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Abstract. As human–computer interaction extends beyond the desktop,the need emerges
for new input devices and interaction techniques. However,many novel interaction tech-
niques must be prototyped in a proof-of-concept form, and can suffer from lowexpressive-
ness: their ability to convey the intended meaning is limited. Wepresent a new conceptual
framework based onselexelsthat allows application designers to match the expressiveness
of the user interface to that of the input device. This allowsthe user interface to provide a
fluid user experience despite the limitations of the input device. A user study validates the
framework, shows that selexel-based pointing tasks can be modeled using Fitts’ Law, and
provides insights for structuring evaluations of prototype input devices.

1 Introduction

With the era of ubiquitous computing emerging, computing resources are moving off the
desktop and extending into our private and public spaces. One research question is how we
will physically interact with these computing systems: Will there be a standard equivalent
of mouse and keyboard in the post-desktop world? To answer this question, researchers
have been developing new applications, devices, and interaction techniques for situated
displays [OPC04]. New input device technologies, such as those integrated with mobile
phones, can suffer from low expressiveness. Currently, we are lacking the conceptual
frameworks to accommodate input devices with low expressiveness.
In this paper, we present a conceptual framework that clearly characterizes theexpressive-
nessof relative pointing devices. With this definition, designers will be able to structure
user interfaces to match the expressiveness of the input device by limiting the selection
resolution of the display, where the selection resolution is independent from the display
resolution. To this end, we will introduce the notion ofselexelsthat are (to put it simply)
“pixels in selection space.”

2 Motivation

The inspiration behind this work is theSweeptechnique [BRSB05] that uses the camera
on a mobile phone to detect motion of the handset in several dimensions. This technique
enables many direct manipulation interactions with large public displays, including cursor
control. Currently, the technique suffers from low sampling rates and resolution because
of the limitations of current mobile processors and cameras. With future improvements in
mobile processing capabilities, the resolution and sampling rate will improve. However, we
want to develop applications that can be used today that still provide a fluid user experience.
(Note that this problem also occurs when someone uses standard desktop input devices with
a very high resolution display.)

3 Background

The expressiveness of input devices was first defined by Card et al. [CMR91] as an evalua-
tion criterion capturing how well the input conveys the intended meaning. Without explicit



guards, a mismatch of expressiveness can cause problems in the user interface. These prob-
lems were formally described by Card et al. using parametersof input devices. TheIn pa-
rameter represents the input domain, which describes the physical properties of the world.
TheOut parameter represents the output domain set of the input device, which describes
the values that an input device can produce.

“In the design of input devices, an expressiveness problem arises when the
number of elements in theOut set does not match the number of elements in the
In set to which it is connected. If the projection of theOut set includes elements
that are not in theIn set, the user can specify illegal values; and if theIn set
includes values that are not in the projection, the user cannot specify legal values.”
[CMR91]

For an example of an expressiveness problem, consider a touch panel overlaying a display
where the resolution of the touch panel (where transducer values form theOut set) is much
less than the resolution of the display (where pixels form the In domain). If a user wanted
to select an individual pixel, he would not be able to expressthat request exactly.
The expressiveness problem is closely related to the problem of device precision. Pointing
precision characterizes how small of a target can be conveniently selected with the device.
Quantifying the pointing precision of absolute input devices in terms of screen area is
relatively straightforward. However, quantifying the precision of relative pointing devices
is more difficult. Card et al. [CMR91] quantify precision of input devices in terms of bits
using insights from subjective ratings of the difficulty of pointing tasks using the mouse
in text editing applications, where the threshold between easy and hard tasks lies between
selecting a word and selecting a character; selecting a wordis thehardest easy task, and
selecting a character is theeasiest hard task. Thus device precision is defined by Card et
al. as follows:

“We characterize the precision of a device as theID that requires the same
amount of time as the easiest hard task of the mouse.” [CMR91]

Here, ID is the Fitts’ law index of difficulty of the pointing task measured in bits. The
problem with this definition is that it requires empirical testing to determine the precision
of the device, limiting its utility as a design tool. In this paper, we propose a new definition
to quantify the precision of relative input devices based ondevice parameters, and show
how this definition can be used to predict changes in precision without empirical testing.

4 The Selexel Approach

Our approach is to match the selection resolution of the userinterface to the expressiveness
of the input device. This is accomplished by dividing the screen into atomic selectable
elements, orselexels, with a resolution that is independent of the pixel resolution of the
screen (see Fig. 1). By separating selexels from pixels, we adjust the range of motion in the
interface to support a smooth and fluid user experience for the input device in use, while
preserving the screen resolution and information capacityof the display.
The traditional conceptual framework for analyzing pointing tasks separates the task into
two spaces: motor space and display (or visual) space. This is reflected by the frequent use
of the control–display (C–D) ratio to describe the relationship between motion distance in
the physical world (meters) and motion distance on the screen (pixels). Our new conceptual
framework adds selection space as a level of indirection between motor space and display
space. Using this framework, a traditional desktop interface is a special case where the
selection space is identical to the display space. We note that since the motor space is
mapped to selection space and not display space, the conceptof C–D ratio is replaced
by the notions of Control-Selection (C–S) ratio for the relationship between motor and
selection space, and Selection-Display (S–D) ratio for therelationship between selection
and display space.
Expressiveness is easily confused with the notion of deviceresolution. Resolution of an
input device, usually measured in dpi (dots per inch), describes precision in motor space;
how small of a movement, in motor space, can be distinguishedby the transducer. Expres-
siveness, characterized by selexels (unitless), describes precision in selection space; how
many distinct positions, in selection space, can one express, or “reach”, using this input
device in a given timeframe. The length of this timeframe will be discussed below.



Fig. 1.A sample selexels screen division over a typical desktop interface. It indicates that existing desktop
interfaces may need to be modified to disambiguate selectionwith low precision pointing devices.

5 Related Work

There are many approaches to improving selection performance in pointing tasks that in-
crease the size of the cursor. Thearea cursorhas an active selection region that spans a
screen area, rather than a single point. Kabbash and Buxton [KB95] show that selection of
a point-sized target can be accurately modeled using Fitts’law by settingW to the cursor
width, reducing the index of difficulty for small targets. However, area cursors can over-
lap multiple targets, making user selection ambiguous. Worden et al. [WWBH97] propose
an improved area cursor with an additional hot spot at its center to disambiguate between
multiple closely-spaced targets within the cursor area. This cursor performs better than the
standard point cursor when targets are far apart, and identically to point cursors when tar-
gets are closer together. The Bubble cursor [GB05] dynamically resizes the active cursor
region to always encompass exactly one selectable object that is nearest to the center posi-
tion of the cursor. This effectively changes the width of thetarget to the size of the Voronoi
region surrounding the target, maximizing its size in motorspace. This technique is supe-
rior to previous techniques in that it also demonstrates benefits over the point cursor for
densely packed targets. However, for each of these solutions, cursor motion is governed by
pixels, making them unsuitable for tasks for input devices with low expressiveness.
A cursor in the selexel domain is similar to these techniquesin that it has an active region
that spans a screen area, rather than a single pixel. However, a cursor highlighting a single
selexel is actually a point cursor in selection space, even though the active region may span
a screen region in display space. Thus, the techniques proposed above should result in the
same performance improvements if applied to targets in selection space, but we leave the
experimental validation of this theory to future work.
Several selection techniques have been shown to increase pointing performance by dynam-
ically adjusting the control–display (C–D) ratio [BGBL04,BCHE05], sometimes referred
to as cursor acceleration. Pointing performance can be improved by increasing the control–
display ratio while approaching the target (and thereby decreasing the distance traveled
in motor space), or by decreasing the control–display ratiowhile inside the target (and
thereby increasing the target size in motor space). In this paper, we focus on a static C–S
ratio. However, these adaptive techniques should still be applicable in the selexels domain



by replacing the C–D ratio with the C–S ratio, but again we leave the validation of this
theory to future work.

6 The Selexels Framework

A selexel cursor has the same ambiguity problem as the area cursor when covering multiple
targets, as demonstrated in Fig. 1. There are several options to eliminate this ambiguity:

– The input device could be restricted to one that supports theminimum selexel reso-
lution required for the interface to have no cursor overlap of multiple targets. In this
way, the selexels framework allows us to define device criteria for interacting with
existing applications. However, most desktop applications are not compatible with a
grid selection scheme, requiring the standard “one selexelper pixel” scenario.

– Alternatively, if a situation requires the use of a low precision pointing device (e.g.,
in the aforementioned case of large public display interactions using the Sweep tech-
nique), the layout of the interface could be altered to be compatible with the selexel
resolution of the input device. This can be accomplished through manual rearrange-
ment, or through automatic layout of user interfaces as in [GW04]. In this way, the
selexels framework allows us to define graphical layout constraints for applications
designed for low-expressiveness pointing techniques. (See Future Work for more dis-
cussion on this topic.)

– Lastly, drawing inspiration from the Bubble Cursor [GB05],the size of the selexel
in pixels (the S–D ratio) can be dynamically varied to alwayscontain one and only
one selectable target, essentially mapping each selexel tothe Voronoi regions of the
targets on the display, and thereby minimizing the number ofselexels in an interface.
A simplified 1D version of this approach is embodied by the tabbed interface, where
a user can cycle the selection focus through the selectable items in an interface, often
by pressing the tab key. The problem with this approach is that the resulting C–D ratio
(a combination of C–S and S–D ratios) might be unpredictablefor users, preventing
them from accurately planning their movements. In this paper, we focus on the case of
a constant S–D ratio.

6.1 Expressiveness of Relative Pointing Devices

We characterize the expressiveness of a relative pointing device using the precision
of the input technique based on models of human motor performance including Fitts’
law [Fit54, Mac92], and the linear speed-accuracy tradeoff[SZH+79]. The reasoning be-
hind our definition can be best explained using the conceptual framework presented by
Meyer et al. [MSK+90], which was used to create the stochastic optimized submovement
model. This model attempts to reconcile the strengths of Fitts’ Law (better suited to model
spatially constrained tasks, such as cursor positioning using a mouse), and the linear speed-
accuracy tradeoff [SZH+79] (better suited to model temporally constrained tasks, such as
cursor positioning using a joystick to control cursor velocity) into a unified model capable
of expressing a wider range of movement tasks. The stochastic optimized submovement
model is based on the assumption that the subject attempts tohit the center of the target
region with their first submovement (see Fig. 2). If the primary submovement successfully
acquires the target, then the action terminates. The model anticipates noise in the motor
system to affect the primary submovement, causing a slight variation from the intended
movement and the actual result. If a miss occurs, then a secondary corrective submove-
ment will be used, and so on. Thus for a pointing task to be valid for this model, the input
device must theoretically allow a subject to reach a target in the primary submovement,
even though noise in the motor system may require additionalsubmovements before the
target is successfully acquired.

We define theexpressivenessof a relative pointing device as the number of
distinct positions a user can express in a single submovement.

The duration of a submovement is defined by the basic human reaction time. Using Card,
Moran, and Newell’s human processor model [CNM83], the basic reaction time is approx-
imated byTsub = τp + τc + τm, or one cycle for each of the perceptual, cognitive, and



7

$
�

$ISTANCE

6E
LO

CI
TY 4ARGET2EGION

Fig. 2. The optimized dual-submovement model is a variation of the optimized submovement model with
two submovements. Hypothetical primary submovements are marked with a solid line, secondary sub-
movements with a dashed line. (based on Figure 6.8 from [MSK+90].)

motor processors. This equation approximates the time for the user to observe the motion
progress (τp), decide on a correction (τc), and perform the correction (τm). For the average
user (“middleman” in [CNM83]), this sum would result in an approximate submovement
duration of 240ms.
We define the expressiveness of a relative input device in terms of the motion throughput
of the transducer (D in dots per sec.), and the psychological limits of human information
processing in terms of the submovement duration (Tsub in sec.). Motion throughput de-
scribes the rate at which motion information can be processed by the input device. Industry
typically reports the device specifications in terms of device resolution (Ndev in dots per
inch) and maximum supported rate of motion (vmotion in inches per sec.). We can use these
parameters to define motion throughput as follows:

D := Ndev ∗ vmotion

Alternatively, the motion throughput can be defined using the transducer resolution (Ntrans

in dots per sample) and sampling frequency (fsample in samples per sec.), assuming a single
transducer per axis of motion. To simplify the definition, wefirst define the notion of sample
reach (Reachsample in dots) as the maximum selexel distance that can be reached in a single
sample.

Reachsample := .5 ∗ (Ntrans − 1)

The scaling factor (.5) is necessary because the transducerresolution is split into positive
and negative values along the motion axis. One sample is removed to account for the zero
value which has no motion. If positive and negative measurements are separated into mul-
tiple transducers, this equation may require slight adjustments. The motion throughput can
then be alternatively formulated as,

vmotion := fsample ∗ Reachsample/Ndev

D = Ndev ∗ fsample ∗ Reachsample/Ndev

D = fsample ∗ Reachsample .

We further define the submovement reach (Reachsub in dots) as the maximum selexel
distance that can be reached during a single submovement (Tsub).



Reachsub := D ∗ Tsub

We note thatReachsub is measured in dots, which is a unitless quantity relating tothe
number of distinct values that can be expressed during a submovement.
Expressiveness can then be defined as the set of points (E) that a user can express in a
single submovement. For a one-dimensional input device, assuming a C–S gain function of
S(t) (i.e. cursor acceleration), we can define expressiveness asfollows:

E := {S(x) :where0 < x < Reachsub andx ∈ Z},

whereZ is the set of all integers. We note that in the case of no C–S gain (S(t) = t), this
reduces to the set of integers between0 andReachsub, and the cardinality of the expres-
siveness set (|E|) is Reachsub + 1 .
An input device is said to have higher expressiveness when the cardinality of the expres-
siveness set (|E|) is greater than that of another device. We also note that changing the
C–S gain function fromS(t) = t cannot increase the cardinality of the expressiveness
set; instead, it may create unreachable gaps or even decrease expressiveness if multiple
transducer values map to the same cursor displacement in selexel space. This theoretical
observation fits with the findings of Jellinek et al. [JC90] who explored second order cur-
sor acceleration using several different C–D ratios on a mouse, but found no performance
improvements.

6.2 Examples

A case study of specific input devices should serve to illustrate the theoretical definition
with practical examples. They show how expressiveness can be used as a design metric to
gauge the suitability of a relative input device for a particular interaction scenario.

Opto-Mechanical Mouse Figure 3 shows the inner workings of an optical-
mechanical mouse. The resolution (dpi) of the mouse is determined by the ratios of the
physical dimensions of the ball, the grips, and the discs. The current industry standard
for device resolution (Ndev ) of these mice ranges from 400 to 800 dpi. For this example,
assume that the pulse accumulator is capable of storing 8 bits of information for each di-
mension of motion, resulting in a transducer resolution (Ntrans ) of 256 possible outputs
per sample.
For traditional PS/2 mice, common in the 1990s, the default sampling rate under Windows
95 / 98 was 40 Hz. Thus, their throughput can be calculated as follows:

D = (Ntrans − 1) ∗ .5 ∗ fsample

= (256 − 1) ∗ .5 ∗ 40

= 5120

Then theirReachsub follows as:

Reachsub = D ∗ Tsub

= 5100 ∗ .240

= 1224

Thus a user would start to have problems with expressivenessusing this device with a
screen resolution of1225 or higher in any dimension.

Optical Mouse As another example, consider the Agilent Technologies ADNS2610
optical mouse sensor [Agi04]. It supports a resolution of 400 dpi, and rates of motion up to
12 inches per second. Thus, its throughput can be calculatedas follows:

D = Ndev ∗ vmotion

= 400 ∗ 12

= 4800



Fig. 3. An optical-mechanical mouse: (1) Motion across the desktopsurface moves the ball. (2) Grips
transfer the ball movement to turn (3) optical encoding disks. (4) Infrared LEDs shine through the holes.
(5) Infrared sensors accumulates light pulses and convertsthem into X, Y motion. (Source: Wikipedia)

Then itsReachsub follows as:

Reachsub = D ∗ Tsub

= 4800 ∗ .240

= 1152

Thus a user would start to have problems with expressivenessusing this device with a
screen resolution higher than1152 in any dimension. Note that if the resolution of the
sensor was bumped to 800 dpi, then theReachsub also doubles supporting resolutions
much higher than 2000 pixels in either dimension.

Analog Joystick Consider a USB analog joystick (shown in Figure 4) that has a reso-
lution Ntrans of 256 positions on each axis after digital conversion. The joystick measures
absolute tilt in the (rX, rY) dimensions, but is used as a relative positioning device bymap-
ping tilt to control the velocity of cursor movement. Positioning a cursor with velocity
control is a temporally constrained task. Modern operatingsystems support sampling such
USB devices at a rate of 125 Hz. Thus the rate of motionD can be expressed as follows:

D = (Ntrans − 1) ∗ .5 ∗ fs

= (256 − 1) ∗ .5 ∗ 125

= 15937.5

Then the resultingReachsub follows as:

Reachsub = D ∗ Tsub

= 15937.5 ∗ .240

= 3825

This indicates that this particular joystick has a very highexpressiveness, notably higher
than the mice examined above. It should be noted that expressiveness does not necessarily
indicate that a device can be used with a higher felicity [CMR91]. To draw conclusions
about the pointing speed (or device bandwidth), it is still necessary to compare the devices
using an ISO 9241-9 [ISO00] standard empirical evaluation.However, the expressiveness
reveals which pointing tasks are possible for the input device in a single submovement.



Fig. 4. An analog joystick measures absolute tilt of the stick in therX, rY dimensions.

Sweep Sweep [BRSB05] is an experimental input technique that usesthe camera on a
mobile phone to detect relative motion of the phone. The interaction is intended to support
novel interactive applications for large public displays.The current implementation of this
technique detects relative motion in the(X, Y ) dimensions with a sample frequency (fs)
of 12.5 Hz and a transducer resolution (Ntrans ) capable of detecting 9 distinct dots (dis-
placements) per sample. The actual physical sensor in this example is the camera which
has a relatively high resolution. However, for the purposesof expressiveness we consider
the output of the motion detection algorithm to be the transducer output since those are the
actual values that can affect the cursor. Thus,

D = (Ntrans − 1) ∗ .5 ∗ fs

= (9 − 1) ∗ .5 ∗ 12.5

= 50

Then theReachsub follows as:

Reachsub = D ∗ Tsub

= 50 ∗ .240

= 12

Thus the largest resolution that would not result in expressiveness problems would be
13 × 13. This means that the use of this input device with standard desktop resolution
will result in difficulties because of the severe mismatch inexpressiveness. This matches
the difficulties expressed in a previous evaluation of the Sweep technique [BRSB05].

6.3 Expressiveness of Absolute Pointing Devices
For direct surface interaction, such as a touch screen, the expressiveness|E| simply maps
to the resolution of the input surface (dpi) multiplied by its size. TheReachsub , however,
can be limited by the physical characteristics of the relevant parts of the human body, such
as arm length.

7 Practical Application of Selexels

Mismatches in expressiveness can disrupt the user exprience. This new method of char-
acterizing expressiveness allows us to identify and resolve these mismatches to provide a
more fluid experience. Selexels provide a level of abstraction that allows us to reduce the
selection resolution of the display to match the expressiveness of the input device, without
sacrificing valuable display resolution.



7.1 Usage Scenario

We may apply these concepts to interactions in the domain of large public displays, as
illlustrated in the following scenario.

While Hans is waiting for his train to Berlin, he notices a large public display
on the platform displaying advertisements and community news. He recognizes
the style of a 2D bar code next to the display. He has previously used a similar
barcode to initiate interaction with a demo display in the T-Mobile showroom. He
takes a picture of the code (just as he had done in the showroom), and his phone
automatically connects wirelessly to the display via Bluetooth and transfers infor-
mation characterizing its input expressiveness. The advertisement transforms into
an interactive menu with a selexel resolution matched to hisinput device, allowing
Hans to select from several options including: browsing thenews, checking the
weather, or even contributing to an interactive community bulletin board where
people post images, video, and text. Hans waves his phone through the air using
the Sweep technique to select the weather option. A map of Germany appears
and as he navigates the cursor over different regions, the current conditions and
forecast are displayed to the right of the map. It looks like the previously forecast
afternoon showers are no longer a threat in Berlin. Hans thencalls his wife to
invite her to go to their favorite restaurant for dinner on the quaint cobblestone
patio.
Shortly after Hans leaves, Maria wants to check up on her bulletin board post from
last week about the proposed new theatre to be built next to the train station. Her
phone is much older than Hans’s and the expressiveness of theSweep technique
is much lower. As she connects to the display, the cursor grows and the menu
options move further apart to adapt the selexel resolution of the interface to match
that of her phone. Now she is able to use her more limited phoneas a pointing
device, yet the system still provides a fluid experience.

This scenario shows how expressiveness can be used to tailora user interface on the fly to
the capabilities of the input devices that are used in a particular interaction. These concepts
may also be useful for scenarios using very high resolution displays such as those described
in [CRM+06].

8 Evaluation

Card, English, and Burr’s [CEB78] seminal work showed that the efficiencyof pointing
devices can be analyzed using Fitts’ law [Fit54, Mac92], which models human motor per-
formance by predicting movement time in a pointing task as follows:

MT = a + b ∗ ID

ID = log2(
D

W
+ 1),

whereD is the target distance,W is the target width, andID is the index of difficulty of the
pointing task.a andb are empirically determined constants that vary with the characteristics
of the input device. These empirically determined constants are affected by a wide variety
of input device characteristics including mass, friction,resolution, sampling rate, lag, and
C–D gain [Mac92]. Changes in any of these parameters will also change the result of the
regression analysis.
In a series of experiments, we attempt to characterize how pointing tasks are affected by the
relationship between the expressiveness of the input device and the selexel resolution of the
display. A custom test program allows us to vary the selexel resolution of the display, and
vary the expressiveness of input devices by artificially limiting the resolution and sampling
rate. The test application hides the system cursor and displays a point cursor in selexel
space (an area cursor in pixel space) that moves selexel-wise, appearing to jump from one
selexel position to the next. The application was implemented in Objective-C under Mac
OS X.



C-S (Reachsample) Selexels Pixels S-D C-D

1280 1280 1280 1 1280

256 256 1280 0.2 1280

40 40 1280 0.03125 1280

20 20 1280 0.01563 1280

Table 1. By matching the selexel resolution to the C–S ratio (Reachsample ) we maintain a constant C–D
ratio across the test conditions.

9 Experiment 1

Given that the selexel cursor represents a point cursor in selexel space, Fitts’ Law [Fit54]
should be a suitable model for predicting target aquisitiontime in pointing tasks. However,
the selexel cursor is an area cursor in pixel space. Previousstudies of area cursors have
demonstrated that selection using area cursors lowers the index of difficulty for smaller
targets [KB95, WWBH97]. Also, as users have come to expect pixel-wise cursor motion,
the selexel-wise motion may impede or annoy the user. Thus, it is important to examine
whether pointing in the selexel paradigm can be modeled by Fitts’ Law. This experiment is
specifically designed to examine if the input device expressiveness affects the empirically
determined constants of the input device (a andb).

9.1 User Study Design

Using a within-groups design, users were asked to complete ahorizontal tapping test based
in part on ISO 9241-9 [ISO00]. For each test condition, the same range of target distances
(D = 256, 640, and 1024 pixels) and target widths (W = 64 and 128 pixels) were used.
To simulate input devices of varying expressiveness, the sampling period of the mouse was
artificially increased to 20ms to guarantee a constant sampling rate for all test conditions.
The transducer resolution (Ntrans ) of the input device was varied to have aReachsample of
1280, 256, 40, and 20 dots per sample. The selexel resolutionof the test UI was designed
to match theReachsample of the input devices with selexel resolutions of1280 × 800,
256 × 160, 40 × 25, and20 × 13 selexels respectively (selexel sizes of1 × 1, 5 × 5,
32 × 32, and64 × 64 pixels). By matching the selexel resolution of the UI (S–D ratio) to
the transducer resolution of the input device (C–S ratio), the resulting C–D ratio remains
effectively constant (see Table 1) across the different conditions.
The cursors were all displayed as point cursors in selexel space, except for the one selexel
per pixel condition. In this condition, a5× 5 pixel area cursor was used instead of a1× 1
pixel point cursor for visibility. This particular cursor still maintained the other properties
of a point cursor in pixel space in that it had an active regionof 1× 1 pixel at the center of
the cursor, and its motion was pixel-wise.
The pixel placement for target pairs remained constant across test conditions. However,
the pairs of targets were placed such that some were aligned to the selexel boundaries and
some weren’t (depending on the selexel condition). When a target is not aligned to selexel
boundaries, its width may span over several selexels even ifits size in pixels is much less
than a single selexel.
Both the ordering for the different expressiveness conditions, and the ordering for the dif-
ferentIDs were varied to reduce learning effects in a within-groups study. A fully crossed
design resulted in a total of 24 combinations ofD, W , and matchedNtrans+ selexel reso-
lution pairs. For each combination, 25 target selections were required.

9.2 Participants

10 volunteers (4 females, 6 males) ranging in age from 22 to 27participated in the study.
All of the participants were students (8 computer science, and 2 political science) from a
local university.



0 1 2 3 4 5 6 7

0.4

0.6

0.8

1

1.2

1.4

1.6
y =0.24496 +0.151x

R
2
 =0.7143

F =55.0037
p =0.01771

Index of difficulty (pixels)

M
o

v
e

m
e

n
t 

ti
m

e
 (

s
)

0 1 2 3 4 5 6 7

0.4

0.6

0.8

1

1.2

1.4

1.6
y =0.15009 +0.19687x

R
2
 =0.95902

F =514.8228
p =0.0025404

Index of difficulty (selexels)

M
o

v
e

m
e

n
t 

ti
m

e
 (

s
)

Fig. 5. (Left) Index of difficulty calculations in terms of display pixels are not well suited for selexel point-
ing tasks. (Right) The same data reinterpreted with index ofdifficulty in terms of selexels provides a strong
correlation. The correlation is strong despite the fact that this data is mixed across selexel conditions,
demonstrating that selexel resolution has no impact on device performance as long as the C–D ratio is
preserved. Here the C–D ratio is preserved by matching the expressiveness of the UI to the expressiveness
of the input device by changing the selexel resolution.

9.3 Equipment

The tapping test was performed using a Logitech M-BJ58 (800 dpi) USB optical mouse,
an Apple 23” Cinema LCD monitor with the display resolution set to1280 × 800, and a
PowerMac Dual 2.0 GHz G5 processor.

9.4 Results

The results from this experiment are shown in Figure 5. The graphs indicate that using
the distance and width in units of pixels results in a valid (p < 0.05), but poor model
(R2 = 0.71) for selexel pointing tasks. If the same data is reinterpreted using target dis-
tance (D) and target width (W ) in units of selexels, the model becomes much improved
(p < 0.005, R2 = 0.959). An analysis of variance (ANOVA) shows a significant effect
for index of difficulty [F (15, 23) = 42.99, p < 0.0003], and no significant effect for the
expressiveness conditions [F (2, 23) = 1.64, p < 0.28].

9.5 Discussion

These results confirm previous findings [KB95] that show thatarea cursors lower the index
of difficulty for small targets, but these results further show that movement time for targets
larger than one pixel can be accurately predicted using units of selexels to calculate theID
for selexel pointing tasks.
Another result of this experiment is that selexel-wise motion had no effect on task comple-
tion time. This is demonstrated by the fact that the mixed results can be modeled very well
(R2 = 0.959) using a single linear regression.
A more significant result from this experiment is that, contrary to what one might expect,
transducer resolution (Ntrans in dots per sample) has no effect on task completion time,
as long as the C–D ratio is preserved across test conditions.This result has important im-
plications for evaluating prototype input techniques withlow transducer resolution, such
as the Sweep technique. As mobile processors and cameras continue to improve, motion
detection will become more powerful, and the resulting transducer resolution will improve.
Using this study as a model, an evaluation can be structured such that conclusions can
be made about pointing performance of future mobile phones as the transducer resolution



(dots per sample) continues to rise (assuming all other parameters, such as C–D ratio, re-
main the same).
The error rates for pointing under selexels were lower than pointing under pixels. This can
be explained using the speed-accuracy trade-off since the target widths effectively expand
to the selexel span of the target, reducing the physical accuracy required for the pointing
task.

10 Experiment 2

To further validate our conceptual framework, it is necessary to experimentally verify the
notion ofReachsub , the maximum distance that can be reached in the first submovement.
Based on the conceptual framework, the selexel resolution should matchReachsub prevent-
ing any target distances from exceeding the maximum distance. This experiment examines
the effect of target distances exceedingReachsub .

10.1 User Study Design

This experiment was structured as a horizontal tapping test, very similar to Experiment 1.
It used a within-groups design, and reused the parameters for target distance (D), target
width (W ), and target placement. However, in this experiment we maintained the trans-
ducer resolution (Ntrans ) to have a constantReachsample of 20 dots per sample. With a
sample period of 20 ms, theReachsub can be calculated as follows:

Reachsub = fsample ∗ Reachsample ∗ Tsub

Reachsub = (1/.020) ∗ (20) ∗ .240

Reachsub = 240

ThisReachsub of 240 selexels per submovement was maintained across all conditions.
The selexel resolution of the display (and resulting pixel size) was varied as in Experiment
1. As a result the C–S ratio remained constant, while the S–D ratio varied, resulting in a
range of C–D ratios.
The ordering for the different selexel resolutions, and theordering for the differentIDs
were varied to reduce learning effects in a within-groups study. A fully crossed design re-
sulted in a total of 24 combinations ofD, W , and selexel resolution. For each combination,
25 target selections were required.

10.2 Participants

11 volunteers (2 females and 9 males) ranging in age from 22 to29 participated in the
study. All of the participants were students (8 computer science, 1 political science, and 2
undisclosed) from a local university.

10.3 Equipment

The equipment used was the same as Experiment 1.

10.4 Results

The results from this experiment are shown in Figure 6. In thefirst graph, all of the condi-
tions are mixed, resulting in data that is unable to be modeled using Fitts’ Law (p = 0.61).
In the second graph, the same data from the first graph is reinterpreted by removing condi-
tions (marked with an “x”) where the target distance (D) exceeds the submovement reach
(Reachsub) to allow comparison with the original data. The second graph results in a data
set that can be modeled by Fitts’ Law (p < 0.05). Using an analysis of variance (ANOVA),
a binary ”reach exceeded” variable has a significant effect [F(1,23)=28.79, p¡0.00003]
showing that target distances exceeding submovement reach(Reachsub) increase task com-
pletion time.
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Fig. 6. (Left) In this experiment, contrary to the previous experiment, the mixed results across experimental
conditions cannot be modeled with Fitts’ Law. (Right) The same data is shown with target distances greater
thanReachsub removed (marked as “x”). The conditions where the targets were placed only slightly further
(256 selexels) than the submovement reach (240 selexels) are still relatively close to the model, indicating
that slight mismatches in expressiveness are only a minor issue. However, the extreme mismatches in
expressiveness with target distances of (512, 1024) are extreme outliers in terms of target acquisition time.
With these points removed, the data can be modeled by Fitts’ Law (p < 0.05). These graphs combined
indicate that an upper bound to the validity of Fitts’ Law canbe predicted.

10.5 Discussion

In the second graph of Figure 6, the conditions where the targets were placed only slightly
further (256 selexels) than the submovement reach (240 selexels) are still relatively close
to the other samples, indicating that slight mismatches in expressiveness are only a minor
issue. However, the extreme mismatches in expressiveness with target distances of (512,
1024) are extreme outliers in terms of target acquisition time. This indicates that target
distances exceedingReachsub disrupt the user experience and increase task performance
time.
The reader may have noticed that the quality of the input device model (R2 = 0.788) is
much lower than that of the previous experiment. This is due to the fact that the data has
mixed C–D ratios across the different experimental conditions. As mentioned before, the
C–D ratio is one of the input device parameters that is captured by the Fitts’ law coefficients
(a andb). Separating the different C–D ratio conditions, as in Figure 7, should result in
models that account for much more of the variance in the data (a higherR2). Figure 7
demonstrates that this is true except for the condition witha selexel size of1 × 1, which
contains only target distances greater thanReachsub . This further indicates that an upper
bound to the validity of Fitts’ Law can be predicted usingReachsub .

11 Conclusions

Previous characterizations of the expressiveness of relative input devices required empirical
testing, limiting their utility as a design tool. We have presented a conceptual framework
to characterize the expressiveness of input devices based on the physical properties of the
hardware, allowing its appropriateness for a particular interaction scenario to be more easily
assessed. Our selexel framework allows the user interface to be tailored (even adapted at
run-time) to match the expressiveness of the input device without sacrificing the screen
resolution, which is important to preserve the informationcapacity of the display.
Our experiments have shown that pointing under selexels canbe modeled by Fitts’ Law,
demonstrating that selexel-based motion has no effect on task performance time. Experi-
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Fig. 7. This figure demonstrates that separating the data from Figure 6 into separate charts based on C–D
ratio results in more accurate models (a higherR2) for conditions where the targets were withinReachsub .
Note that the condition with target distances greater thanReachsub (selexel size of1 × 1) still poorly
correlates with the model despite separation, further indicating that an upper bound to the validity of Fitts’
Law can be predicted.

ment 1 further demonstrates that transducer resolution hasno effect on task performance
time as long as the C–D ratio of the UI is preserved.
In experiment 2, our conceptual framework was validated by experimentally verifying the
notion ofReachsub . These results demonstrate that the upper bound for the validity of the
Fitts’ Law model can be predicted based on the physical properties of the input device.
This new conceptual model can help structure the evaluationof input devices with low
expressiveness.

12 Future work

We are currently working on toolkit support of the selexel framework, allowing applications
to dynamically adjust their selexel resolution based on theinput device used.
This work has focused on cases where the expressiveness of input devices is much lower
than that of the display. However if the expressiveness of the input device is much higher
than the display, sub-pixel selection is possible, but other feedback mechanisms (external
to the display) are needed to indicate which selexel is selected.
The selexels framework has the potential to improve the accessibility of user interfaces by
simplifying pointing tasks for people who have normal visual capabilities, but suffer from
motor impairments.
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1989-04 ∗ Andy Schürr: Introduction to PROGRESS, an Attribute Graph Gram-

mar Based Specification Language
1989-05 J. Börstler: Reuse and Software Development - Problems, Solutions, and

Bibliography (in German)
1989-06 ∗ Kai Jakobs: OSI - An Appropriate Basis for Group Communication?
1989-07 ∗ Kai Jakobs: ISO’s Directory Proposal - Evolution, Current Status and

Future Problems
1989-08 ∗ Bernhard Westfechtel: Extension of a Graph Storage for Software Doc-

uments with Primitives for Undo/Redo and Revision Control
1989-09 ∗ Peter Martini: High Speed Local Area Networks - A Tutorial
1989-10 ∗ P. Davids, Th. Welzel: Performance Analysis of DQDB Based on Simu-

lation
1989-11 ∗ Manfred Nagl (Ed.): Abstracts of Talks presented at the WG ’89 15th

International Workshop on Graphtheoretic Concepts in Computer Sci-
ence

1989-12 ∗ Peter Martini: The DQDB Protocol - Is it Playing the Game?
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2000-03 D. Jäger, A. Schleicher, B. Westfechtel: UPGRADE: A Framework for

Building Graph-Based Software Engineering Tools
2000-04 Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems
Approach

2000-05 Mareike Schoop: Cooperative Document Management
2000-06 Mareike Schoop, Christoph Quix (eds.): Proceedings of the Fifth Interna-

tional Workshop on the Language-Action Perspective on Communication
Modelling

2000-07 ∗ Markus Mohnen, Pieter Koopman (Eds.): Proceedings of the 12th Inter-
national Workshop of Functional Languages

2000-08 Thomas Arts, Thomas Noll: Verifying Generic Erlang Client-Server Im-
plementations

2001-01 ∗ Jahresbericht 2000
2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces
2001-03 Thierry Cachat: The power of one-letter rational languages
2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus
2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages
2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic
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