97),
Annapolis, MD, USA, January 6-10, 1997

Some thoughts about the animation of formal speci�cations written

in the language�

Author : Patrick Heymans

Computer Science Department, University of Namur,Belgium.

E-mail : phe@info.fundp.ac.be

Supervisor : Eric Dubois

Computer Science Department, University of Namur,Belgium.

E-mail : edu@info.fundp.ac.be

�This work is partly funded by ESPRIT LTR project

20.903 (CREWS - Cooperative Requirements Engineering

with Scenarios)

Abstract

Formally and declaratively specifying requirements on

real-time composite systems requires validation by stake-

holders. One way to perform such validation is allowing

people to experience the dynamic properties of the system

to be built by using an animation tool. In this paper, we

give an overview of the issues raised by the development

of such a tool for the language with the main

goal of obtaining feedback on research that is a its very

early stages.

1 Introduction

The validation task which takes place during the
Requirements Engineering (RE) of software-based
systems certainly cannot be considered a solved
problem yet. The most important reason for this is
that the analysts in charge of writing the require-
ments speci�cation and the stakeholders from whom
the necessary information has to be elicited 'do not
speak the same language': while the former still often
make use of software-oriented modelling techniques

supporting an operational style of speci�cation, the
latter would like to have a declarative statement
specifying which of their needs will be taken into
account rather than the description of how some of
them (which ones?) are solved. Besides this need for
declarativeness of speci�cation languages, there
is also a need for expressiveness, especially when
people have to deal with composite systems 1 and
want to express unambiguously constraints involving
such things as real-time aspects and concurrent
behaviours.

Orthogonally to its declarative and expressive as-
pects, it may be chosen to give a speci�cation lan-
guage a formal semantics i.e. an unambiguous inter-
pretation in terms of a mathematical structure associ-
ated to the speci�cation by the means of well-de�ned
rules. Major advantages of formal languages are
the possibility to make use of (semi-)automated tech-
niques allowing to reason about the speci�cation or
to derive a prototype from it. The major drawback of
such languages is the notation which is generally bor-
rowed from mathematics and logics and therefore not
often understood by anyone apart from the analyst.
A rough classi�cation of the various techniques that

1We call composite system a system made of heterogeneous
components ranging from software and/or hardware compo-
nents up to human and/or device components

can be used in support to the validation of formal
requirements speci�cations is as follows:

Conversion techniques are used to convert the
speci�cation into a form which is more eas-
ily understandable by all the stakeholders (e.g.
graphical representation, paraphrasing). Seman-
tic equivalence with the original speci�cation is
anyhow hard to obtain in a fully-automated way.

Behavioural techniques are, in our opinion, all
those which permit, in a broad sense, to observe,
experience and test the dynamic properties of a
speci�cation. It involves (possibly symbolic) ex-
ecution of a prototype which is, according to the
level of executability of the language, the speci�-
cation itself or a program derived using a trans-
formational approach. Simulation is also part of
these techniques.

Analysis techniques apply either to the speci�ca-
tion (like model-checking and theorem proving)
or to results delivered by the use of some be-
havioural techniques like the study of execution
traces.

The language [7] has been designed
with both the aforementioned declarativeness and
expressiveness properties in mind in order to address
the problem of identifying and specifying the various
components of a system. Each of these components
either belongs to the already present environment
(domain knowledge) or the 'machine' [9] to be
installed. The other major concern when designing
the language has been a methodological one which
resulted in identifying a set of typical constraints
patterns that the analyst has to �ll in in order to
write the speci�cation. is a formal language
whose patterns are written on top of a real-time
temporal logic for which reasoning techniques are
currently under study.

The approach we intend to take for validating
speci�cations is actually a new one that

we classify among the behavioural techniques and
that we call animation. is able to express
undeterminism, which is very useful in the early

stages of system development but is of little help
when the goal is to build a prototype from a speci�-
cation since executability is not present, as shown in
[5]. Animation consists for a user or a community
of users to dynamically build a behaviour made of
the behaviours of the various components of the
systems and its environment. This behaviour will
be progressively created by interacting with a tool
(called animator) which will check if the behaviour
respects the constraints of the speci�cation as it is
introduced in the tool. Whenever undeterminism
is encountered, the system asks the user to make
a decision in order to remove it. The purpose of
this approach really comes down to test if a given
scenario [1, 8, 11], proposed by one or several
stakeholders, is compatible with the requirements
speci�cation. Therefore, a link clearly exists between
our research and the research which is currently
being done around the use of scenarios in RE.
Participation in the ESPRIT LTR project CREWS
(Cooperative RE with Scenarios) [4] will help
in developing this link.

In section 2, we �rst give an overview of the lan-
guage with the help of a simple example and then try
to give an intuition of what is the underlying formal
semantics. Section 3 sketches the basic functioning of
the animator. The major contributions we intend to
bring to the tool are explained in section 4. The pa-
per �nally concludes on what has been accomplished
so far and what is still left to do.

2 Overview of the lan-
guage

2.1 Syntax

The example that will be used throughout this
section is a very simple one situated in the context of
a library (the entire speci�cation can be found in the
Appendix of this document). The �rst thing to say
about an speci�cation is that it is made of
two main parts : (1) the 'static' part made of type
and operation de�nitions and (2) the 'dynamic'
part related to the speci�cations of agents. (1) is

written at the beginning of the speci�cation because
it de�nes types and operations which will be needed
at a variety of places afterwards. In the example, the
only thing they contain is the de�nition of BOOK
as an enumerated constructed type. (2) generally
represents the main part of the speci�cation and is
explained just below.

Agents correspond to entities of the real world
which appear to have some 'autonomy' (e.g. a
person, a subsystem, an external machinery). The
decomposition of a speci�cation into several agent
speci�cations allows to reduce the interdependencies
between its various parts. The agents of the speci-
�cation are, on the one hand, the librarian and, on
the other hand, a community of users (see �g. 1).
Agents are grouped into societies. In our example
there is only one society grouping the two agent
classes and that we call Main. The speci�cation of
an agent is itself decomposed into a declaration

part and a part which consists of constraints aimed
at pruning the number of admissible behaviours
(called lives in) an agent can have.

The declaration part of an agent speci�cation
makes use of two main notions, the one of state
component and the one of action, and has a
graphical counterpart shown in �g. 1.

Agents are usually responsible for some 'data'
they maintain. In this case, the librarian has to
take care about the books which are on the shelf
and therefore possesses a state component called
OnShelf which is de�ned as a set of elements of type
BOOK. Similarly, every user has a set of books (s)he
has borrowed. This is represented by the a state
component of the User agent class which is called
Borrowed and which is de�ned in the same way as
OnShelf. Agents are also able to perform actions
and actions can have parameters like the action
Request which is performed by a User and which has
a parameter of type BOOK. Both actions and state
components can be exported by their owner agent
to one or several other agent(s). The syntax for
declaring state components and actions is illustrated
by the commented speci�cation excerpt below

(where the arrow means that a state component or
an action is exported and is followed by the agent(s)
to which it is exported) :

User

DECLARATIONS

State Components

Borrowed set-of BOOK
A user can possess a set of books that he

has borrowed

Actions

Request(BOOK) �! LIBRARIAN
A user can request a book from the librarian

As already mentioned, the rest of the speci�ca-
tion of an agent is made of a series of constraints
restricting the set of possible lives of the agent.
There are several types of constraints and each type
has an associated syntactic pattern which serves
as methodological guideline for the speci�cier who
wants to express something. The types of constraints
are grouped into three families of constraints : (1)
basic constraints, (2) local constraints and (3)
cooperation constraints (see Appendix). Basic
constraints are used to describe the initial state
of an agent (initial valuation constraints) and
to give the derivation rules for the derived state
components (derived components constraints).
There are �ve types of local constraints which
relate to the internal behaviour of an agent : state
behaviour, e�ects of actions, capability, action
composition and action duration constraints.
Finally, cooperation constraints specify how an agent
interacts with its environment, i.e. how it lets the
other agents know what actions it performs (action
information), how it shows parts of its state to
other agents (state information), how it perceives
actions from other agents (action perception) and
how it can see parts of the state of other agents

BOOLEAN
Awake OnShelf

BOOK

Lend

BOOK USER

WakeUp
FallAsleep

FailedBorrowing
OKBorrowing

Librarian

BOOK

Return

BOOK

Request

Main

User

BOOK

Borrowed

Figure 1: The library : agent declarations

(state perception). We will not go in the details
of each type of constraint (which is provided in
[7]) but rather give some examples chosen from the
speci�cation of the Appendix. The state behaviour
constraint which says that users never keep books for
more than a month shows how it is possible to ex-
press constraints on states in a very declarative style :

State Behaviour

b 2 Borrowed =) ��1month : b 2 Borrowed

An operational style can also be used when
necessary like in the e�ect of the action Return :

Effects of Actions

Return(b): Borrowed := Remove(Borrowed,b)

Finally, here are two examples of constraints that
put restrictions on actions. The �rst one restricts the
set of possible states from which the Return action
can take place while the second gives the condition
that must be satis�ed in order for the action to
be shown to the librarian (in this case there is no
restriction):

Capability

F (Return(b) / : b 2 Borrowed)
A user cannot return a book he has not borrowed

Action Information

K (Return(-).l / TRUE)
The fact that a user returns a book is

always shown to the librarian

2.2 Semantics

The semantics of an speci�cation is given
by mapping it to a real-time temporal logic called

-CORE. The set of axioms which result from
the translation of an speci�cication into

-CORE de�nes a set of models 2 of the
speci�cation. Each of these models is made of the
'sum' of the lives of the instances of agents it contains.

The life of an agent is an alternate sequence of
states and changes. A state of an agent instance
represents the values of all its state components dur-
ing a time interval. A change groups together all the
events that a�ect an agent instance at a given point
in time. An event is either :

1. an instantaneous action occurrence,

2The termmodel is used here in the sense of a mathematical
interpretation structure associated with a logical theory.

2. the beginning of an action occurrence,

3. or the end of an action occurrence.

Events are perceived by a given agent instance
either because the agent instance is the one that
performed it or because it had 'imported' the
event from another agent instance. Since the set
of axioms produced from a speci�cation contains
a frame axiom [2], events are the only way by
which states can be modi�ed which implies that
between two di�erent states, there is always a change.

Finally, an admissible life associated to the speci�-
cation is built by combining the lives of several agent
instances, i.e. putting them to a common time line
by adding states (if needed) and checking compati-
bility wrt. cooperation constraints. Such a life (that
we call global life) therefore de�nes an admissible
behaviour of a composite system.

3 Basic functioning of the tool

A prototype was made a few years ago for the �rst
version of [6]. The �rst version of the
language was much poorer than the current one
both from the syntactic and semantic points of view.
Anyway, the prototype laid the bases of the the
functioning of the tool as they are explained below.

The interface of the animator will be window-
based. A main window, besides providing menus and
buttons to activate global functionalities, will display
a global clock. During the animation, a window will
be attached to each agent instance described in the
context (see below) of the animator. This window
will show the current value of the state components
and will allow the user both to build the agent
life step by step (building mode) and to consult
information on its past (reviewing mode). A window
should also be present to let the user observe the
speci�cation itself if he wants to have a justi�cation
of the decision made by the animator.

A session with the animator will typically be di-
vided into several steps :

1. A preliminary step will be required in order
to :

(a) instantiate the agent classes 3,

(b) initialize every agent instance's state (of
course, the animator checks if state be-
haviour and initial valuation constraints are
met),

(c) set the value of time for the beginning of
the animation.

The above enumeration of actions aims at creat-
ing the so-called context of an animation.

2. Then, the animation itself can start.

(a) In the the building mode, the user has to
choose which events take place in order to
go from the current state to the next one
and how much time after the beginning of
the current state these occur. Some events
are chosen anyway by the animator if the
speci�cation says to do so. Relating this to
the concepts we have presented in the sec-
tion devoted to semantics of the language,
it comes down to building the change which
takes place between two states of an agent
instance's life. The values of the compo-
nents in the next state are automatically
calculated by the animator.

(b) The reviewing mode just consists in pas-
sively exploring parts of the life which has
already been built.

4 Expected contributions

In the present section we tend to clarify our goals and,
since our work has only just started, we can only give
an idea of how we intend to achieve these goals in our
work :

Formal reasoning. The animator will have to use
as much as possible of the formal reasoning

3The agent population being static in , instantia-
tion can take place before the animation itself

capabilites o�ered by the logic underlying
. This point will be the major im-

provement wrt. the previous prototype which
had mainly an intuitive approach to reasoning.
More rigourous computations performed on

-CORE formulae will be useful (1) for
checking whether the whole behaviour matches
the speci�cation or (2) for performing more
'local' checks and computations. (2) involve
such things as checking if the initial state is a
reachable one, calculating which actions have
to/can/cannot take place at given moment
and computing the next state. (1) will be
reformulated into checking that MB � MS

provided that MS = fm j m j= Sg is the set of
models allowed by the speci�cation S andMB is
the set of models the behaviour B can be part of.

Symbolic animation. In order to treat scenarios
at the level of abstraction which is relevant
for users, we plan to make symbolic animation
which is a way to deal with several equivalent
behaviours at the same time by allowing the
use of 'placeholders' instead of values for state
components and/or action arguments. These
placeholders would provide an abstraction
when it is of little interest to refer to concrete
values. To give an example, let us suppose that
one wants to test what is the reaction of the
librarian if a user requests a book which is not
on the shelf, no matter which is the book. If
one wants to be exhaustive, (s)he will have to
make the test for every existing book which is
not on the shelf. Choosing the action Request

with a placeholder representing the whole
class of borrowed books as parameter would
solve the problem in a much more elegant and
e�cient way. Nevertheless, symbolic animation
poses problems for the computations that the
animator has to do (evaluating the satisfaction
of a constraint, computing the next state, etc.)
but we think that these problems can, at least
to a certain extent, be addressed using Abstract
Interpretation techniques [3].

Backtracking is also one thing we want the tool to
provide. By alternating building and reviewing
mode, the user will be able to do backtracking :
after having explored a life up to a certain point,
the user may wonder what the life would have
looked like if (s)he had made another decision
in some past state. What (s)he would do then
is to activate the reviewing mode to go back
to the intended past state and then reactivate
the building mode to construct a new change
and thereby start constructing part of another
life (or several other lives if the backtracking
mechanism is applied again).

Production of traces. We already know that the
animator's contribution to the RE ac-

tivity focuses on the validation task but, at this
point, we have to be a little more precise and dis-
tinguish among two possible forms of validation
by scenarios the animator can be used for:

� in the �rst one, some stakeholders are
proposing scenarios to be tested against
a speci�cation. The opportunity is then
given to them to almost directly experience
the behaviour they want to test by playing
with the animator;

� the second possible use does not put all the
stakeholders in direct interaction with the
animator but just lets some of them play
with it and produce traces of the scenarios
they have tested. These traces will then be
submitted to other stakeholders for further
validation.

The RE process supported by the animator is
basically the one shown in �gure 2 where the
speci�cation task is a black-box which in fact
includes the analysis, modelling, elication, veri-
�cation and validation subtasks not represented
here.

The way how the �rst use of scenarios takes
places has been extensively described in section
3. Now, we will develop the second use which

SPECIFICATION

Traces

ANIMATION
(VALIDATION)

VALIDATION OF TRACES

Specification Document

Figure 2: Animation as part of the RE process

poses the problem of the representation that will
be given to the traces of the animation as scenar-
ios. To give an idea of the kind of information
that such traces should be able to contain, in
Appendix B we give two small scenario descrip-
tions in natural language. (These scenarios are
derived from the library example { see Appendix
A { and instances of the agent User are named
Charles and Diana.) In order to be able to incor-
porate such characteristics as the ones empha-
sized in these scenarios, we have completed, in
joint work with the other CREWS participants,
a �rst version of a core scenario meta-model to
which is associated an 'event-trace'-like represen-
tation. Hopefully, such a graphical representa-
tion will be generated automatically and will be
used for visualizing traces of animations. Be-
sides information needed for scenarios extracted
from speci�cations, this meta-model is
also able to express interesting features like ex-
ceptions, interrupts, views on scenarios, etc.

Extensibility of the animator's repository. A
global life usually being in�nite, what the users
of the animator will be able to construct in a
�nite time is a sublife or, more precisely, a set
of sublives if backtracking is used. In order to
provide the functionalities sketched above, the
animator has to store and maintain information
contained in the created sublives (i.e. the states
and changes explored during the animation). A
�rst model of this knowledge has been written
using ConceptBase [10]. Such meta-modelling
language and tool were required because of a
need for
exibility and extensibility. First, a
link had to be made between the animator-
related information and the language
meta-model which already existed. The new
meta-model extends the previous one by making
an explicit link to parts of its semantics (i.e.
some behaviours) which have been explored
using the animator. The concepts it contains
are the ones that were very brie
y presented in
section 2.2 of this document. Then,
exibility
of the knowledge base is also required since,
as mentioned in the introduction, it is our
desire to integrate our research on animation
with research that has the greater ambition
to study how scenarios can help in RE. Links
to tools and models built within the CREWS
project will be greatly facilitated if a common

exible knowledge base is used. One great
advantage of this has already been shown with
the production of traces. But, as suggested in
the second scenario example (see Appendix B),
bene�ts are also expected to come from the
integration of with other languages
aimed at capturing requirements at other 'levels'
than the strictly functional one (which is the
main scope of). In particular, relating

's concepts with the ones of a language
like i� [12], will help justify scenarios presented
to stakeholders by including the organisational
goals behind the behaviours they describe.

Distributed application. The prototype that was
made for the initial version of the language has
shown that it is not so easy to deal with several

agents at once on the same screen. Therefore,
it seems to be a good idea to split the windows
corresponding to agents on di�erent terminals.
At each terminal, every stakeholder can have
control on the agent(s) he is interested in.

5 Conclusion

Our goal is to continue research which was performed
a few years ago on an animator for speci-
�cations by focusing on its formalization and on ex-
tending its functionalities mainly with symbolic an-
imation, backtracking and production of traces. As
can be noticed from the above presentation, our con-
tribution is still very small since our research has
just started. Nevertheless, some work has been ac-
complished regarding the modelling of the animator's
knowledge and the link with 's meta-model.
A �rst version of a core scenario meta-model and
its associated graphical representation have also been
achieved in collaboration with the other CREWS par-
ticipants. The tasks that we hope to accomplish in
the near future are (1) to start working on the formal-
ization of the computations made by the animator,
(2) to become familiar with Abstract Interpretation
techniques in order to see what is feasible in terms
of symbolic animation, (3) to re�ne the animator's
repository structure and the graphical representation
for animation traces and (4) to start designing the
tool in detail.

6 Acknowledgements

I would like to thank my supervisor, Eric Dubois,
the members of the CREWS projects and the current
and former members of the team. A special
thank also goes to Jean-Fran�cois Raskin and Vincent
Englebert for their interest in the 'formal part' of
the work. All of them were of great help for me in
producing this document.

References

[1] Benner, K.M., Feather, S., Johnson, W.L. and
Zorman, L.A. (1992) Utilizing Scenarios in
the Software Development Process. IFIP WG

8.1 Working Conference on Information Sys-

tems Development Process, December 1992.

[2] Borgida, A., Mylopoulos, J. and Reiter, R. ...and
nothing else changes : The frame problem in pro-
cedure speci�cation. Technical Report DCS-TR-
281, Dept. of Computre Science, Rutgers Uni-
versity, 1992.

[3] Cousot, P. and Cousot, R. Abstract Interpreta-
tion Frameworks. Journal of Logic and Compu-

tation, 2(4):511-547, 1992.

[4] CREWS (Cooperative Requirements En-
gineering with Scenarios), Esprit Project
Programme (contract number 21.903),
August 1996. Information available at
http://SunSite.Informatik.RWTH-

Aachen.DE/CREWS/

[5] Dubru, Fr�ed�eric (1993) Prototypage
de Sp�eci�cations Formelles des Besoins:
d'ALBERT vers OBLOG. Master thesis,
Computer Science Department, University of
Namur, Namur (Belgique), June 1993.

[6] Eric Dubois, Philippe Du Bois and Fr�ed�eric
Dubru, Animating Formal Requirements Speci-
�cations of Cooperative Information Systems. In
Proc. of the Second International Conference on

Cooperative Information Systems { CoopIS-94,
Toronto (Canada), May 17-20, 1994.

[7] Philippe Du Bois (1995) The Albert II Language:
On the Design and the Use of a Formal Speci�ca-

tion Language for Requirements Analysis. PhD
thesis, Computer Science Department, Univer-
sity of Namur, Namur (Belgique), September
1995.

[8] Hsia, P. et al. Formal Approach to Scenario
Analysis IEEE Software, pp. 33{41, 1994.

[9] Michael Jackson and Pamela Zave Deriving
Speci�cations From Requirements: An Exam-
ple. In Proc. of the 17th International Confer-

ence on Software Engineering { ICSE'95, Seattle
WA, April 1995

[10] Jarke, M. and Gallersd�orfer, R. and Jeusfeld,
M.A. and Staudt M. and Eherer S. (1995) Con-
ceptBase - a deductive object base for meta data
management. Journal of Intelligent Information

Systems, Special Issue on Advances in Deductive

Object-Oriented Databases, 4(2):167-192.

[11] Lalioti, V. and Theodoulidis, B. Use of Scenarios
for the Validation of Conceptual Speci�cations
In Proc. of the Sixth Workshop on the Next Gen-

eration CASE Tools, Jyvaskyla, Finland, June
1995.

[12] Eric Yu, Philippe Du Bois, Eric Dubois and John
Mylopoulos (1995) From organization models
to system requirements - a \cooperating agents"
approach. In Proc. of the Third International

Conference on Cooperative Information Systems

{ CoopIS-95, Vienna (Austria), May 9-12, 1995.
University of Toronto Press inc.

Appendix A : speci�cation of a (very) simple library

Data Types

Constructed Types

BOOK = ENUM [< "Albert II for Dummies",Dubois > ,
< "UML's formal semantics",Rumbaugh > ,
< "Specifying with C++",Gates >]

Main

Society

(Librarian)
(User)))

The society is composed of a librarian and several users

Librarian

DECLARATIONS

State Components

OnShelf set-of BOOK
The books on the shelf are the ones which are not lent

Awake instance-of BOOLEAN
The librarian can be either awake or asleep

Actions

�Lend(BOOK,USER) �! USER
The librarian can lend a book to a user

WakeUp
The librarian can wake up

FallAsleep
The librarian can fall asleep

OKBorrowing
A borrowing (composed action) can succeed

FailedBorrowing
A borrowing (composed action) can fail

BASIC CONSTRAINTS

Initial Valuation

Card(OnShelf) � 100
Initially, the number of books on the shelf is 100 or more

LOCAL CONSTRAINTS

State Behaviour

: (Card(OnShelf) < 10)
The number of books on the shelf can never go under 10

Effects of Actions

Lend(b,-): OnShelf := Remove(OnShelf,b)
When the librarian lends a book, the book is taken out from the shelf

WakeUp: Awake := TRUE

As soon as the librarian wakes up, he is awake

FallAsleep: Awake := FALSE

As soon as the librarian falls asleep, he is not awake anymore

u.Return(b): OnShelf := Add(OnShelf,b)
When a user returns a book, the book is put back on the shelf

Capability

F (Lend(-,-) / Awake = FALSE _ : b 2 OnShelf)
The librarian cannot lend a book if he is asleep or if the book

is not on the shelf

F (WakeUp / Awake = TRUE)
The librarian cannot wake up if he is already awake

F (FallAsleep / Awake = FALSE)
The librarian cannot fall asleep if he is already asleep

Action Composition

OKBorrowing $ u.Request(b) ;<5min Lend(b,u)
In a borrowing which succeeds, the request made by the user is followed,

within 5 minutes, by the lending of the requested book to the user

FailedBorrowing $ u.Request(b) ; DAC

In a borrowing which fails, the request made by the user is not followed

by any reaction from the librarian

COOPERATION CONSTRAINTS

Action Perception

I (u.Request(-) / Awake = FALSE)
When he is asleep, the librarian ignores the users' requests

K (u.Return(-) / TRUE)
The fact that a user returns a book is always perceived by the librarian

Action Information

K (Lend(-,u1).u2 / u1 = u2)
A librarian only lends to the intended user

User

DECLARATIONS

State Components

Borrowed set-of BOOK
A user can possess a set of books that he has borrowed

Actions

Request(BOOK) �! LIBRARIAN�
A user can request a book from the librarian

Return(BOOK) �! LIBRARIAN
A user can return a book to the librarian

BASIC CONSTRAINTS

Initial Valuation

Borrowed = fg
Initially, a user has not borrowed any book

LOCAL CONSTRAINTS

State Behaviour

b 2 Borrowed =) ��1month : b 2 Borrowed
A user does not keep a book for more than a month

Effects of Actions

Return(b): Borrowed := Remove(Borrowed,b)
Once a user has returned a book, he does not possess this book anymore

l.Lend(b,-): Borrowed := Add(Borrowed,b)
Once the librarian has lent a book to a user, the books comes into the user's

possession

Capability

F (Return(b) / : b 2 Borrowed)
A user cannot return a book he has not borrowed

COOPERATION CONSTRAINTS

Action Perception

K (l.Lend(-,-) / TRUE)
A user always perceives he is lent a book

Action Information

K (Request(-).l / TRUE)
The fact that a user requests a book is always shown to the librarian

K (Return(-).l / TRUE)
The fact that a user returns a book is always shown to the librarian

Appendix B : Scenarios derived from the speci�cation

Scenario 1

Charles requests "Specifying with C++" by Gates. 2 minutes and 31 secondsa after the request has
been formulated, the librarian understands its meaning and starts acting. The book is on the shelfb and
it takes the librarian 25 secondsc to lend it to Charles. Charles then keeps the book for some time
(less than 1 month)d before he returns it.

Noticeable characteristics :

� a. real-time value between actions

� b. value of state components allowing actions to take place

� c. real-time value for action duration

� d. implicit assumptions derived from the speci�cation

Scenario 2

November the 2nd 1996, at 10:30 PM, Diana makes two book requests at the same timee;f : one for
"UML's formal semantics" by Rumbaugh and the other for "Albert II for dummies" by Dubois. The librar-
ian being particularly attentive, he manages to get both the requestg . Unfortunately though, one of them

can't be satis�ed : "UML's formal semantics" is currently lent to another userh. Nevertheless, "Albert II for

dummies" is borrowed and returned 2 days later. After he has worked hard, the librarian has to rest a biti

and, therefore, falls asleep.

Noticeable characteristics :

� e. fully instantiated action occurrence (including absolute time)

� f. simultaneous actions

� g. perception of actions performed by other agents

� h. value of state components preventing actions to take place

� i. goals and intentions

